
a SpringerOpen Journal

Dumond and Baddour SpringerPlus 2014, 3:272
http://www.springerplus.com/content/3/1/272
RESEARCH Open Access
A structured approach to design-for-frequency
problems using the Cayley-Hamilton theorem
Patrick Dumond* and Natalie Baddour
Abstract

An inverse eigenvalue problem approach to system design is considered. The Cayley-Hamilton theorem is developed for
the general case involving the generalized eigenvalue vibration problem. Since many solutions exist for a desired
frequency spectrum, a discussion of the required design information and suggestions for including structural constraints
are given. An algorithm for solving the inverse eigenvalue design problem using the generalized Cayley-Hamilton
theorem is proposed. A method for solving partially described systems is also specified. The Cayley-Hamilton theorem
algorithm is shown to be a good design tool for solving inverse eigenvalue problems of mechanical and structural
systems.
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1. Introduction
In mechanical and structural system design, engineers
are often faced with the task of designing systems which
either have natural frequencies which must fall outside a
specific range or operate at exactly certain frequencies.
These design problems can be considered as eigenvalue
problems, since the eigenvalues are used to determine
the natural frequencies (frequency spectrum) of the sys-
tem. Generally, the problem begins by defining the sys-
tem’s physical parameters and then calculating the
natural frequencies using eigenvalue theory. If specific
natural frequencies are sought, empirical or iterative
methods are used to modify the system’s physical param-
eters until the desired eigenvalues are obtained. This ap-
proach is both time consuming and indirect. A better
approach would be to design the system directly from
the natural frequencies.
From a mathematical point of view, this problem is ill-

posed. This is because a single set of natural frequencies
can be produced by multiple systems and thus multiple so-
lutions are possible. One area that seeks to solve these diffi-
culties and which potentially holds great promise for
addressing the problem of design for frequency spectrum is
that of inverse eigenvalue problems. Although not currently
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used for such purpose, the theory could potentially be ap-
plied to such design problems. A rather broad field cover-
ing many subjects, such as control systems, structural
analysis, particle physics and vibrations, inverse eigenvalue
problems have an interesting and large field of application.
While continuous inverse theories have been studied, such
as the classical Sturm-Liouville problem (Chadan 1997;
Gel’fand and Levitan 1951; Gantmakher and Kreĭn 2002), a
more interesting approach for the purpose of design is to
use discrete theory. For the application of inverse eigen-
value theory to the field of vibrations, this would involve
the use of discrete matrix representations of real systems.
This approach presents greater value since many numerical
and analytical tools already exist for the solution of discrete
problems and many engineering systems are often mod-
elled as discrete systems.
Much focus has been applied to the study of discrete

inverse eigenvalue problems. This has been made clear
by a thorough review of the topic by Chu and Golub
(Chu 1998; Chu and Golub 2005). Gladwell takes a more
direct route in which he considers specific inverse prob-
lems and matrix structures related to mechanical vibra-
tions (Gladwell 2004). Particularly, it appears that most
of the literature focuses on system identification. One of
the most common techniques in inverse eigenvalue
problems is to use/measure the system’s spectrum and
then constrain the system in some fashion in order to
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obtain a second spectrum (Hochstadt 1967; Hald 1976;
Boley and Golub 1978; de Boor and Saff 1986; Gladwell
1984). This clearly indicates that a system usually exists
and that it can be tested to obtain data required for the
inverse problem of mathematically reconstructing the
system. Although interesting, this approach cannot be
used for novel engineering design to construct a system
having a specific spectrum without another system on
which to base the design.
In most cases, the solution to the inverse problem begins

by placing the given desired eigenvalues along the main di-
agonal entries of a diagonal matrix Λ. Additionally, any ar-
bitrary invertible matrix P can be used to obtain another
solution (matrix) with the same spectrum, namely PΛP− 1.
Since PΛP− 1 is the trivial solution, pre-conditioning of the
P matrix is required so that any given structural require-
ments of the system can be satisfied. Various methods can
be used to impose such structure. According to Chu, these
methods can be distinguished by the types of procedures
used in imposing structure to the matrix (Chu 1998). Struc-
turing matrices by prescribing specific entries has been
studied in (Chu 1992; Friedland et al. 1987). Modifying the
matrix through the addition of another matrix has also
been considered in (Morel 1976; Bohte 1968; Pereyra et al.
1983). Dias de Silva, de Oliveira, and others have studied
how multiplying the discrete system by another matrix can
affect its structure (Downing and Householder 1956; Dias
da Silva 1986; de Oliveira 1972). The use of the well-
developed matrix theory for certain structured matrices,
such as Jacobi or band matrices, as applied to inverse prob-
lems has also been investigated (de Boor and Golub 1978;
Erra and Philippe 1997; Biegler-König 1981b; Boley and
Golub 1987). Finally, applying least squares methods has
shown to be an effective method for finding an approxi-
mate solution to inverse eigenvalue problems (Chu and
Watterson 1993; Chen and Chu 1996).
In most cases, the research on inverse eigenvalue

problems has focused on the existence, uniqueness and
computability of a solution. Other studies are typically
variations on those described above, including partially
described problems where not all spectral information is
known. These types of problems have been considered
in (Gladwell and Willms 1989; Ram and Elhay 1996),
and are of interest for problems requiring only certain
frequencies to be specifically determined.
Once an inverse eigenvalue problem has been set up and

the type of solution has been chosen, various algorithms
can be used to numerically solve the problem. These in-
clude orthogonal polynomial methods, the block Lanczos
algorithm, the Newton method and the divide and conquer
method, as well as several others (de Boor and Golub 1978;
Golub and Underwood 1977; Biegler-König 1981a; Gragg
and Harrod 1984; Gladwell 1991; Chu 2000). A great deal
of research has advanced the field of optimization and has
improved our ability to find feasible solutions to various
problems. A comprehensive work on the subject is the
Encyclopedia of Optimization (Floudas and Pardalos 2009).
Although broad in scope, very little has been done to apply
inverse eigenvalue theory to actual engineering design
problems. In the case of mechanical or structural design,
the potential advantage of using such theory when design-
ing a frequency spectrum into a system appears to be
immense.
Interestingly, Dias de Silva and de Oliveira have shown

that an n × n matrix always exists when a minimum of n −
1 prescribed matrix entries and a prescribed characteristic
polynomial are given as design information (de Oliveira
1973; Dias da Silva 1974). Dias de Silva and de Oliveira’s re-
sults guarantee existence but not uniqueness of the matrix.
One of the main shortcomings of current inverse eigen-

value theory is the lack of a solution for general matrices
having predefined forms but which do not fit within
current known solutions. In this paper, a novel ap-
proach is considered using the Cayley-Hamilton the-
orem. The Cayley-Hamilton theorem relates a square
matrix over a commutative ring to its characteristic
polynomial (Atiyah and Macdonald 1969; Artin 2011).
To the authors’ knowledge, the Cayley-Hamilton the-
orem has not been used as a design tool for inverse
eigenvalue problems.

2. Problem definition
In this paper, we consider the following problems:
PROBLEM A: Given a specified frequency spectrum or

equivalently a set of eigenvalues, λ1,…, λn, construct an
nth-order system, described by an n × n matrix A, which
has λ1,…, λn as its eigenvalues.
Although this problem has been considered for spe-

cific forms of matrices (i.e. Jacobi, band or other matrix
forms as described above), a general solution approach
does not currently exist. Problem A leads into the vibra-
tion problem of interest which is also presented here:
PROBLEM B: Given a specified frequency spectrum or

equivalently a set of eigenvalues, λ1,…, λn, construct a
system with n-degrees of freedom, described by two n × n
matrices (the mass matrix M and the stiffness matrix K),
which has λ1,…, λn as its generalized eigenvalues: det
(K − λM) = 0 for the given λ1,…, λn.
For an engineer, Problem B relates directly to the de-

sign problem stated earlier, where a conservative vibrat-
ing system having specific natural frequencies is sought.
Finally, a partially described system is considered:
PROBLEM C: Given a certain number of specified nat-

ural frequencies or equivalently eigenvalues, as well as a
number of matrix entries, where together there is no less
than n pieces of given information, construct an nth-
order system, described by an n × n matrix A, which has
λ1,…, λn as its eigenvalues.
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Problem C can be extended to a two matrix problem
in the same manner as described for problem B. How-
ever, this has not been specifically considered herein.

3. Cayley-Hamilton theorem
3.1. Basic theory
In order to solve Problem A, a discussion of the Cayley-
Hamilton theorem is required. The Cayley-Hamilton
theorem states that if p(λ) is the characteristic polyno-
mial of a square matrix A, obtained from p(λ) = det (λI −
A), then substituting A for λ in the polynomial gives the
zero matrix. Thus, by applying the theorem, matrix A
satisfies its own characteristic polynomial, p(A) = 0
(Knapp 2006).
The Cayley-Hamilton theorem can be useful in inverse

eigenvalue problems beyond the typical statement that a
square matrix satisfies its own characteristic equation.
Once the characteristic polynomial of a system is found
from desired spectral data, the Cayley-Hamilton theorem
can be used to find an unknown matrix A, which repre-
sents the system. A set of unknown entries of the matrix
A can be solved from the set of equations that arise from
the Cayley-Hamilton theorem. For example, suppose
that a 2 × 2 matrix A has the form

A ¼ a11 a12
a21 a22

� �
ð1Þ

In order to solve the inverse eigenvalue problem we
must populate the entries of matrix A by using the
Cayley-Hamilton theorem and the set of desired eigen-
values. In order to visualize the process, suppose that
the desired eigenvalues are -2 and -3. The characteristic
polynomial is then constructed as

p λð Þ ¼ λþ 2ð Þ λþ 3ð Þ ¼ λ2 þ 5λþ 6 ð2Þ

Using the Cayley-Hamilton theorem, λ is replaced by
A of equation (1) in equation (2), such that

p Að Þ ¼ A2 þ 5Aþ 6I ¼ 0 ð3Þ

where I is the identity matrix. Expanding equation (3)
gives us four equations with four unknowns:

a211 þ a12a21 þ 5a11 þ 6 a11a12 þ a12a22 þ 5a12
a11a21 þ a21a22 þ 5a21 a222 þ a12a21 þ 5a22 þ 6

� �

¼ 0 0
0 0

� �

ð4Þ

However, equation independence is unclear. A discus-
sion is found in Section 4.1. Solving equation (4) leads
to two dependent solutions:
a11 ¼ −a22−5; a12 ¼ −
a222 þ 5a22 þ 6

a21
; a21 ¼ a21; a22 ¼ a22

� �

ð5Þ
At this point, any values can be assigned to a21 and

a22 and the matrix A will have the desired eigenvalues
given in equation (2). Consequently, Problem A has been
solved, although it is clear that many solutions exist.
This solution is particularly useful in solving inverse
eigenvalue problems as it gives a range of A matrix
values for which a system produces the same eigen-
values. The limiting factors are then based on the phys-
ical limits and fixed parameters of the system.

3.2. Generalized Cayley-Hamilton theorem for mass and
stiffness matrices
Problem B is related to Problem A, but takes on a more
general form which is conducive to real physical systems.
When considering a conservative vibrating system, the fac-
tors that control its frequency spectrum are the system’s
mass and stiffness. Typically, continuous systems are dis-
cretized in order to simplify the analysis. By doing so, the
system is described using mass (M) and stiffness (K) matri-
ces. The forward generalized eigenvalue problem involves
solving the equation det (K − λM) = 0 for the system’s gen-
eralized eigenvalues, λ. Although the characteristic polyno-
mial is similar to the single matrix case, it now involves two
matrices rather than one. Therefore, the lesser-known gen-
eralized Cayley-Hamilton theorem must be used (Chang
and Chen 1992).
The generalized Cayley-Hamilton theorem is modified

to include a second square matrix B. The characteristic
polynomial takes the form p(λ) = det (A − λB). By substi-
tuting A and B for λ into the characteristic polynomial a
similar relationship is satisfied,

p A;Bð Þ ¼ cn B−1A
� �n þ cn−1 B−1A

� �n−1
…

þ c1 B−1A
� �þ c0I¼ 0 ð6Þ

where cn is the coefficient of λn in p(λ). Equation (6) is
valid as long as B is non-singular.
If matrices A and B commute (i.e. AB = BA), then the

generalized Cayley-Hamilton theorem can be written as

p A;Bð Þ ¼ cnA
n þ cn−1A

n−1B…þ c1AB
n−1 þ c0B

n

¼ 0 ð7Þ

where no other restrictions are placed on matrix B.
For the generalized eigenvalue problem of a vibrating

system, the characteristic equation of the system is ob-
tained by calculating the determinant of (K − λM). Thus,
the Cayley-Hamilton theorem for a conservative vibrat-
ing system is obtained by replacing the matrix B with
the mass matrix M and the A matrix by the stiffness
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matrix K in equations (6) and (7). Solving these equa-
tions leads to the solution of Problem B.

3.3. Numerical example
Once again, a numerical example is used to demonstrate
concepts. Using the same eigenvalues as for the previous
example gives the characteristic polynomial of equation (2).
This time, the modified generalized Cayley-Hamilton the-
orem is used to form an equation for unknown matrices K
and M such that

p K ;Mð Þ ¼ M−1K
� �2 þ 5 M−1K

� �þ 6I ¼ 0 ð8Þ

Assuming the K and M matrices have a similar form
to that of A in equation (1), then equation (8) can be ex-
panded to give four equations with eight unknowns.
Solving these equations produces several results, one of
which can be written as

k11 ¼ k12k21k22 þ 5k12k21m22 þ 6k12m21m22 þ 6k21m12m22−6k22m12m21

k22 þ 2m22ð Þ k22 þ 3m22ð Þ ;

m11 ¼ k21k22m12 þ k12k22m21−k12k21m22 þ 5k22m12m21 þ 6m12m21m22

k22 þ 2m22ð Þ k22 þ 3m22ð Þ ;

k12 ¼ k12;m12 ¼ m12; k21 ¼ k21;m21 ¼ m21; k22 ¼ k22;m22 ¼ m22

2
66664

3
77775

ð9Þ
Once again it becomes clear that only 2 solutions are

dependent, and selecting any values for k12,m12, k21,
m21, k22,m22, will result in K and M matrices that pro-
duce a solution with the desired eigenvalues.
Increasing the size of the square matrices increases the

number of independent variables quicker than it does
the dependent variables. In other words, for an n-th
order system with n specified eigenvalues (natural fre-
quencies), 2n2 unknown variables are required to find K
and M, but as will be shown later in this paper, the gen-
eralized Cayley-Hamilton theorem only produces n inde-
pendent equations.

3.4. Spring-mass system example
Using a typical 2 degree-of-freedom (2DOF) spring-
mass system, as seen in Figure 1, many properties of the
method can be explored. Although simple, this problem
allows us to see the basics of how the method works. A
m1
k1

x1

Figure 1 2DOF spring-mass system.
more complicated problem is included as an appendix
for further reading.
In order to use the Cayley-Hamilton inverse method,

the structure of the system must first be explored in the
forward sense. In essence we must pre-condition the
mass and stiffness matrices to account for the system’s
physical constraints. The equation of motion of the sys-
tem can be written as

m1 0

0 m2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

M

€x1
€x2

� �
þ k1 þ k2 −k2

−k2 k2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

K

x1
x2

� �
¼ 0

0

� �
ð10Þ

where x
→¼ x1; x2½ �T is the displacement vector and M

and K are the mass and stiffness matrices respectively.
The goal of the approach is: given the system eigen-
values, λ1 and λ2, determine the M and K matrices that
give rise to these eigenvalues. Determining the matrices
M and K in accordance with relevant system constraints
would be the engineering design problem.
Once the structure of the system has been set, the in-

verse solution can begin. First, from the set of desired
eigenvalues, λ1 and λ2, a characteristic polynomial is
formed such that

λ2− λ1 þ λ2ð Þλþ λ1λ2ð Þ ¼ 0 ð11Þ
Using the Cayley-Hamilton theorem with M, K as

given in equation (10), along with the desired character-
istic equation (11), a set of four equation and four un-
knowns is found:

k1 þ k2ð Þ2
m2

1
þ k22
m1m2

þ k1 þ k2ð Þ λ1 þ λ2ð Þ
m1

þ λ1λ2 ¼ 0;

−
k2 k1 þ k2ð Þ

m2
1

−
k22

m1m2
−
k2 λ1 þ λ2ð Þ

m1
¼ 0;

−
k22
m2

2
−
k2 k1 þ k2ð Þ

m1m2
−
k2 λ1 þ λ2ð Þ

m2
¼ 0;

k22
m2

2
þ k22
m1m2

þ k2 λ1 þ λ2ð Þ
m2

þ λ1λ2 ¼ 0

2
666666666664

3
777777777775

ð12Þ
m2
k2

x2
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A solution is obtained as

k1 ¼ m2
2k2λ1λ2

k2 þm2λ1ð Þ k2 þm2λ2ð Þ ;

m1 ¼ m2k
2
2

k2 þm2λ1ð Þ k2 þm2λ2ð Þ ;
k2 ¼ k2;m2 ¼ m2

2
66664

3
77775 ð13Þ

In this case, choosing any value for two of the four
variables will lead to a solution which satisfies the char-
acteristic polynomial and thus has the given natural fre-
quencies/eigenvalues. This solution is the same as that
presented by Gladwell in (Gladwell 2004), although the
method of obtaining this solution is different.

4. Analysis
4.1. Information produced by the Cayley-Hamilton
theorem
We show here that given n distinct eigenvalues for an n-
th order system, the Cayley-Hamilton theorem can pro-
duce at most n independent equations, even though n2

equations are produced. Let p(t) = cnt
n + cn−1t

n−1 +…
c1t + c0 be the characteristic polynomial of an n × n
matrix A. The Cayley-Hamilton theorem states that
p(A) = cnA

n + cn−1A
n−1 +…c1A + c0 is the zero matrix.

Suppose that the matrix A is diagonal and let the diagonal
entries be λ1, λ2,…, λn. The characteristic polynomial is

p tð Þ ¼ t−λ1ð Þ t−λ2ð Þ… t−λnð Þ ð14Þ
In this case, p(A) is also a diagonal matrix with exactly

n equations. In fact, the i-th diagonal entry is p(λi).
Now consider the case that A is not diagonal. Given n

distinct eigenvalues for A, then A is diagonalizable, so
that A’ = P−1AP is diagonal for some invertible matrix P.
The characteristic polynomial of A’ is the same as the
characteristic polynomial p(t) of A. In fact, the diagonal
matrix A’ is the trivial solution to our design problem
and the ‘structure’ of the design problem is housed in
the matrix P. It is known that (Artin 2011)

p Að Þ ¼ P p A0ð ÞP−1 ð15Þ
Equation (15) states that p(A) can be obtained by com-

bining the equations contained in p(A’). At the same
time, since A’ is itself diagonal, then matrix p(A’) con-
tains exactly n equations. Thus, this states that p(A) is a
combination of exactly n independent equations and we
can expect that although p(A) has n2 equations, only n
of them are independent.
It is also important to point out that the n independ-

ent equations obtained from the Cayley-Hamilton the-
orem are each n-th order polynomials. For a polynomial
system with n unknowns and also n equations, then
Bézout’s theorem states that our problem has nn complex
solutions (Coolidge 1959).
4.2. Required design information
It is clear that the spectral information (eigenvalues) alone
is not enough information to complete a design. The
method presented, along with all other methods, is limited
by the fact that an n-th order system can produce at most
n independent equations, even though n2 equations are
obtained via applying the generalized Cayley-Hamilton the-
orem, as discussed above. If the matrices are completely
unknown then there may be as many as 2n2 unknown
entries in the mass and stiffness matrices. The Cayley-
Hamilton method can produce at most n independent
variables and the remaining equations must be specified in
other ways. For creating physically realistic systems, this
generally entails pre-conditioning or constraining the struc-
ture of the matrices.
For solving discrete conservative vibration problems,

Equation (6) can be used as long as the M matrix is non-
singular and equation (7) can be used ifM and K commute.
It becomes very clear by considering equation (9) that more
information is required in order to build a suitable vibrating
system based on mass and stiffness. From an engineer’s
point of view, any system which can produce similar eigen-
values has the potential of being suitable, as long as it fits
within the physical criteria set at the outset of the project.
It is obvious that equation (9) can produce an infinite num-
ber of possible solutions. Equation (9) represents only one
of several solutions to the equation presented in (8). As the
system’s order increases, so does the number of potential
solutions (Bézout’s theorem). Thus, engineers have many
solutions at their disposal for creating suitable and opti-
mized designs.
It is then evident why many engineers develop and

adopt their own unique methods for creating and opti-
mizing designs. These represent but one of many pos-
sible solutions. Evidence tends to contradict arguments
that there is only one approach to design or only one so-
lution to the problem.
The inverse problem is then not limited by the eigen-

values, and in fact the eigenvalues alone do not contain
enough information from which to build a physical sys-
tem. Therefore, other information is required in order to
complete the design.

4.3. Structural constraints
One of the easiest ways to limit the number of matrix en-
tries and include structural constraints is by including zero
entries or by incorporating symmetry into the matrices.
These constraints are interesting because they follow dir-
ectly from real systems. Taking as an example the 2DOF
spring-mass system developed in Section 3.4, it can be seen
that only diagonal entries are present in the mass matrix
and the stiffness matrix is made symmetric by forcing off-
diagonal terms to be the same. Physically, the structure of
these matrices reflects the fact that the two degrees of
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freedom of the system are coupled via a stiffness element
coupling. It can be seen in Figure 1 that the masses are
connected via springs (stiffness elements) only. Further-
more, the symmetry of the stiffness matrix is a consequence
of Newton’s third law. The system is further constrained by
the fact that the off-diagonal terms in the stiffness matrix
are not independent, but are related to the diagonal terms,
once again reducing the number of unknowns. In this case,
incorporating physical constraints into the mathematical
structure of the problem has reduced the number of un-
knowns from 2n2 to just n2.
In this case, the engineer still has the freedom to

choose from several systems which would satisfy the re-
quirements. Further constraints may come in the form
of available components such as stiffeners which must
fit within specified physical dimensions or the financial
budget.
From this stems the importance of the forward prob-

lem. Continuous systems are typically discretized using
various methods which produce a model of the system
in matrix form. The form of the matrix is heavily
dependent on the choice of discretization method. The
inverse problem is consequently affected since it seeks
to create a matrix that matches the form as stipulated at
the outset. Although the Cayley-Hamilton theorem does
not discriminate in its ability to solve these various
matrix forms, it is possible that certain discretization
methods lead to simpler forms or matrices containing
fewer variables. In this sense, the design may be easier
to fully define.

4.4 Partially described systems
Another aspect that affects the amount of design infor-
mation required is the information available for the de-
sign. Thus far, the entire spectral set has been used as
design information, as well as specification of matrix en-
tries when necessary. However, as stated in (Chu 1998),
often only portions of the entire spectrum are available.
This is termed a partially-described inverse eigenvalue
problem. This is true whether it is the information stipu-
lated via the design requirements or whether it is the
experimental data available for system identification.
Regardless of the information available, the Cayley-
Hamilton theorem can be used to produce n pieces of
information for an n-th order system stemming from n
degrees of freedom. If certain eigenvalues are missing,
the Cayley-Hamilton theorem can still be used.
Typically, in order to completely solve an n-th order

inverse problem using the Cayley-Hamilton theorem,
only n unknown values should be present in the prob-
lem, regardless of their appearance along the solution
path. Problem C makes full use of this detail during its
solution by pre-conditioning the matrix being solved to
account for this. For a 3DOF system then, only three
unknowns should be present. Consider for example the
following system which has three known eigenvalues
λ1 = 0.47, λ2 = 4.66, λ3 = 10.87 and three unknown entries
in the matrix

A ¼
a1 þ a2 −a2 0
−a2 a2 þ a3 −a3
0 −a3 a3

2
4

3
5 ð16Þ

Using the Cayley-Hamilton theorem as described in
Section 3, the matrix A can be determined such that
a1 = 9.43, a2 = 1.23, a3 = 2.06 which gives a matrix solu-
tion for the system of

A ¼
10:66 −1:23 0
−1:23 3:28 −2:06
0 −2:06 2:06

2
4

3
5 ð17Þ

As in Problem C, it is often the case that only partial
spectral information is available. Therefore, the Cayley-
Hamilton theorem can be used if the amount of missing
spectral information is replaced by the same amount of
matrix entry information. So, if only λ3 = 10.87 is known
then two of the three a matrix entries must be known. If
a2 = 1.23 and a3 = 2.06 are known in the example above,
then solving the Cayley-Hamilton equations gives a1 =
9.43, λ1 = 0.47, λ2 = 4.66. Consequently, solving Problem
C is not much different from solving Problem A.
The same is true if the system is made up of a mass

matrix M and a stiffness matrix K, except in this case,
the generalized Cayley-Hamilton theorem must be used.
The question then becomes what is the better strategy

for design? Is it better to specify the entire spectrum
even though only a select few eigenvalues are critical? In
this case, the analysis would lead to a full solution of the
matrix if any real solutions are possible based on the
prescribed matrix form. Or is it better to only specify
the critical eigenvalues and solve for the remainder by
specifying more information in the matrix? In this case,
an alternate method for determining this extra matrix
information would be required. From experience, it
would appear that the latter method is generally easier
given the need to produce a real system, especially since
not all spectra produce real systems. The main difficulty
appears to be in setting up the matrix form. This is
achieved by looking at the forward solution method. In
most cases, the forward solution will utilize some form
of discretization, be it finite elements, global elements,
finite difference or other methods. The method chosen
has a large impact on the structure of the matrix, mak-
ing the solution easier or more difficult depending on
the situation. Also, in discretizing, the method chosen to
relate material parameters has a large effect on the num-
ber of independent variables. Therefore it is extremely
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important to ensure that simplification methods are
properly considered.

5. Discussion
5.1 Implementation
The implementation of the Cayley-Hamilton theorem is
particularly suited to symbolic computer algebra systems
such as Maple, Mathematica or Mathcad since the problem
can be efficiently set up within the software. The character-
istic polynomial can be directly created from the eigen-
values, and subsequently the Cayley-Hamilton theorem
equation can be constructed in order to produce the set of
governing equations, finally the equations can be solved (in
some cases analytically) in order to populate the given
matrices. If the system is 5-th order or higher, it may be
easier to use a minimization procedure such as the Direct-
Search package available in Maple to simplify computation.
On the other hand, if a solution to the set of governing

equations is all that is sought; numerical solvers such as
MATLAB are particularly well-suited for obtaining nu-
merical solutions.

5.2. Non-physical solutions
Like most design tools, the Cayley-Hamilton theorem is
not without drawbacks. Certain aspects of the theorem
must be diligently considered by the engineer in order to
ensure proper solution compliance.
It is of utmost importance that the system matrices be

constructed from physical knowledge. Although a solu-
tion is possible with the Cayley-Hamilton theorem, it
may not always produce real entries in the matrices.
Since the goal is to reproduce a real system, complex
matrix entries do not satisfy the design goal.
It is well known, that the roots of the polynomials are

sensitive to perturbations of the coefficients (Chu 1998),
therefore polynomials constructed this way are usually
easily subject to errors. This is especially true for system
identification, where experimental data is quite often in-
exact. However, since frequencies specified in design
(that is, the desired frequencies of vibration) are gener-
ally obtained from extensive experimentation or through
other means all together, the effect of perturbations is
significantly lessened.

5.3 Algorithm
In order to use the Cayley-Hamilton theorem as a tool
for the design of an n dimensional vibrating system
based on knowledge of desired natural frequencies and/
or physical parameters, 2n2 − n additional pieces of de-
sign information are required in addition to the n de-
sired natural frequencies. An algorithm for solving
Problem B is as follows:
ALGORITHM. Given the n desired eigenvalues λ1,…, λn

of an n-th order vibrating system
1. Generate the characteristic polynomial:

p λð Þ ¼ λ−λ1ð Þ… λ−λn−1ð Þ λ−λnð Þ
¼ cnλ

n þ cn−1λ
n−1 þ…þ c1λþ c0

2. Generate the M and K matrices from physical
parameters and by using the 2n2 − n pieces of design
information, applying symmetry and any other
techniques based on the discretized forward problem
and leaving an n number of unknowns;

3. Generate the Cayley-Hamilton theorem equation:

p K ;Mð Þ ¼ cn M−1K
� �n þ cn−1 M−1K

� �n−1
…

þ c1 M−1K
� �þ c0I¼ 0

or for commuting M and K matrices:
p K ;Mð Þ ¼ cnK
n þ cn−1K

n−1M…þ c1KM
n−1 þ c0M

¼ 0

4. Extract n2 equations from the Cayley-Hamilton
equation in 3;

5. Select n non-zero independent equations (the Cayley-
Hamilton matrix diagonal entries work well);

6. Compute the n unknowns by solving the n independent
equations;

7. Insert the n computed values into their appropriate
places in the M and K matrices;

8. Verify that a valid solution is obtained by calculating
det (λM + K) = 0 and ensuring that the initially given
eigenvalues are obtained.

The output consists of n matrix entries of the M and K
matrices.
A similar algorithm can be applied to Problems A and

C. In the case of Problem C, n −m eigenvalues are given,
as well as m matrix entries, where m is the number of
unknown or unspecified eigenvalues. The output con-
sists of m eigenvalues and the remainder of the un-
known matrix entries.

6. Conclusion
In this paper, we considered a tool that can be used for
discrete design-for-frequency engineering problems. An
engineer would generally prefer a direct approach to
design-for-frequency when designing a mechanical or
structural system, rather than a heuristic trial-by-error
approach. In this paper, we showed that the Cayley-
Hamilton theorem can be a good design tool for achiev-
ing this. Unlike other methods, this approach is not
limited in application to any specific type of matrix
structure. Although many mathematical solutions usu-
ally exist, only a finite number of solutions are actually
physically valid. This does not, however, depend on the
eigenvalues, but rather on the dimensions, the physical
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requirements and the structure of the system, which
dictate many of its parameters. The Cayley-Hamilton
theorem allows the easy inclusion of these extra param-
eters in order to get a physically realistic design without
iteration.
Regardless of the specified design information for an

n-th order system, n2 − n (or 2n2 − n for the general
case) additional pieces of information are required as in-
put in addition to the n desired eigenvalues, in order to
completely solve the inverse eigenvalue problem and
hence design the system. This follows since the Cayley-
Hamilton theorem can supply at most n pieces of infor-
mation to the design, as shown in this paper. The source
of the information, whether eigenvalues or matrix en-
tries, is of little significance. Hence, establishing the for-
ward equations of motion in order to pre-condition the
discrete matrix system structure based on the physical
system of interest is emphasized.
7. Appendix - example of using the Cayley
Hamilton inverse method for brace design
7.1 Problem statement
Given a desired fundamental frequency, construct a
brace-plate system as described by a mass matrix M and
a stiffness matrix K. All dimensional (geometric) prop-
erties of the brace-plate system are assumed to be speci-
fied and fixed except for the thickness of the brace hc,
the design variable for which we must solve.
7.2 Forward model
The model is based on an orthotropic plate structurally
reinforced by a brace in the weaker plate direction. The
model is shown in Figure 2.
0

hp

Ly

x

y
z

0
hc

x1 x2

Figure 2 Orthotropic plate reinforced with a rectangular brace.
The forward model is discretized using the assumed
shape method. The assumed shape method is an energy
method which uses global plate elements within the kin-
etic and strain energy plate equations in order to deter-
mine the system’s equations of motion, from which the
mass and stiffness matrices are extracted (Meirovitch
1996). For the details of the development of the large
mass and stiffness matrices, the reader is referred to
(Dumond and Baddour 2013). The system is assumed
simply supported, conservative and the material proper-
ties are assumed orthotropic. The forward model is cre-
ated assuming the mechanical properties are all related
to Young’s Moduli in the y-direction.

7.3 Inverse model
The goal is to reconstruct the brace-plate system from a
desired fundamental frequency. The generalized Cayley-
Hamilton theorem inverse eigenvalue method is used as
explained in Section 3.2.
A cross section of the fundamental modeshape is

shown in Figure 3. It is clear that the brace affects the
maximum amplitude of this modeshape, thus also affect-
ing the associated frequency. In order to adjust the fun-
damental frequency of the brace-plate system to a
desired value, it is necessary to adjust the thickness of
the brace (Dumond and Baddour 2012).

7.4 Modeling considerations
Since the mechanical properties vary based on Ey, and
that the brace thickness controls the brace-plate system’s
fundamental frequency, the forward model is created
using the assumed shape method while leaving these
two parameters as variables. Thus, the mass matrix M is
a function of hc, the height of the brace-plate system at
Lx

brace

plate



Figure 3 Cross section of the brace-plate system’s fundamental modeshape.

Table 2 Dimensions of brace-plate model

Dimensions Values
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the (assumed fixed) location of the brace, and the stiff-
ness matrix K is a function of hc and also Ey. Here, we
use 2 × 2 trial functions in the assumed shape method.
Hence, 4th order square matrices are created. The trial
functions used are those of the simply supported rect-
angular plate such that

w x; y; tð Þ ¼
Xmx

nx¼1

Xmy

ny¼2

sin
nxπx
Lx

� �
sin

nyπy
Ly

� �
qnxny tð Þ

ð18Þ

where m are the modal numbers, q the time function
and w is the displacement variable normal to the plate.
The displacement variable w is then used directly in cre-
ating the kinetic and strain energy equations of the sim-
ply supported rectangular plate. These equations are
broken into three sections as shown in Figure 2 in order
to take into account the brace. This procedure is well
described in (Dumond and Baddour 2013). It is assumed
that the Ey is known and used as input information into
the stiffness matrix. This leaves hc as the only unknown
parameter, appearing in both the mass and stiffness
matrices.
In order to solve these matrices from the desired fun-

damental frequency, we must first create the characteris-
tic polynomial using the desired frequency,

p λð Þ ¼ λ−að Þ⋅ λ−b1ð Þ⋅ λ−b2ð Þ⋅ λ−b3ð Þ ð19Þ

where a is the desired frequency and b1-b3 are unknown
values which need to be found. Since we have assumed
2 × 2 trial functions so that the mass and stiffness matri-
ces are both 4 × 4, the characteristic polynomial must be
fourth order, as shown in equation (19). Subsequently, p
(λ) is expanded so that the polynomials coefficients can
Table 1 Material properties

Material properties Values

Density – μ (kg/m3) 403.2

Young’s modulus – Ey (MPa) 850

Young’s modulus – Ex (MPa) Ey/0.078

Shear modulus – Gxy (MPa) Ex × 0.064

Poisson’s ratio – νxy 0.372

Poisson’s ratio – νyx νxy × Ey/Ex
be found. Once the polynomial is created, the Cayley-
Hamilton equation can be written by substituting (M-1

K) for λ into equation (19):

p K ;Mð Þ ¼ c4 M−1K
� �4 þ c3 M−1K

� �3
þc3 M−1K

� �2 þ c1 M−1K
� �þ c0I ¼ 0

ð20Þ
where cn are the coefficients of λ in p(λ) determined via
equation (19). Equation (20) produces sixteen equations,
of which only four are independent. Solving the equa-
tions on the main diagonal for the four unknowns (hb,
b1, b2, b3) produces 44 = 256 possible solutions, accord-
ing to Bézout’s theorem. From the set of all possible
solutions, complex solutions can be immediately elimi-
nated as not being physically meaningful. Clearly, further
constraints must be added to the solution in order to get
a solution which fits within the desired physical limits.
These physical limits are based on the maximum and
minimum brace dimensions which are required to com-
pensate for the range of plate stiffnesses used during the
analysis, as well as the range of natural frequencies which
can be obtained using these system dimensions. Thus, the
following constraints are implemented into the solution:

0:013≤hb≤0:016 m
1� 107≤ b1 ≤ 9� 108 rad=s
1� 107≤ b2 ≤ 9� 108 rad=s
1� 107≤ b3 ≤ 9� 108 rad=s

ð21Þ

Solving the four equations obtained from equation
(20) within the constraints provided by (21) yields a
Length – Lx (m) 0.24

Length – Ly (m) 0.18

Length – Lb (m) 0.012

Reference – x1 (m) Lx/2 – Lb/2

Reference – x2 (m) x1 + Lb

Thickness – hp (m) 0.003

Thickness – hb (m) 0.012

Thickness – hc (m) hp + hb



Table 3 Results of the inverse model analysis

Young’s modulus
Ey (MPa)

Brace thickness
hc (m)

Fundamental frequency
a (Hz)

750 0.01576 687

800 0.01536 687

813 0.01527 687

850 0.01500 687

900 0.01466 687

950 0.01435 687

Table 5 Alternate brace thickness solution satisfying the
physical constraints

Young’s modulus
Ey (MPa)

Brace thickness
hc (m)

a (Hz) b1 (Hz) b2 (Hz) b3 (Hz)

750 0.01359 687 570 1149 2185
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physically realistic solution which satisfies the desired
fundamental frequency, as well as the system’s
parameters.

7.5 Results
The material properties used during the analysis are
given in Table 1.
The dimensions used for the model throughout the

analysis of the brace-plate system are shown in Table 2.
These dimensions refer to those shown in Figure 2,

where ‘p’ refers to the plate’s dimensions, ‘b’ refers to the
brace’s dimensions and ‘c’ refers to the dimensions of the
combined system.
As a basis for comparison, a plate having a Youngs’

moduli of Ey = 850 MPa to which a brace is attached
with a combined brace-plate thickness of hc = 0.015 m is
found to have a fundamental natural frequency of
687 Hz, calculated using the forward model. The ana-
lysis is then performed using the inverse method de-
scribed in the previous section. As Ey of the plate is
varied, the thickness of the brace-plate section is calcu-
lated such that the fundamental frequency of the brace-
plate system is kept consistent at 687 Hz. The results of
the computations can be found in Table 3.
Clearly, adjusting the thickness of the brace also has

an effect on the other natural frequencies. These can be
seen in Table 4.
Interestingly, the constraints indicated in equation

(21), although physically strict, allow for more than one
solution in certain cases. An example is shown in
Table 5.
Table 4 Calculated frequencies of the inverse model
analysis

Young’s modulus Ey
(MPa)

Brace thickness hc
(m)

b1
(Hz)

b2
(Hz)

b3
(Hz)

750 0.01576 774 1360 2653

800 0.01536 782 1363 2650

813 0.01527 784 1364 2650

850 0.01500 790 1366 2648

900 0.01466 798 1370 2645

950 0.01435 806 1374 2642
7.6 Discussion
From these results, it is evident that designing a brace-
plate system starting with a desired fundamental fre-
quency, and using the proposed Cayley-Hamilton
method, is possible. Table 3 clearly shows that by adjust-
ing the thickness of the brace by small increments
(10-5 m, machine limit), it is possible to compensate for
the variation in the cross-fibre stiffness (Ey) of the plate
so that the fundamental frequency of the combined sys-
tem is equal to that of the benchmark value of 687 Hz.
The results obtained using the Cayley-Hamilton theorem
algorithm match those values obtained using the forward
model exactly. However since no account has been taken
of the other frequencies during the analysis, Table 4
shows that frequencies b1 to b3 vary considerably from
those values obtained for Ey = 850 MPa. Therefore, it is
important to ensure that there is a good understanding
of what your model can control. Moreover, it is interest-
ing to note that within the strict physical constraints of
(21), there is more than one brace-plate system (solu-
tion) that satisfies the Cayley-Hamilton theorem of
equation (20). From Table 5 it can be seen that an alter-
nate solution to the system exists, different from the one
presented in Table 3, for a plate having a Ey of 750 MPa.
In this case, by reducing the thickness of the brace, it is
still possible to achieve a system having the desired fre-
quency of 687 Hz. However, the desired frequency is no
longer the fundamental frequency but rather becomes
the second frequency and the fundamental has been
replaced with a fundamental frequency of 570 Hz. It is
important to keep this phenomenon in mind while
designing a system. This is especially true if the order in
the spectrum of a certain frequency associated with a
certain modeshape is absolutely critical.
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