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Abstract

Renewable energy resources can indisputably minimize the threat of global warming and climate change.
However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak)
and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large
capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore
reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties)
and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply
techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and
quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin.
For this subsurface model scenario we generated different synthetic data sets without and with adding random
noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing
different constraints on the initial model. Results reveal principally the capability of the applied integrative
geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion
models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial
parameters accurately recovered from each technique are applied in the adequate petrophysical equations to
yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined
from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation
model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage
and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation
such as that of groundwater table.

Keywords: Renewable energy; Compressed air/gas energy storage (CAES); Elastic full waveform inversion (FWI);
Electric resistivity tomography (ERT); Gravity method; Petrophysical rock parameters
Introduction
One unprecedented challenge facing the human being is
the energy resources, and its coupling with global climate
changes and warming from greenhouse gases (GHG).
Mitigation of anthropogenic GHG, including CO2 emis-
sions in the terrestrial atmosphere demands developments
of viable alternative of renewable energy resources includ-
ing hydroelectric, biomass, solar, wind, marine (wave/
tides) and geothermal sources. Most of these sources pro-
duce energy only when suitable weather conditions are
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prevailing and not when energy directly demanded. These
sources are intermittent and need buffer storage to bridge
the time-gap (disparity) between off-peak production and
demand peaks. The underground geology offers an ad-
equate option for short- and long-term energy storage
such as compressed air or gas energy storage, CAES (e.g.,
Crotogino et al. 2001; Succar and Williams 2008). The
North German Basin delivers favourable conditions (geo-
logical, geochemical) for underground space utilization
and has a huge capacity for CAES in porous brine aquifers
and salt caverns (natural and artificial). Advantages of re-
newable energy storage are (1) balancing power demand
and fluctuating renewable energy production, (2) bridging
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temporal mismatch between renewable energy production
(off-peaks) and demand (peaks), i.e., storing off-peak en-
ergy supply to use it during peak demand periods, and (3)
offering large buffer capacity to meet any disruptions in
energy supply.
Figure 1 shows how a renewable electricity system could

supply actual electricity demand during one week in
Minnesota (Makhijani et al. 2012). The daily electricity de-
mand is constantly changing while the surplus renewable
generation is put into storage. The basic approach of
CAES is as follows: When electricity generation is greater
than demand, the energy surplus is used to compress air
in the geostorage. When generation is less than demand,
pressurized air is withdrawn from storage and used to
drive an electricity turbine.
In a geological gas storage in saline formations, the

gas replaces the pore brine causing strong changes in
elastic moduli, density and electric resistivity. These
physical contrasts justify the application of integrative
geophysical techniques for monitoring this geostorage.
These include techniques of elastic full waveform inver-
sion (FWI), electric resistivity tomography (ERT), gravity
and electromagnetic induction (EMI) of time- (TEM)
and frequency-domain (FEM). EMI techniques (ground
and air based) are applied usually for monitoring shallow
targets, e.g., leakages in groundwater.
Since some years ago Germany practices a turnaround

in the energy policy (German “Energiewende”) and is cur-
rently leading in the production of solar and wind energy
(IEA 2013). Wind energy are produced mainly at the
coastal areas (on-shore and off-shore) of North Germany
which is characterized by high wind speeds. We started
2012 an interdisciplinary joint research project ANGUS+
dealing with impacts of using geologic subsurface as a
thermal, electric or material storage in context with alter-
native energy resources (Bauer et al. 2013). This includes
dimensioning, risk analyses and impact predictions as a
base for future space planning of the subsurface. Our
main task is to develop a geophysical monitoring strategy
wind hydro/bio
solar demand
storage charge

discharge

Figure 1 Daily supply and demand with storage of renewable energy
using integrative approach of geophysical techniques
(FWI, ERT, EMI and gravity) on almost realistic scenarios
in the North German Basin.
We show here results of numerical simulations of elas-

tic FWI, ERT and gravity techniques in mapping CAES
reservoirs with a continuous gradual desaturation with
depth. These simulations are applied for synthetic data
(before and after adding 3% random noise error) and
inverted using constrains on the initial models.

Gas storages in the North German Basin
For a more realistic modelling scenario we selected a
synthetic site in the North German Basin for this nu-
merical study of CAES in geologic formations. The
model block of this site (29∗28∗5.5 km3) consists of a
thick succession of 14 sedimentary layers ranging in age
from Permian to Tertiary (Figure 2, Baldschuhn et al.
2001; Hese 2012). The succession shows nearly horizon-
tal layering with a gentle anticline fold in its southern
part. It shows an unconformity, where formations of
the Lower cretaceous, Lias and Rhaet disappear within
the anticline crest at the depth interval of 0.7–1.0 km.
The succession includes two thin brine reservoirs of a
porous sandstone (5–30 m thickness), namely the Rhaet
(1–1.5 km depth) and Quickborn (2–2.5 km depth) for-
mations. Both are potential pore reservoirs for CAES
and only the shallow Rhaet formation is considered in
this study. The compressed gas is injected in the upper-
most formation part within the northern anticline limb.
Here this very light gas (e.g., air density of 1.29 kg/m3 at
STP “standard temperature, 0°C, and pressure, 101325 Pa”)
replaces the dense brine of >1100 kg/m3 (with total dis-
solved solids, TDS, of >100 g/l at this depth) in the pores
of the sandstone reservoir. Accordingly, the compressed
gas saturation approaches its maximum value directly
below the injection level and decreases gradually with
depth within the reservoir of the dipping anticline flank.
This downward gradual gas desaturation may correspond
well with the almost realistic CO2 plume scenario injected
, 11–17 July 2007, Minnesota (Makhijani et al. 2012).
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Figure 2 Study site within the North German Basin. (a) 3D block below the Quaternary-Tertiary overburden, (b) 2D stratigraphy section
perpendicular to the main anticline structure, and (c) 2D saturations of compressed gas (Sg1 and Sg1) injected in the saline Rhaet reservoir of the
northern limb, (partly from Hese 2012).
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in a deep saline aquifer (Graupner et al. 2011). A combined
simulation of multiphase flow, transport and geochemical
reactions in a brine reservoir shows that the gas phase
saturation decreases with increasing distance away from
the injection point. The limited lateral extension of the
thin Rhaet reservoir leads to dominating the downward
gas propagation, where the porosity and permeability de-
crease generally with depth. For this reservoir we applied
two saturation distributions (Sg1 and Sg2) gradually decreas-
ing downwards of the range 0.60–0.27 and 0.80–0.36, re-
spectively (Figure 2c). The applied gradual desaturation

with depth (z) follows this function: Sg ¼ Sg0e−5 z−z0ð Þ2 , with
Sg0 =maximum Sg at z0 = 1 km, 1 km > z ≤ 1.4 km. Both of
Sg1 and Sg2 approach their maximum values near to the
anticline crest (at 1 km depth) and gradually decrease with
depth according to this function approaching their mini-
mum values at 1.4 km depth.

The seismic forward problem, FWI and model
parameterization
The propagation of seismic waves in an isotropic elastic
medium can be described by a system of coupled first
order partial differential equations (Landau and Lifschitz
1986)

d
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where d denotes the density, vi the particle velocity, σij
the stress tensor, εij the strain tensor, λ and μ the Lamé
parameters, δij the Kronecker Delta, fi, Tij the source
terms for body and surface forces, respectively.
Equation (1) is a general expression for the conserva-

tion of momentum in a continuum. It is independent of
the medium state - such as gas, fluid or solid. To de-
scribe the behavior of the material correctly a relation-
ship between the forces (stresses σij) acting on the
medium and the resulting deformation (strain εij) is re-
quired. For small forces/deformations and an isotropic
medium this relationship is linear (generalized Hooke’s
law) depending only on the distibution of two material
parameters λ and μ (Lamé parameters). Assuming that
these parameters are time-independent the stress–strain
relationship can be replaced by the stress–strain-rate
equation (2). For a given isotropic elastic medium equa-
tions (1–3) can be solved numerically and therefore syn-
thetic seismograms for any acquisition geometry
calculated. Based on the solution of the seismic forward
problem a high-resolution imaging concept called full
waveform inversion (FWI) has been developed in the
1980s by Tarantola (1986). Since then the FWI is signifi-
cantly improved and applied to a wide range of field ap-
plications (Virieux and Operto 2009).
The aim of (spatial) FWI is to minimize the data resid-

uals δu = umod − uobs between the modelled data umod

and the field data uobs to deduce high resolution models
of the elastic material parameters in the underground.
To solve this nonlinear optimization problem an appro-
priate objective function E has to be defined. Similar to
Asnaashari et al. (2013a), we use the following objective
function

E ¼ 1
2

δuj jj j2 þ λ1ð jjWm m−mprior
� �jj2Þ ð4Þ

Where the term 1
2 δuj jj j2 denotes the L2-norm of the

data misfit and λ1
2 jjWm m−mprior

� �jj2 a weighted L2-
norm of the difference between the model parameters m
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and prior model information mprior used for model
regularization. The parameter λ1 balances the contribu-
tions of the data misfit and the model regularization
term, while the spatial variable weighting factor Wm de-
fines which parts of the model are updated during the
inversion process. The spatial weighting of the model
updates is crucial for a successful inversion, because
near surface inversion artefacts can introduce artificial
data residuals not present in the real time-lapse data and
therefore lead to an increase of the nonlinearity of the
inverse problem. Like Asnaashari et al. (2013b) the mag-
nitudes of the spatial weighting factors are based on
elastic reverse-time migration (RTM) results to restrict
model updates to the storage formation. The objective
function equation (4) can be minimized by iteratively
updating the model parameters mn (P-wave velocity
(Vp), S-wave velocity (Vs), density (d)) at iteration step n,
starting with an initial background model m0 using the
Newton method (Nocedal and Wright 2006):

mnþ1 ¼ mn−τn H−1
m Gm

� �
n ð5Þ

with the gradient of the objective function equation (4)
with respect to the elastic model parameters

Gm ¼ 1
2

∂ δuj jj j2
∂m

� �
þ λ1Wm

2 m−mprior
� � ð6Þ

and Hm the second derivative of the objective function
(Hessian). An explicit calculation of the Hessian in the
time-domain is computational very expensive. Therefore,
we use the quasi-Newton L-BFGS (Limited-memory
Broyden-Fletcher-Goldfarb-Shanno) technique (Nocedal
and Wright 2006; Brossier 2011), where the product of
the inverse Hessian Hm

−1 with the gradient Gm is itera-
tively approximated by finite-differences.
The effective calculation of the time-domain gradient

directions ∂ δuj jj j2
∂m

� �
with the adjoint method for different

model parameterizations are described in Tarantola
(1986), Mora (1987), Shipp and Singh (2002) and Köhn
et al. (2012). The step length τn is estimated by a line-
search satisfying the Wolfe-conditions (Nocedal and
Wright 2006) to assure a fast and accurate convergence
of the L-BFGS algorithm. While Asnaashari et al.
(2013a) introduce another regularization term to assure
model smoothness, we apply a weak wavenumber do-
main filter to the estimated search directions at every it-
eration step for the same purpose.
In elastic time-lapse FWI, the data residuals are modi-

fied according to

δu ¼ umod t1ð Þ−umod t0ð Þ� 	
− uobs t1ð Þ−uobs t0ð Þ� 	� �

; ð7Þ
which denote the difference between the modelled and
the field data at time steps t0 (baseline model) and t1
(Denli and Huang 2009). This redefinition of the data re-
siduals leads to a much stronger focusing of the model
updates at reservoir level.
Based on the distribution of the air within the stor-

age formation with a maximum gas saturation of 80%
(Figure 2), an elastic model of the underground before
and after the CAES injection is built. The elastic proper-
ties of the rock matrix (P-wave velocity Vp,m, S-wave vel-
ocity Vs,m, density dm and porosity Φ) are linked with the
physical parameters of the fluid and gas phases based on
realistic matrix parameters to derive effective medium
parameters.
The effective seismic velocities Vp and Vs and the bulk

density db of the 100% brine saturated aquifer before the
CAES injection can be described by the following aver-
aging equations (Gassmann 1951):

db ¼ 1−Φð Þdm þΦdbr ð8Þ
μb ¼ μd ¼ 1−Φð Þ μm ð9Þ
Kb ¼ Kd þ 1− Kd=Kmð Þð Þ2= Φ=Kw þ 1−Φð Þ=Km−Kd=K

2
m

� � ð10Þ
Kd ¼ 1−Φð Þ Km ð11Þ
Kw ¼ Kbr ð12Þ
Vp ¼ sqrt Kb=dbð Þ ð13Þ
Vs ¼ sqrt μb=dbð Þ ð14Þ

Where d denotes the density, K the bulk moduli and μ
the shear moduli. The subscripts b,m,d,br,g and w mean
the bulk, rock matrix, dry rock, brine phase, gas phase
and wetting phase, respectively. For the multiphase flow
case after the CAES injection, equations (8) and (12) are
adapted to:

db ¼ 1−Φð Þ dm þΦ 1−Sg
� �

dbr þ Sgdg
� � ð15Þ

Kw ¼ SgKg þ 1−Sg
� �

Kbr ð16Þ
Based on this rock model Figure 3 shows changes of

the material parameters due to the gas injection. Overall
the changes of the effective medium parameters within
the storage formation are quite small with maximum
value changes of -240 m/s for Vp, +86 m/s for Vs and
-168 kg/m3 for db. The small variations of the S-wave
velocity are due to density variations only, while the
shear modulus remains constant.
Synthetic data of a reflection seismic survey along the

transect is computed by solving the 2D isotropic elastic
equations of motion equations (1–3) with a time-
domain finite-difference (FD) technique on a Cartesian
grid (Virieux 1986; Holberg 1987; Levander 1988). The
reflection seismic acquisition geometry consists of 500
vertical component geophones located at the surface.
For the synthetic dataset 100 shots using a vertical impact
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Figure 3 Input (true) changes in elastic parameters due to the gas injection in the Rhaet reservoir below the study site as obtained
from the rock model. (a) ΔVp, (b) ΔVs and (c) density (Δdb).
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source are recorded. The source signature is a 20 Hz
Ricker wavelet. Model dimensions along the transect are
6 km length and 1.8 km depth. Using an 8th order spatial
FD operator, the model can be discretized with 600 × 180
grid points with a spatial grid point distance of 10 m. The
time is discretized using Δt = 1 ms, thus for a recording
time of t = 4 s, approximately 4000 time steps are com-
puted. A free surface boundary condition is assumed on
top of the model, while Convolutional Perfectly Matched
Layers, CPMLs (Komatitsch and Martin 2007) are used at
all other boundaries. The synthetic seismic sections are
the input data for the elastic FWI. Figure 4 shows the
common shot-gather for shot 50 of the baseline model
and the time-lapse data between t1 and t0 amplified by a
factor 10. Notice the strong spurious multiple reflections
due to the free boundary condition present in the
baseline- and time-lapse data.
To test the robustness of the elastic FWI approach

for real field data applications we also investigate the
influence of noise and added Gaussian noise within the
frequency range of the source signal (0–40 Hz) with a
Figure 4 Common shot-gather for shot 50. (a, b) Baseline model and (c
10. (a, c) Noise-free data and (b, d) noisy data with S/N = 100.
signal-to-noise ratio S/N = 100 (1% noise) using the
SUADDNOISE program of Seismic Unix (Cohen and
Stockwell 2008). The resulting shot gathers are shown
in Figure 4b,d for the baseline and time-lapse data,
respectively.

ERT modelling and parameterization
At first we introduce briefly the approach for optimized
electrode arrays in boreholes applied here. Like surface
surveys, ERT data acquisition between two borehole
electrode arrays can be conducted in the tripotential
quadrupole configurations α (CPPC, C = current elec-
trode, P = potential electrode), β (CCPP) and γ (CPCP).
For an N collinear multi-electrode array, a whole com-
prehensive data set consists of [N(N − 1)(N − 2)(N − 3)/8]
independent non-reciprocal quadrupole configurations
(Noel and Xu 1991). The effective comprehensive data
set results from excluding the redundant configurations
of less stable inversions from the whole set, i.e., γ config-
urations and those of very large geometric factors (Loke
et al. 2010). Resulting comprehensive data set is still
, d) time-lapse data residual between t1 and t0 amplified by a factor
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huge, e.g., a pair of 32 borehole electrodes yield >106

data points. It can map subsurface targets with the high-
est possible resolution but at very long acquisition times
(i.e., poor temporal resolution) and at high costs. There-
fore, an optimization approach is based on the model
resolution matrix and searches for electrode configura-
tions that maximize the resolution of survey results (e.g.,
Stummer et al. 2004; Wilkinson et al. 2006). An opti-
mized borehole data sets of practical sizes (15,000 data
points) of only 1.5% of the comprehensive data set but
with almost the same spatial resolution is generated in
this study (e.g., al Hagrey 2012a). Comparative applica-
tions of diverse configurations (standard and non-
standard) show the superiority of the optimized array re-
sults (al Hagrey 2012b). Moreover, assessing our opti-
mized array by the technique of region of investigation
index (ROI) showed that its inverted tomograms are best
constrained by the data coverage in comparison to that
of the other configurations (Oldenburg and Li 1999). All
these confirm the effectiveness of our optimization ap-
proach applied here to generate a practical optimized
data set of high resolution.
The 1storage Rhaet formation consists of a highly re-

sistive matrix (e.g., sandstone) and conductive pore brine
saturant. The bulk resistivity (ρ) resulting from the gas
displacing the brine is predicted using Archie’s law
(Archie 1942):

ρ ¼ aρbr
Φm 1−Sg

� �n ð17Þ

where ρbr is the brine resistivity, Φ the porosity, Sg the
gas saturation and a,m and n are Archie constants. The
separate phases (matrix, brine and gas) are assumed
without any interaction.
The electrical conductivity of the storage formation is

caused mainly by the electrolytes of its pore brine. In the
North German Basin, temperature and pressure, and par-
ticularly the salinity or total dissolved solids (TDS) increase
with depth. Increasing both TDS and temperature causes
a dramatic decrease in the resistivity (e.g., Arps 1953;
Schlumberger 1985). The TDS rise increases the number of
ions carrying electrical currents. The temperature rise in-
creases the salt solubility and decreases the brine viscosity
which in turn enhances the ion mobility. The pressure in-
crease with depth, on the other hand, causes a slight in-
crease in the resistivity due to the closure of cracks that are
often filled with conductive fluids. However, this effect de-
creases with increasing depth and is negligible at pressure
>0.3 GPa (e.g., Brace et al. 1965). In formations of the
North German Basin, the average vertical gradient (with
depth) of brine salinities, temperature and pressure ap-
proach 100 mg/L/m, 0.03°C/m and 22.6 kPa/m, respectively
(e.g., Magri et al. 2009).
The target layers host borehole electrode arrays at 620 m
offsets within a depth range of 0.9–1.8 km. Each array con-
sists of 32 electrodes at 20 m spacing. The electric resistiv-
ity of the 2D models are parameterized by the bulk rock
resistivity values calculated from Archie equation (17).
Here we applied the values of 0.2 for Φ, 0.08 Ωm for ρbr
(corresponding to TDS ≈ 100 g/l at 1 km depth of the
North German Basin) and 1, 2 and 2 for constants a,m
and n of, respectively, as typical values for the sandstone
aquifer. Values of gas saturation are calculated by a poten-
tial function simulating their gradual damping with depth.
A 2.5D forward and inverse ERT modelling is carried

out using modern codes (RES2DMOD, RES3DMOD ×
64 and RES2DINV × 64) based on algorithms by e.g.,
Loke et al. (2003). The forward modelling code is ap-
plied to generate synthetic data sets between each adja-
cent pair of borehole electrode arrays (including inhole
and crosshole) using optimized electrode configurations.
These synthetic data sets are generated after gas injec-
tion in the brine reservoir of Rhaet formation. The data
quality (0.6% average simulation error) is confirmed by
results of tests on a homogeneous model with a constant
ρ value. The technique robustness in the field is realized
by adding a random error of commonly 3% to data sets
in addition to their forward simulation error of 0.6%.
In the ERT inversions, diverse setup constraints (mainly

regularizations) are applied. These include the minimization
methods of least squares (L2) or robust blocky normalization
(L1), and initial models of a constant homogeneous
resistivity or an approximate inverse model (e.g.,
Claerbout and Muir 1973). Two synthetic data sets (gen-
erated before and after adding 3% random noise) are
inverted with incorporating mapping data of subsurface
stratigraphy from prior (seismic) surveys (see next sec-
tions). Each of these two data sets was inverted twice,
once by incorporating layer interfaces and once by fixing
resistivity regions, both are outside the reservoir layer.

Gravity modelling and parameterization
Rock densities depend on the mineral composition, por-
osity and its content (fluid and gas), pressure p,
temperature (T), deformations etc. The stratigraphy and
average densities applied in the 3D gravity modelling of
the study site are based on borehole measurements and
data base of Geotectonic Atlas of northwestern Germany
(Inselmann 1985; Baldschuhn et al. 2001; Hese 2012).
The injected compressed gas in saline reservoirs dis-
places pore brine and causes a drop of the bulk density
which in turn causes a decrease in the gravity compo-
nents and gradients. The bulk reservoir density (db) of
partial gas saturations is given by equation (15), whereas
dry air density is given by:

dg ¼ p= RTð Þ ð18Þ
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where R is the gas constant = 287.058 J/(kgK) for dry air.
For calculating air and bulk densities (equations 18 and
15), we considered almost realistic values for p (average
27.786 GPa) and T (average 44°C) prevailing at 1–
1.4 km depth range within the Rhaet reservoir of the
North German Basin. This T value results from average
local T at sea level (8°C) plus T fraction caused by the
geothermal gradient down to 1.2 km depth (36°C). For
instance, the average brine and air densities within this
depth range approach 1123 and 303 kg/m3, respectively,
and the study sandstone reservoir will suffer from a bulk
density drop up to -126 and -168 kg/m3 corresponding to
air saturations of Sg1 for Sg2, respectively. Figure 5 shows
the 3D distributions of the gas saturation (Sg1 for Sg2) and
bulk density (resulting from the parameterization) in
the brine reservoir of the anticline flank within the North
German Basin.
We used here the software IGMAS+ (Interactive

Gravity and Magnetic Application System) designed for
3D gravity, gravity gradient and magnetic modelling
(e.g., Götze and Lahmeyer 1988; Schmidt et al. 2011).
The model is extrapolated outside the volume of interest
in all directions (about two times the model length) to
avoid any edge effects. We calculated the gravity field
components (gz, gy and gz) and gradients (gzx, gzy and gzz)
before and after CAES injection, respectively, as well as
their difference (residual) anomalies (Δgx, Δgy and Δgz).
Here we show vertical component Δgz maps only which
reflect the strongest anomalies with respect to CAES
reservoirs. We will discuss these gravity anomalies
resulting from the two saturations (Sg1 and Sg2) and the
lower sensitivity boundary determined for the technique
at all saturations, i.e., the least measurable gravity anom-
aly determined by the modern micro-gravimeter accur-
acy (3–5 μGal).
Sg [-]
0.80     0.69     0.58     0.47     0.36

1986   2009   2032   2054   2077
d [kg/m3]

Figure 5 3D distribution of gas saturation (Sg) and bulk density
(d) in the brine reservoir of the anticline flank (see Figure 2c).
Reference d of reservoir (i.e., at Sg = 0) is 2154 kg/m3.
Results of elastic time-lapse FWI
The initial model for the time-lapse waveform inversion at
each time-step is the true elastic medium model before
the CAES injection. While this seems to be an overopti-
mistic assumption, we want to focus this part of the study
on the question if the elastic FWI is capable to reconstruct
structures at the resolution limit at all. Later we will also
investigate the impact of different errors in the baseline
model on the elastic time-lapse FWI results. To reduce
the nonlinearity of the multiparameter inversion problem
a sequential frequency FWI approach is applied. There-
fore, Butterworth-lowpass filters are applied to the source
wavelet and field data with corner frequencies of 20 and
40 Hz, respectively. To reduce the influence of multiple
reflections, exponential time damping (Brossier et al.
2009) of the time-lapse data after the first arrivals are ap-
plied. The first arrivals are automatically picked with a
STA/LTA picker for the initial model. The detailed elastic
FWI workflow is described in Table 1. All material param-
eters are simultaneously updated.
The inversion results of the noise-free and noisy seismic

time-lapse data (Figure 6) can be compared with the true
changes of Vp,Vs and bulk density db in Figure 3. For the
noise-free data (Figure 6, top panel) the shape of the
CAES plume, the gradient in the seismic velocities and
density could be reconstructed well. The magnitudes of
the different material parameters also agree with the true
model. The resolution limit of the elastic FWI is roughly
one quarter to half of the minimum seismic wavelength.
Using a maximum frequency of 60 Hz with a S-wave vel-
ocity of 2074 m/s at reservoir level leads to a minimum
seismic wavelength of 34 m and therefore a resolution
limit of 9–17 m. This coincides with the FD model
discretization errors of 10 m at the layer interfaces visible
in the FWI results. Using the noisy time-lapse data
(Figure 6, bottom panel) the resolution of ΔVp and Δd
models is also quite good, beside some minor artefacts.
Only the ΔVs model is affected by the Gaussian noise. Fur-
ther tests (not shown here) with a S/N = 50 (2% noise)
lead to even more dominant noise artefacts, but the gas
plume is still visible. At S/N = 25 (4% noise) the gas plume
vanishes within the noise artefacts.

Gas quantification by elastic time-lapse FWI
In most cases gas saturations are estimated from the
P-wave velocity of elastic FWI results (Queisser and
Table 1 FWI workflow: corner frequencies (ƒc) of
Butterworth-lowpass filter for the sequential frequency
inversion and time-damping coefficients

ƒc [Hz] Time-damping coefficients [1/s]

20 100, 50, 5, 1

40 100, 50, 5, 1



(a)

(b)

(c)

(d)

(e)

(f)

FWI Vp [m/s]              FWI Vs [m/s]                FWI db [kg/m3]

Figure 6 FWI results showing changes in seismic parameters. (a, b) P-wave velocity ΔVp, (c, d) S-wave velocity ΔVs and (e, f) density Δd for
the noise-free and noisy dataset (S/N = 100), respectively (cf., Figure 3).
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Singh 2012) by inverting the Gassmann equation (10).
This involves the estimation of a lot more or less un-
known petrophysical parameters. Because the elastic
multiparameter FWI delivers a density model, the inver-
sion of equation (15) seems to be more appropriate. By
assuming that the brine and gas densities remain con-
stant, the following equation can be derived from equa-
tion (15) for the CAES saturation:

SFWI
g ¼ dt−d0

Φ dg−dbr
� � ð19Þ

depending only on the change of the bulk density between
time t (dt) and the baseline model (d0), the porosity, as
(b)

(c)

(a)

Figure 7 Gas saturation after the CAES injection. (a) True saturations Sg
and (d, e) absolute error for the noise-free data and the noisy data (S/N =
well as brine and gas density. The correct values for por-
osity and bulk density of the baseline model in the storage
formation are used. In Figure 7, the estimated gas satur-
ation changes from the elastic FWI density model (b, c) is
compared with the true saturation (a) for the noise-free
(b, d) and noisy data (c, e). Using the noise-free data, the
extension of the CAES phase and the CAES saturation
changes are well recovered. Due to the finite frequency
content of the source wavelet, the sharp boundaries of the
CAES plume cannot be resolved. Therefore, fictitious
large absolute gas saturation errors of about ±10–15%, lo-
cally up to 30%, occur at the boundaries (Figure 7d, e).
The average error within the reservoir approaches about
5%. With the density model from the noisy FWI result
(d)

(e)

true, (b, c) Sg
FWI estimated from the density model of the FWI result,

100), respectively.
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absolute saturation errors increase to 30–60% at the
plume boundaries and 5–30% within the plume. Noise ar-
tefacts outside the plume can lead to errors of up to 20%.
For larger S/N-ratios estimated gas saturations become
unrealistically larger than 100%.

Impact of errors in the baseline model on the elastic
time-lapse FWI results
So far we only investigated the resolution of elastic time-
lapse FWI when the baseline model is perfectly known.
Figure 8 shows a workflow for the estimation of different
baseline models with different kinds of errors. In the first
step smooth versions of the true baseline seismic velocity
models are generated (Figure 8a), while the density model
is assumed to be constant.
Figure 8 Workflow for the estimation of baseline models with differe
migrated zero-offset section, (c) layer interfaces, (d) baseline model A, (e) s
With the macro velocity models a pre-stack RTM can
be applied to the seismic data to reconstruct the posi-
tions of the layer interfaces (Figure 8b). In the next step
the interfaces are manually picked (Figure 8c) in the
zero-offset section and information about the Vp, Vs and
db model at a borehole location are used to fill the layers
with material parameters (Figure 8d, baseline model A).
A correct localization of the layer interfaces can be
quite complicated, especially in the gas storage layer.
As a result velocity and density errors of up to 1000 m/s
and 300 kg/m3, respectively, are introduced in the base-
line model, even though the medium properties within
the layers are lateral homogenous. Beside erroneous
multiple reflections within the storage formation due to
wrong interface positions, a different diffraction pattern
nt kinds of errors. (a) Smooth true baseline model, (b) depth
mooth baseline model A, and (f) smooth baseline model B.
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due to changes of model discretization errors on the
Cartesian FD-grid become a problem. The elastic
time-lapse FWI result for baseline model A is com-
pared in Figure 9d-f with the result for the perfect
baseline model (Figure 9a-c). While the position and
shape of the gas plume can be reconstructed at least
to some extent, the distribution of the material proper-
ties within the gas plume are systematically overesti-
mated. To improve the quality of baseline model A, it
is smoothed (Figure 8e) with a subsequent application
of spatial FWI to the baseline data (Figure 8f, baseline
model B). This additional spatial FWI step reduces
the errors in the velocity models at the layer inter-
faces up to a factor two, but the errors are still quite
large with ±500 m/s for Vp, ±400 m/s for Vs, and
± 200 kg/m3 for db. Additionally the smoothing introduces
velocity and density errors within the layers. As a result
the time-lapse FWI results of baseline model B are only
slightly improved (Figure 9g-i) compared to baseline
model A (Figure 9d-f ).
The evolution of the objective function E during the

elastic time-lapse FWI is shown in Figure 10. Transitions
between the different inversion stages are defined in
Table 1. For the perfect baseline model without noise
the objective function significantly decreases during the
FWI, while none of such significant decrease is notable
when data with a S/N = 100 is inverted. The number of
iterations is also reduced. A comparable behaviour oc-
curs for baseline model A and B.
(a)

(d)

(g)

(b)          

(e)

(h)          

Figure 9 Influence of different baseline models on the elastic time-lap
baseline model, (d-f) baseline model A estimated from RTM results and bo
borehole logs and spatial FWI.
ERT inversion results
As mentioned before the two synthetic data sets (generated
before and after adding 3% random noise) are inverted with
incorporating mapping data of subsurface stratigraphy from
prior surveys (e.g. seismic, borehole logs). These two appar-
ent resistivity data sets were inverted by incorporating layer
interfaces and fixing resistivity regions, respectively, both
are outside the reservoir layer. ERT data inversions recon-
struct directly the true subsurface resistivity tomograms
including the study gas plume of downward gradual desat-
uration. This implies no model differencing, unlike seismic
results showing the model difference before and after the
gas injection. Of all differently independent inversions,
every best-fitting tomogram shows least root mean square
(rms)-errors of <0.5% and iteration number almost of 5,
and is optimized with the L1 norm for sharp interfaces.
Also this low rms-error value is explained by the good con-
vergence of the synthetic data sets toward the final solution.
This L1 norm yields significantly more accurate results than
L2 norm, where the actual subsurface resistivity changes
abruptly at sharp target boundaries (cf. Loke et al. 2013). It
is more likely to suppose that considerable subsurface infor-
mation is already available during monitoring from the de-
tailed baseline survey and any other subsequent survey.
The a priori incorporation of this mapping data in ERT in-
versions minimizes the ambiguity of the solution and en-
hances the resolution of results. Here each data set
inversion is constrained by incorporating resistivity regions
and interfaces outside the reservoir, respectively.
(c)

(f)

(i)

     

         

se FWI results. (a-c) Changes of Vp, Vs and density for the perfect
rehole logs, and (g-i) baseline model B estimated from RTM results,



Figure 10 Development of the objective function E (equation 1) during the time-lapse FWI for the perfect baseline/noise free case,
inversion with S/N = 100, baseline model A and baseline model B. The solid circles define the transitions between the different inversion
stages defined in Table 1.

al Hagrey et al. SpringerPlus 2014, 3:267 Page 11 of 16
http://www.springerplus.com/content/3/1/267
Moreover, we calculated the model resistivity differ-
ence (residual) relative to the input (true) model to
quantitatively evaluate the reliability of the recon-
structed tomograms. This residual anomaly is a meas-
ure for the reliability of ERT inversions. It expresses
quantitatively the resolution of the applied technique
for both of the spatial mapping capability and the re-
covering resistivity amplitude. An accurate resistivity
amplitude is essential for precise quantifying the injected
gas phase saturation using Archie equation (17), see next
synthetic data (0.6% simulation error)
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Figure 11 ERT modelling results. (a) Input or true (ρtrue) models, (b, c, f,
corresponding residual Δρ models with their average values. Inversion is cond
(f-i). These inversions are conducted for synthetic borehole ERT data (contam
noise error. The low residuals (average <9%) reflect well the advantage of con
reconstruction of the gas phase of downward gradual desaturation. The vertic
mark the interfaces.
section. This residual (Δρ) between the corresponding
pixels of the input or true (ρtrue) and output (ρERT) 2D
model is calculated by:

Δρr ¼
ρtrue−ρERT

ρtrue
% ð20Þ

Figure 11 shows only the best-fitting tomograms re-
constructed together with their corresponding residuals
for the four cases of applying synthetic data before and
synthetic data + 3% random noise

av. Δρρ= 7.9%

av. Δρρ= 4.9%

ρ

Δρ
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(g)
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v. 
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g) output resistivity (ρERT) tomograms with rms-error, and (d, e, h, i)
ucted using constrains of incorporating ρ region (b-e) and boundaries
inated with 0.6% simulation errors) before and after adding 3% random
straining of ERT inversions by the seismic mapping results for an accurate
al black dots mark the borehole electrodes and the continuous lines
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after adding 3% random noise errors, and constrained
inversions of incorporating ρ regions and boundaries
outside the reservoir layer.
Obviously, the ERT inversion results of reconstructed

tomograms visualize well the storage targets, particu-
larly the gas plume of a downward gradual desaturation
within the brine reservoir for all studied four cases
(Figure 11). It is clear that constrained inversion models
incorporating resistivity regions are better resolved than
these incorporating boundaries. Also the addition of 3%
random error to the synthetic data sets increases the
misfit of rms-error values (between input and output
response) by a factor of 5–8 but slightly decreases the
mapping resolution as reflected by low residual Δρ rise
from 4.5 and 7.8% to 4.9 and 7.9%, respectively. Loke
et al. (2013) found that the model inverted with the
L1-norm is less sensitive to random noise compared
with the L2-norm.
Resulting residual Δρr tomograms as a measure for

resolution confirm generally the good mapping capabil-
ity of the applied constrained ERT technique, where all
average Δρr have low values of 4.5–7.9% with minor de-
viations (Figure 11). This Δρr distribution shows that the
resulting model reliability (inverse of Δρr) is least for the
noisy data set inverted by incorporating boundaries and
best for the data set without adding random noise
inverted with fixing ρ regions. An accurate investigation
of Δρr tomograms show that the resolution suppression
due to the addition of 3% random errors to the gener-
ated data (average Δρr increases from 4.5 to 4.9 for fix-
ing ρ region, and from 7.7 to 7.9 for incorporating
boundaries) is lower than that resulting from incorporat-
ing boundaries instead of fixing ρ regions (average de-
clines from 4.5 to 7.7 for data without random noise,
and from 4.9 to 7.9% for noisy data).
Constrained inversion tomograms (using any available

subsurface data as an a priori information in the ERT in-
version) show better resolution (inverse of Δρr, Figure 11)
than their corresponding unconstrained or even partly
constrained inversion tomograms (not shown here, see
al Hagrey et al. 2013). However, these residual Δρ maps
still reflect the common smearing effects and artifacts of
varying degrees of the ERT technique. This negative effect
is particularly visible within the thin storage formation
(Δρr up to ±20%) with spatially varying gas saturation (i.e.,
resistivity amplitude). On the other hand the non-varying
(homogeneous) formations above (cap rock) and below
(aquitard) the storage formation show a Δρr of almost ±0.
Obviously almost all inversion uncertainties are related to
the monitored gas phase within the host reservoir. Thus
they deliver an error estimate of the injected gas quantities
monitored by this constrained inversion technique.
In conclusion, the ERT technique with permanently in-

stalled borehole electrodes aims at mapping, monitoring
and quantifying the gas volume injected into the saline
aquifer at any time. Obviously, the resulting tomograms
(Figure 11) fulfil well the spatial mapping and monitoring
purposes. This permanent electrode installation helps to
maximize the reliability of monitoring data. Modelled
anomalies minimizes the background effect and thus max-
imizes the time-varying response caused here by the
injected gas quantity. The residuals (Figure 11) assess and
prove the high reliability of the results including the quan-
tification capability for the resistivity amplitude. These
highly reliable resistivity amplitudes motivated us to derive
the gas saturations (see next section).

Gas quantification by ERT
The gas phase saturation Sg or Sg

ERT in a partially satu-
rated reservoir medium is driven indirectly by applying
the resistivity amplitudes recovered from ERT models
(Figure 11) in the Archie equation rearranged as:

SERTg ¼ 1−
aρbr
ρΦm

� �1=n

ð21Þ

Here, we assume no interaction between the three res-
ervoir phases (solid matrix, brine and gas). Using this
equation, saturation models of gas phase (Sg

ERT) within
the storage reservoir are calculated and plotted together

with the corresponding input true; Strueg

� �
models and

their absolute difference ΔSg ¼ Strueg −SERTg

� �
in Figure 12

for the four applied cases described before. It is clear
that the estimated saturation here contains the uncer-
tainty of the other parameters of a,m,n,Φ and ρ br in-
cluded in this equation. Unlike this, the equation of the
resistivity index (the resistivity ratio after and before the
injection, e.g., Nakatsuka et al. 2010) eliminates parame-
ters a,m and Φ, whereas parameters ρbr and n are as-
sumed to stay unchanged with time. However, this index
equation includes the uncertainties of both pre- and
post-injection ρ models unlike our applied equation (21)
which includes the uncertainty of the post injection
model only. In the porous sandstone of the Rhaet reser-
voir, we considered the common values of 1, 2 and 2 for
the constants a,m and n, respectively (Archie 1942), 0.2
for Φ, and 0.08 Ωm for ρbr (as mentioned before).
An investigation of resulting models shows that the

gradual gas desaturations (Sg
ERT) with depth are well

mapped within the thin storage formation. The results in
Figure 12 show a satisfactory similarity between input
(true) and corresponding output (reconstructed) models.
The average difference ΔSg relative to Sg

input (Figure 12)
approaches 15–21% for all studied four cases of Figure 11.
This small difference confirms again the satisfactory reli-
ability of the results. The gas distribution within the Rhaet
reservoir formation shows a good similarity particularly in
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Figure 12 Results of gas phase saturations in the storage formation derived from ERT models (of Figure 11). (a) True simulation (Sg
input),

(b, c, f, g) saturations (Sg
ERT), and (d, e, h, i) corresponding differences (ΔSg) with their average values. The gas phase is recovered satisfactorily

everywhere as reflected by ΔSg values (≤21%). The continuous lines mark reservoir boundaries.
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the region 1–1.4 km (corresponding to the real distri-
bution) and is insignificant outside this region where its
amplitude is below the average (ΔSg). Most recovered
Sg

ERT values are lower than their corresponding input
ones. This may be related to the smearing effects of the
technique. This smearing influences negatively the
modelled resistivity amplitude and reduces the resistiv-
ity high of the gas plume sandwiched between the two
resistivity lows of caprock and aquitard, respectively.
High ΔSg values are concentrated mainly at reservoir
interfaces and may be related to discretization errors.
At the Cranfield site, Mississipi, Carrigan et al. (2013)
found that CO2 saturations measured in monitoring
wells are higher than the ERT-derived saturations al-
though both show good spatial correlations. They
added that ERT provides an integrated response from
large volume, whereas gas sensors (dm penetration)
provide point measurements and are sensitive to condi-
tions near the well.

3D gravity modelling results
Results of the 3D gravity modelling technique using
IGMAS+ program show a high sensitivity to the applied
plume scenarios of gas phase injected in the pore Rhaet
reservoir of the North German Basin (Figure 13). The
negative anomaly amplitude of the vertical gravity compo-
nent after subtraction the background before gas injec-
tions (Δgz) increases with increasing the gas saturation
Sg causing the mass deficit. The two saturations of Sg1
(60–27%) and Sg2 (80–36%), gradually decreasing with
depth, show negative anomalies Δgz1 and Δgz2, respect-
ively, of similar shape, i.e., visually both are hardly dis-
tinguishable (Figure 13a, b). The absolute Δgz1
amplitude for Sg1 (134 μGal) is less than that for Sg2 for
Sg2 (178 μGal). The difference in Δgz amplitude (i.e.,
double difference) between both saturations is visual-
ized well in figure (Figure 13c) and is far higher (>10
times) than the measurable accuracy of modern micro-
gravimeters (±3–5 μGal). Fewer saturation changes are
verified systematically at the whole range of saturations.
We found that 1% change in saturations ΔSg yield 2.2
μGal change in Δgz for our study gas plume. This im-
plies that the technique can monitor a saturation
change ΔSg down to 2.5–3% for the whole saturation
range. This ΔSg range results in a Δgz changes above 5
μGal. Obviously, time-lapse data do not require many
corrections (e.g., free-air, Bouguer, terrain) but temporal
shallow changes (e.g. fluctuations of the water table)
highly affect the gravity readings. Our gravity modeling of
a water table at 10 m depth below the study site yields a
measurable 5 μGal anomaly (micro-gravimeter accuracy)
already for 0.5 m fluctuations only. Therefore, such fluctu-
ations should be observed in wells to remove their effects
from gravity readings. In conclusion, the 3D gravity mod-
elling technique applied here is able to monitor time-
lapses of gas saturations of Sg1 and Sg2 as well as any
saturation changes (ΔSg) down to ±3% within the whole
range of saturation.
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Figure 13 3D forward gravity modelling of gas storages in the anticline limb of Rhaet sandstone formation below the study site.
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Discussion and conclusion
Mitigation of anthropogenic green house gases demand
developments of renewable energy resources. However,
most renewable energy sources are intermittent and
therefore need buffer storage to match public power
supply and demand. In geologic storages, replacing pore
brine with compressed gas energy within the reservoir
formation causes changes in elastic and electric proper-
ties and justify applications of integrative geophysical
methods for monitoring this energy storage. We apply
here elastic FWI, ERT and gravity techniques to map
and quantify a thin gas plume of gradual downward de-
saturation injected in a deep brine aquifer. These aimed
tasks are real challenges for any singly applied geophys-
ical monitoring technique.
In this numerical study we simulate a nearly realistic

storage scenario by considering: (1) the study site is
chosen inside the North German Basin of favourable
conditions for energy storages, (2) a storage model sce-
nario is parameterized by real (published) data for this
basin, (3) the gas phase plume is simulated with down-
ward gradual desaturation similar to realistic cases, and
(4) a common random noise level is added to the syn-
thetic data to robust the technique for real field applica-
tions. The aimed resolution is enhanced by applying:
(1) an integrative approach of geophysical methods, (2)
an optimized approach for data acquisitions with a data
coverage constraining well the inversion model and maxi-
mizing the resolution, and (3) constrained inversions to
minimize interpretation ambiguities (by a priori use of
available data, e.g. seismic, logs).
Unlike classical travel-time based tomographic ap-

proaches, the elastic FWI is capable to map the exten-
sion of the thin gas plume of downward gradual
desaturation using only reflection seismic data, if a very
accurate background model for the seismic velocities
and density can be estimated before the gas injection.
Additionally the elastic FWI recovers the changes of iso-
tropic elastic material parameters and density due to the
gas injection and subsequent partial drainage of the
aquifer. By using an appropriate rock model, changes of
the gas saturation can be deduced from the elastic FWI
results with an accuracy of 5–30% within the aquifer, de-
pending on the amount of noise (S/N-ratio > 100)
present in the data. Due to the finite frequency content
of the source signal larger saturation errors up to 60%
can occur at the boundaries of the gas plume. Density
inversion artefacts outside the aquifer due to noise can
lead to fictitious estimates of saturation variations with
local maxima of 20%. For a S/N-ratio of 50 the shape of
the gas plume is still visible, but estimations of the gas
saturation become highly erroneous and a S/N-ratio of
25 seem to be the detection limit for the gas plume. Er-
rors in the elastic baseline model has a very substantial
impact on the quality of the elastic time-lapse FWI re-
sults. Picking errors in layer interfaces and inaccurate
material parameters within the layers lead to results
with an approximately correct shape and position of
the gas plume, but overestimated wrong elastic material
parameters within the gas plume. Therefore, the estima-
tion of accurate elastic baseline models for a successful
elastic multiparameter FWI, and a subsequent calculation
of the gas saturation distribution, is the greatest challenge
for real field applications. Smooth macro-velocity models
based on Common-Reflection Surface (CRS) stacking
(Mann 2002) and Normal-Incidence Points (NIP)-wave
tomography (Duveneck 2004) for P- and SH-wave data
combined with the intensive use of prior information from
borehole logs seem to be the most promising approach.
The applied constrained ERT inversion technique (tak-

ing use from previous seismic mapping and well logs) is
also able to accurately map storage targets (caprock, res-
ervoir with thin gas and aquitard) in all four applied
cases (resulting from inverting noise-free and noisy data
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by incorporating layer boundaries and resistivity regions,
respectively). The technique can even recover the gas
plume of downward gradual desaturation with a good
resolution. Also inversion models constrained by incorp-
orating resistivity regions are better resolved than these
constrained by incorporating boundaries, both are ap-
plied outside the reservoir layer. The thin resistive gas
plume is sandwiched between the two conductive layers
of the overlying caprock and the underlying aquitard.
Based on the equivalence principle, the resistance (ρ*h,
ρ = resistivity, h = thickness) of this thin resistive plume
can hardly be resolved into ρ and h. This normally re-
sults in smearing with blurred boundaries and larger
volume relative to the input model. These common
ERT limitations are minimized here by applying the
constrained inversion approach taking use of any avail-
able subsurface data. Uncertainties in mapping struc-
tures and quantifying the resistivity amplitudes are
relatively low reflecting the high reliability of the recon-
structed results.
Notably we could quantify reliably the gas saturations

indirectly from the density and resistivity models result-
ing from the inversion by applying common petrophys-
ical equations. The saturation results deduced from
ERT technique fit well their corresponding values de-
rived from elastic FWI. Both show reasonable absolute
average differences (<20%) relative to the background.
However, such results should be cautiously treated,
where their validity and uncertainty should be studied
in real field data.
The use of synthetic data contaminated with random

error may reflect the real world of data. Obviously, add-
ing random noise (typically 3%) to the synthetic ERT
data increases the rms-error values by a factor of 5–9
but slightly decreases the mapping resolution. Our re-
sults here are in accordance with that obtained by al
Hagrey (2012a) for ERT applications in CCS modelling.
Using modelling codes (as applied here) and adding a
random noise in an ascending order (1, 2, and 5% levels)
to the synthetic data sets generally increases the rms-
errors by a factor of 2 to 9 but slightly decreases the
mapping capability of ERT technique. Ramirez et al.
(2005) obtained similar results and concluded that the
effect of the random error in ERT is insignificant for
anomalies of a large size and magnitude.
Obviously the elastic FWI and ERT modelling using

2.5D codes has been conducted along a 2D section of
the geological 3D model applied in the modelling simu-
lation. This 2D model simplification is fully justified by
the evidence that this 2D section cuts the main (storage)
structure (gentle anticline within almost horizontal layer-
ing) along its main strike.
In conclusion results reveal the capability of our ap-

plied integrative geophysical approach to resolve the
CAES targets and to quantify intrinsic property changes
of the injected gas saturation in the reservoir. Con-
strained inversion models of elastic FWI and ERT are
even able to recover well the gradual desaturation with
depth. The accurately mapped spatial (seismic and elec-
tric) parameters are applied in their respective petro-
physical equation to yield precise quantifications of gas
saturations from each technique independently. Both
resulting saturation models are in accordance with each
other and with the input (true) saturation model. A
joint elastic FWI and ERT inversion has a high poten-
tial to improve the applicability of the approach (e.g.
Karaoulis et al. 2012). In a numerical study of a moving
gas front within a reservoir, the joint inversion of seis-
mic and electric time-lapse data sets reduces the pres-
ence of artifacts, and can retrieve the shape and
estimate parameter better than their individual (uncon-
strained) inversions. For time-lapse data ERT uses per-
manently installed borehole electrodes, whereas seismic
data needs to be repeated such that the source and re-
ceiver positions could not be the same and therefore
more uncertainties can occur.
Moreover, the applied 3D gravity technique shows

high sensitivity to the mass deficit resulting from the
storage of the gas phase. The vertical gravity component
can resolve saturations and saturation changes down to
±3% assuming that the data is corrected for temporal
fluctuation effects of the groundwater table.
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