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Abstract

As herd sizes have increased in the last decades, computerized monitoring solutions, which provide fast, objective
and accurate evaluations of the herd status, gain more and more importance. This study analyzes the feasibility of a
Time-of-Flight-camera-based system for gathering body traits in dairy cows for use under cow barn conditions.
Recording, determination of body condition score on a 5 point scale by visual and manual inspection, and measuring
the backfat thickness with ultrasound took place from July 2011 to May 2012 at the dairy research farm Karkendamm
of the Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel (Germany) and between August
2010 and July 2012 at the Institute for Agricultural Engineering and Animal Husbandry of Bavarian State Research
Center for Agriculture in Grub (Germany). The two breeds Holstein Friesian cows (Karkendamm) and Fleckvieh (Grub)
were considered in this study. Software for recording, image sorting and evaluation, determining the body parts
needed, and extracting traits from the images was written and assembled to an automated system. Sorting the
images and finding ischeal tuberosities, base of the tail, and dishes of the rump, backbone, and hips had error rates of
0.2%, 1.5%, 0.1%, and 2.6%, respectively. 13 traits were extracted and compared to backfat thickness and body
condition score as well as between breeds. All traits depend significantly on the animal and showed very large effect
sizes. Coefficients of determination restricted to individual animals were reaching up to 0.89. The precision in
measuring the traits and gathering backfat thickness was comparable. Results indicated that the application of
Time-Of-Flight in determination of body traits is feasible.
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Background
Body condition in dairy cows
During early lactation dairy cows experience negative
energy balance which leads to more body tissue mobi-
lization. As enduring negative energy balance strongly
affects fertility performance and health, the body condi-
tion should be monitored systematically and accurately
(Collard et al. 2000). At first, the body condition score
(BCS) is a measure to describe a cow’s body condition.
BCS is gathered by visually and manually judging the fat
layer upon specific bone structures and how sunken the
animal’s rear area is. There exist several systems using
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different scales. Thus BCS depends on the person who
classifies. In this study the 5 point scale system devel-
oped in (Wildman et al. 1982) and (Edmundson et al.
1989) is used. At second, the layer of subcutaneous fat
which is bounded by skin and the fascia trunci profunda
located at the gluteus medius muscle, respectively the
longissimus dorsi muscle (Schröder and Staufenbiel 2006)
is called backfat. Measuring the backfat thickness (BFT)
with ultrasound is highly reflective of the body fat con-
tent and highly correlated to BCS (Brethour 1992; Fietze
2004). However, this method is very time consuming,
because the animals have to be fixed, and the measure-
ments depend on the used technical equipment. The body
condition’s use as monitoring tool for diet, health, and
fertility status would increase, if it could be obtained
objectively and automatically. Additionally, interest in the
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body condition as selection index rises (Interbull 2012).
An automatic system would lower costs and the expen-
diture of time, be less stressful for the animals, avoid
errors during manual data transcription, and could pro-
vide large volumes of data for use in genetic evaluation.
The present study therefore examines the usage of Time-
Of-Flight (TOF) depth cameras in automated monitoring
of the body condition in lactating dairy cattle.

Usage of camera-based systems in dairy precision farming
Technological advances and multi-disciplinary research
will be essential tools in the 21st century’s agricultural sci-
ence. Digitally stored results can easily serve as basis for
further research and data mining. In the last years, there
have been several 2D-camera-based studies on automated
body condition scoring. After the potential of the use
of 2D digital images in BCS determination was demon-
strated (Bewley et al. 2008; Ferguson et al. 2006), various
approaches to automated systems were made. In (Azzaro
et al. 2011) cow shapes were reconstructed using linear
and polynomial kernel principal component analysis and
the BCS was estimated. BCS prediction models based
on five anatomical points were presented in (Bercovich
et al. 2012). Full automation was reached in (Halachmi
et al. 2013), BCS was assessed by fitting a parabola to
the cow shape extracted from thermal images. This study
analyzes the applicability of a Time-of-Flight (TOF) 3D
camera in automated determination of cows’ body traits
(Salau et al. 2011). With 2D coordinates, everything can
only be measured in a certain plane of projection depend-
ing on the cameras point of view. The ability to measure
spatial anomalies is, however, necessary to fully describe
a three dimensional object. As in 3D images the pixels’
relative distances from the camera are known, the sep-
aration between fore- and background can be achieved
easier than the segmentation of 2D digital images (Hertem
et al. 2013). In (Krukowski 2009) images from the previ-
ous model of the TOF camera used in the present study
were analyzed. Dairy cows’ rear view was captured with
the camera held in hand, and a relatively small num-
ber of animals and images were examined in order to
determine BCS. Automation was not aspired. The present
study introduces a TOF-based systemwith automated cal-
ibration, animal identification and information gathering.
To cover a wider range of body shapes and sizes, two
breeds (Holstein Friesian (HF) and Fleckvieh (FV)) were
recorded. The same traits were calculated for both breeds
and afterwards compared to BFT and BCS.

Results
A rough program flow of the whole software is given at the
beginning of subsection “Developed software”. In para-
graphs “Configuration and recording” to “Further pro-
cessing: application “ExT”” the single processing steps are

explained inmore detail. Error rates and technical data are
given in “Analyzing the software’s results”.

Developed software
Initially, the application “Karkendamm.exe” (Figure 1,
((FNI) FI 2013), (Crémer 2013)) reads configuration files,
where camera settings and recording parameters were
specified, and started animal identification, calibration,
recording, and preprocessing.
Afterwards the MATLAB application “EKB” controlled

the further processing (Figure 2). “EKB” handed every
image to the MATLAB applications “ROI” and “ExT”
(Figure 3), in order to automatically determine the region
of interest and to extract traits, respectively. In addition,
“EKB” generated one list per recording day, that for every
valid image contained the output of “ROI” and “ExT”.
As this study focuses on the feasibility of a TOF based

automated monitoring system, prediction of neither BFT
nor BCS was integrated in the software so far.

Configuration and recording
In the configuration files the user could determine cal-
ibration parameters (NUM, camera height, DUR, see
paragraph “Calibration and preprocessing”), what kind of
output (subsection “Time-of-flight technology”) should be
saved andwhere, and if the images should be preprocessed
during recording. Additionally, the user could predefine
a time or amount of data at which the recording termi-
nated. After this configuration the camera was set up, and
the application connected to the ID-system used at Kark-
endamm. Then acquisition of images continued until the
termination conditions were fulfilled.

Calibration and preprocessing
“Karkendamm.exe” used the camera height to determine,
if the scenery was completely empty. From a specified
number (NUM) of such images scenery information (SC-
Info) were calculated. Firstly, this included maps with pix-
elwisemean (meanIMG) and standard deviation (stdIMG)
of the empty scenery. Secondly, examining edges and
gradients in meanIMG resulted in the position of box
walls. After a specified duration (DUR) SC-Info was
renewed.
Given SC-Info, “Karkendamm.exe” created a folder (ID-

folder) named after the cow-ID linked to the actual image
(IMG). As the camera was recording nonstop, the cows
were observed while advancing into and moving back-
wards out of the box again. As only images showing
a cow’s lower back should be stored in ID-folder for
further processing, “Karkendamm.exe” handed IMG to
the application “sortout_and_segment”. Comparing the
depth values in IMG to the specified camera height,
“sortout_and_segment” determined whether there was an
object between the box walls and where. Due to the
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Figure 1 Flow chart of “Karkendamm.exe”. Using the parameters given in the configuration file, “Karkendamm.exe” set up the camera,
connected to the ID-system, and initiated calibration. After scenery-information had been determined the acquired images were sorted,
segmented, and stored in ID-folders. Termination criteria are not shown for the sake of simplicity.

mounting of the camera (Figure 4), and because the cows
could only enter the box from one side, they were pass-
ing the camera’s field of view from the upper to the lower
image boundary. If IMG showed a lower back includ-
ing the tail, the object necessarily had to intersect with
the lower image boundary and to keep distance to the
upper image boundary. If that was not the case, IMG was
deleted automatically to reduce data volume. Otherwise
“sortout_and_segment” separated the cow from the back-
ground. Hereby the difference |IMG − meanIMG| was
used to specify moving objects at first. At second, objects
were recognized by means of depth value histograms,
to confirm the first result. The background was set to

zero, and the segmented IMG was stored in ID-folder
afterwards.
This resulted in one ID-folder of preprocessed images

per day for every cow, which had been in the electronic
feeding dispenser while recording. Multiple visits of the
same animal were stored in the same ID-folder.

Further processing: application “ROI”
The application “ROI” evaluated IMG in a multistage
system of tests and determined body parts that are impor-
tant descriptors for body condition scoring like ischeal
tuberosities, base of the tail, dishes of the rump, hips, and
backbone (Figure 5, (Ferguson et al. 1994)).
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Figure 2 Flow chart of “EKB”. The application “EKB” controlled further processing. It handed every image to the applications “ROI” and “ExT”
(automated determination of region of interest and trait extraction) and listed as well as stored the output.

Evaluating the image: tests ImageBorder and
HindBoundaryCurve
The first test (test ImageBorder) checked, if the cow
sticked to the left or right image border. At second
(test HindBoundaryCurve), the hind boundary curve was
determined in two ways: as sequence of first nonzero pix-
els from the upper image boundary in direction of the seg-
mented object and as sequence of last nonzero pixels from
within the object in direction of the upper image bound-
ary (Figure 6). Objects (pieces of wall, floor or other cows),
which had not been removed by “sortout_and_segment”
produced differences between these two hind boundary
curves.

Determination of the region of interest
If IMG had passed those tests, the signature of the cow’s
backside (also used in (Bercovich et al. 2012)) was drawn
by calculating the distances between every point of the
hind boundary curve and the center of mass. It could
be observed that, the distances between ischeal tuberosi-
ties and center as well as tail and center are similar in
HF cows, but in FV cows the tail is considerably the far-
thest point measured from the center. These differences in
pelvis shapes resulted in dissimilar signatures (Figure 7).
As ischeal tuberosities, dishes of the rump and tail (all
together referred to as knuckles) were detected from the
signature, slightly different algorithms were used in their
detection for the two breeds:

For both breeds the tail was detected as the signature’s
local maximum in alignment with the center of mass.
The animal’s individual anatomy but also actual pos-

ture caused the dishes of the rump to appear flat or deep
in the signature. If an explicit local minimum could be
found sideways of the local maximum corresponding to
the cow’s tail, the dish of the rump was detected there and
classified deep (Figure 8, top). It was classified flat, if the
signature’s gradient was running flat to the side (Figure 8,
mid). The dish was then detected at the bottom of the tail’s
associated bump in the signature where the curvature was
largest.
It indicated equally stressed hind legs and the tail in a

mid-position, when both dishes got the same classifica-
tion. In HF cows only images with both dishes classified
as deep were used. The ischeal tuberosities were detected
as the signature’s local maxima further left than the left
dish and further right than the right dish. As in FV
cows flat dishes were outweighing, also images with both
dishes classified as flat were used. For those images the
points, where the signature decreased below a specified
tolerance, were detected. The ischeal tuberosities were
set halfway between the dishes of the rump and those
points.
As a next step, a linear approximation of the highest

points on the cow’s back provided the backbone. This gave
the opportunity to compare the body halves and assign hip
coordinates in case they were sufficiently symmetric.
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Figure 3 Flow chart of “ROI” and “ExT”. “ROI” evaluated IMG in a multistage system of tests (ImageBorder and HindBoundaryCurve, first column).
It classified the signature of the cow’s backside contour, determined ischeal tuberosities, base of the tail, dishes of the rump and tested their
coordinates for anatomical correctness (second column). Backbone and hips were also determined and tested automatically (third column), before
the image was handed to “ExT” (fourth column). “ExT” calculated the camera traits (separated box).

To confirm the assumption, that the object analyzed in
IMG was a cow in relaxed posture, lengths and angles
within the signature as well as the knuckle and hip coordi-
nates determined from left and right were compared. Both
their distances to the tail, respectively backbone, and their

depth values had to be about the same size. They were
discarded otherwise.
Decidingwhich algorithm to use
The breed (HF - or FV cow) had to be given to the appli-
cation “ROI” as input argument. It would be possible to

Figure 4 Scenery, recording installation, and example of preprocessed TOF camera output. Left: TOF camera mounted above an electronic
feeding dispenser in Karkendamm; Right: Segmented 3D-representation of a cow’s rear area.
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Figure 5 Determining the region of interest. The left respectively the right figure shows a depth maps of a HF and a FV cow’s backside recorded
from top view. Everything but the cow is set to zero (blue). The automatically determined region of interest is marked: White dots: Ischeal
tuberosities, dishes of the rump and tail (knuckles). White rectangles: hips.

automate this flow of information concerning the cow’s
breed given a mapping between ‘breed’ and ‘ID’ that is
accessable from the herd management system. In this way
the breed of every recorded cow could have been available,
because the software was connected to the ID system. As
there was no opportunity to test the system in herds with
both breeds, this step has not been carried out yet.

Further processing: application “ExT”
In case the complete region of interest could be deter-
mined, IMG was passed on to “ExT”. Several cuts through
the cow’s surface were taken along straight lines in order
to calculate traits that are meaningful to the surface’s
changes induced by varying body condition during lac-
tation: As a first trait (Figure 9, top), the area between
the height profile along the connection between the cow’s
hips and its upper horizontal tangent line was computed
(hip2hip). At second, a cutting line was drawn perpen-
dicularly to the backbone near by the dishes of the rump
(Figure 9, mid). Using the resulting height profile, the
depths of the dishes (depthleft, depthright) and the areas

between the profile and the closing lines (volumeleft, vol-
umeright) were measured. At last, height profiles were
taken between hips and ischeal tuberosities or dishes of
the rump on both sides of the body. Their polynomial
approximation was compared to the direct spatial con-
necting line. The maximal distortions (distpinleft, -right,
distmidleft, -right) as well as the included areas (areapin-
left, -right, areamidleft, -right) were calculated (Figure 9,
bottom). Per valid image 13 traits (subsequently referred
to as camera traits) could be computed.

Analyzing the software’s results
Technical information on recording
Used with default settings and under the given light con-
ditions, the SR4000 recorded ≈14 frames per second (fps)
without carrying out “sortout_and_segment”, and ≈3 fps
otherwise. After 1st of November 2011 only Swiss Ranger
streams (srs) each containing 1000 frames were recorded
and used as data source afterwards. It took ≈70 seconds
to record one stream of size 99065 kb. This summed up to
≈5.1 gb recorded srs data per hour. Using streams as data

Figure 6 Calculating and comparing the inner and outer hind boundary curves.Mid: Depth map of cow’s backside recorded from top view.
Everything but the cow is set to zero (blue). Left/Right: The inner/outer hind boundary curve. The inner/outer hind boundary curve is calculated by
following the columnwise black/grey arrows to the last/first nonzero pixel. As the cow’s tail is overhanging, the inner and outer hind boundary curve
differ (marked as white lines).
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Figure 7 Generating signatures and comparing between the breeds HF and FV cows. The left column of images shows depth maps of a HF
(top) and a FV (bottom) cow’s backside recorded from top view. Everything but the cow is set to zero (blue). In the right column the signatures (top:
HF cow, bottom: FV cow) generated from the corresponding depth maps in the left column are displayed. In both depth maps the center of mass
calculated for the area covered by cow (nonzero) is marked. The signatures are generated by measuring the distances between center and
boundary of the nonzero area. As the breed’s pelvis shapes differ and ischeal tuberosities lie more rearwards relative to the center of mass in HF than
in FV cows, signatures of HF and FV cows are clearly distinguishable.

source, single images could be gathered and preprocessed
by “sortout_and_segment” with ≈35 fps depending on the
computer’s performance.

Control of preprocessing and determination of ROI
All images used for visual inspection were recorded with
the exact same settings as described in subsection “Instal-
lation and recording” but prior to the recording period
used for analysis (specified in section “Methods”).
The results of “sortout_and_segment” (paragraph “Cal-

ibration and preprocessing”) were controlled visually at
a dataset of 155322 images from recording days 8th and
9th of June 2010 containing 133 different cows. The error
rate was 0.2%, and ≈36% of all images were kept. The
combined results of the tests ImageBorder and Hind-
BoundaryCurve (paragraph “Further processing: applica-
tion “ROI””) were visually tested by scientific assistants
using the recording of 13th of July 2011, which con-
tained 215085 images from 84 different cows. Distribu-
tion, absolute number of images, and the error rates are
given in Table 1. Knuckle coordinates were only calcu-
lated from the 192798 images which had passed both

ImageBorder and HindBoundaryCurve, and the coordi-
nates were evaluated. The positively evaluated knuckle
coordinates (163490 images≈ 85%) were visually checked.
The error rate was 1.5%. Furthermore, 39836 images were
randomly chosen from the recording dates between 5th of
July and 18th of August 2010 and used for visual inspec-
tion of the automatically determined backbones (error
rate: 0.1%) and hip coordinates. The positively evaluated
hip coordinates (25893 images, ≈ 65%) had been assigned
with 2.6% error rate.

Traits’ descriptive statistics and coefficients of determination
Table 2 gives the descriptive statistics for all traits for
Karkendamm and Grub, separately. The coefficients of
determination for individual cows R2

cow (explained in sub-
section “Descriptive statistics”) were not significantly
effected by the factors weight, lactation number, lactation
stage at the beginning of the recording period (com-
pare subsection “Additional information on the recorded
dairy cows”), or BFT/BCS starting level. As nomeaningful
criterion was found to limit the dataset to certain animals,
all cows’ data was used for analysis.
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Figure 8 Three examples of signatures. The tail is marked with a vertical red line in all three images. Top:Minima are easily detectable on both
sides of the tail bump.Mid: The signature segues from tail bump into a flat course. Bottom: A minimum can be detected left of the tail, but the
right dish is flat.

For HF cows the coefficients of determination R2 ranged
from 0.7 to 0.93 for the camera traits and R2 of BFT
was 0.86 (mean(R2)=0.83, ±0.07). The mean and maxi-
mal R2

cow-value for BFT were 0.43 and 0.96, respectively.
For the camera traits mean R2

cow-values between 0.17 and
0.28 andmaximal R2

cow-values between 0.59 and 0.89 were
observed.
For FV cows minimal and maximal R2-values were 0.34

and 0.83 for camera traits, R2 of BCS and BFT were
0.7 and 0.49, respectively (mean(R2)=0.56, ±0.13). Mean
R2
cow-values ranged between 0.14 and 0.26 and maximal

R2
cow-values between 0.52 and 0.95 for the camera traits.

BCS and BFT had mean R2
cow-values 0.25 and 0.24 and

maximal R2
cow-values 0.66 and 0.63, respectively.

Minimal R2
cow-values were zero for all camera traits and

BFT/BCS for both breeds.

Effects of cow and season
The sizes (η2) for both cow and season effects are pre-
sented in Table 3. For both breeds the cow’s effect on
the group means was significant and very large (Cohen
1988), ranging from η2 = 0.59 to η2 = 0.8 for HF cows
and from η2 = 0.34 to η2 = 0.77 for FV cows. Means
grouped after season only differed significantly for BFT
and the camera traits depthleft, depthright, distpinleft,
areapinleft, distmidleft, and areamidleft for HF cows. For
FV cows significant differences could be observed for BFT,
hip2hip, depthleft, volumeleft, volumeright, areapinleft,
areamidleft and distpinright. The effect sizes were small
(η2 = 0.01 to η2 = 0.03) for HF cows. For FV cows the
sizes were small to medium (η2 = 0.02 to η2 = 0.06) for
the most traits, but for volumeleft the season’s effect could
almost be considered large (η2 = 0.12).
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Figure 9 Graphic representation of the camera traits. Top, left: Connecting line hip to hip. Top, right: The area between cow profile and
horizontal tangent gives the trait hip2hip.Mid, left: Cutting line through dishes of rump.Mid, right: Cow profile, horizontal tangent, closing lines.
The depth of dishes and the area between profile and closing lines are calculated for the traits depthleft/-right and volumeleft/-right. Bottom, left:
Connecting lines hips to ischeal tuberosities and dishes. Bottom, right: Cow profile, polynomial approximation, spatial connecting line. Calculating
the area gives the traits areapinleft/-right and areamidleft/-right. The traits distpinleft/-right and distmidleft/-right are calculated as the maximal
distortion between the polynomial and the connecting line.

Figure 10 illustrates the season means for BFT for both
breeds as well as for distpinleft for HF cows and vol-
umeleft for FV cows, as for these traits the sizes of the
season’s effect were maximal.

Discussion
Technical aspects of the presented system
The TOF-based system presented in this study was able
to carry out the tasks camera setup, calibration, animal
identification, image acquisition, sorting, segmentation,

and the determination of the region of interest as well
as the extraction of body traits automatically. “Kark-
endamm.exe” handed folders with preprocessed images
to the MATLAB application “EKB” to control further
processing and store the results (subsection “Developed
software”). The image processing steps, however, turned
out to be very time consuming, therefore the presented
software was not a real-time application. When prepro-
cessing was carried out while the camera was recording,
its acquisition rate dropped from ≈14 to ≈3 fps. After
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Table 1 Distributions, absolute numbers of images, and
error rates of the tests ImageBorder and
HindBoundaryCurve

Code % Absolute Error rate Use

1-1-1 89.6 192,798 20.6% further processing

1-0-1 2.7 5,856 5.9% discarded

0-1-1 6.7 14,493 13.4% discarded

0-0-1 1 1,940 22.3% discarded

The results are coded as triples of 0 (failed test) or 1 (passed test). First entry:
HindBoundaryCurve; second/third entry: ImageBorder left/right side. Groups
“1-1-0”, “1-0-0”, “0-1-0”, “0-0-0” are empty.

1st of November 2011 thus only Swiss Ranger streams of
unprocessed images were recorded. Afterwards, the serial
execution of “Karkendamm.exe” and “EKB” was carried
out using srs data as virtual camera. Since the amount
of data was maximized (fps, recorded cows) by keep-
ing a strict separation of recording and processing, this
was considered the best solution for a serialized scenario.
Parallel solutions were thinkable using connected hard-
ware systems, and they would be necessary if the goal is
real-time recording and processing.

Camera trait extraction
The application “sortout_and_segment” guaranteed a per-
fect sorting (0.2% error rate) of the images depending on
if they showed the rear area of a cow.
Because the position of the freely movable tail was dif-

ficult to judge automatically, the tests ImageBorder and
HindBoundaryCurve showed relatively high error rates.
Furthermore abrupt changes in the distance between
recorded object and camera led to more possible ways for
the infrared light to be reflected and return to the sensor.
Automatically and precisely deciding between cow and a
wall very closed to the cow was prone to error, because
the strong slope between cow surface and floor led to
increased depth value deviations. But as the knuckle and
hip coordinates were evaluated with 1.5% and 2.6% error
rate, respectively, a very reliable basis for trait extraction
was laid.
However, for both breeds the traits’ standard deviations

and the ranges in values were high. One reason for this
might be the quality of depth measurement. According
to the manual (MESA-Imaging 2013) the accuracy was 1
cm, but depth value deviation of up to 10 cm had been
observed. As preliminary analyses had shown, this most
likely depended on fur color (changes), sun light, dust,
insects, humidity, and if the animal was moving. The
effects of these parameters, however, could so far not be
separated or proven to be significant.
Other reasons might lay in differences between the ani-

mals. As was shown, the cow had a significant effect

on all traits. Individual body shapes, fur colors, and
changes in fat deposits might have been reasons for this
as well as the cows’ behavior during recording which
affected image quality and ROI determination (compare
subsection “Comparing measurement precision”).
Having a better control over cows, recording and

scenery, the image quality might improve. A solution
would have been to build an artificial scenery, that
ensured symmetry and optimal conditions for the camera.
The advantage would be better control over light, ani-
mal movement, dust, insects, and humidity. Also parallel
image processing and recording could have been facil-
itated and, in turn, computation time could have been
reduced. But as costs and efforts would increase, and in
some existing cow barns such an installation might not
be possible, the applicability and versatility as an everyday
use camera-based monitoring system would be limited.

Correlations to BCS/BFT within breeds, potential BCS/BFT
estimation
The angles and distances extracted in (Bercovich et al.
2012) could easily be calculated from the signature (para-
graph “Further processing: application “ROI””, Figure 7),
and also a parabola as used in (Halachmi et al. 2013) could
be fitted to the cow’s shape in the segmented images. The
corresponding procedures in BCS determination had in
literature been proven to work well and had therefore not
been implemented in the TOF based system presented in
this study.
Instead, the TOF camera’s ability to provide depth data

was used to gather additional information on the cow’s
surface, and the extracted traits were analyzed according
to their explanatory power and precision in determina-
tion.
As none of the camera traits could fully describe the

individual changes in fat layer or body condition by itself,
the correlations to BFT were low or not significant. An
additional explanation was, that none of the traits dealt
with the exact BFT measurement point, which would
have been difficult to detect from the TOF recordings.
The significant correlations to BFT occurred mainly with
traits dealing with the tailhead region, but irregularly also
with the diagonal sections between the hips and the tail
region and the area under the hip to hip connection. For
inferential statistics aiming to predict BFT from the pre-
sented camera traits, it could be promising to consider
a set of predictors that delivered information from the
whole surrounding area of the BFT measurement point
(Weber et al. 2014).
The correlations between camera traits and BCS (only

FV cows) were moderate for all traits except the ones cal-
culated from the diagonal sections. Confirming (Ferguson
et al. 1994) the camera traits extracted from the tailhead
region were most promising in a further BCS prediction.
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Table 2 Descriptive statistics of all traits for Karkendamm and Grub data set

KARKENDAMM

Trait N min max mean std R2(R2cow mean,max) corrBFT -

BFT 2848 5 28 9.71 3.78 0.86 (0.43,0.96) 1 -

HH 1946 2.4 135.7 38.21 12.83 0.87 (0.21,0.78) -0.16 -

DL 1979 1.3 32.1 12.20 2.66 0.86 (0.26,0.84) -0.23 -

DR 1984 2.7 28.1 12.44 2.67 0.88 (0.28,0.81) -0.25 -

VL 1933 0.8 58.1 13.59 5.63 0.67 (0.24,0.89) -0.19 -

VR 1937 0.7 54.4 13.57 5.41 0.78 (0.21,0.69) -0.15 -

DPL 1920 0.5 15.5 5.37 2.13 0.89 (0.22,0.84) NS -

APL 1904 0.4 37.6 7.37 4.22 0.81 (0.17,0.59) 0.11 -

DML 1915 0.3 8.9 3.71 1.43 0.93 (0.25,0.89) 0.22 -

AML 1910 0.4 23.1 6.77 3.52 0.88 (0.24,0.74) 0.26 -

DPR 1906 0.6 20.0 6.14 3.12 0.82 (0.2,0.74) NS -

APR 1903 0.2 42.3 9.39 6.29 0.7 (0.17,0.69) NS -

DMR 1910 0.2 13.8 4.35 2.23 0.85 (0.24,0.89) 0.08 -

AMR 1918 0.2 32.9 8.65 5.47 0.76 (0.22,0.79) NS -

GRUB

Trait N min max mean std R2(R2cow mean,max) corrBFT corrBCS

BCS 540 2.5 5 3.76 0.43 0.7 (0.25,0.66) 0.41 1

BFT 542 9 46 20.42 5.88 0.49 (0.24,0.63) 1 0.41

HH 514 22.9 62.3 37.12 6.3 0.59 (0.14,0.67) NS 0.31

DL 514 7.2 27.6 12.90 2.39 0.71 (0.23,0.95) -0.15 -0.3

DR 514 6.6 21.4 12.71 2.93 0.83 (0.26,0.86) -0.32 -0.46

VL 514 0.5 50.9 5.55 4.0 0.43 (0.18,0.84) -0.06 -0.14

VR 514 1.1 24.2 5.86 3.67 0.63 (0.21,0.83) -0.27 -0.38

DPL 514 0.2 3.6 1.37 0.51 0.53 (0.19,0.69) NS NS

APL 514 0.2 5.6 2.11 0.95 0.52 (0.2,0.6) NS NS

DML 514 0.3 4.8 1.43 0.62 0.55 (0.21,0.66) -0.07 NS

AML 514 0.4 14.5 2.66 1.6 0.6 (0.23,0.83) -0.07 -0.07

DPR 514 0.2 5.8 1.27 0.55 0.34 (0.14,0.52) NS NS

APR 514 0.1 5.9 1.34 0.74 0.41 (0.14,0.39) NS NS

DMR 514 0.5 10.1 1.76 1.22 0.55 (0.16,0.54) -0.18 -0.15

AMR 514 0.6 22.5 2.87 2.96 0.47 (0.18,0.67) -0.14 -0.12

The traits were specified in column 1 using the following abbreviations: BFT – backfat thickness, BCS – body condition score, HH – hip2hip, DL – depthleft,
DR – depthright, VL – volumeleft, VR – volumeright, DPL – distpinleft, APL – areapinleft, DML – distmidleft, AML – areamidleft, DPR – distpinright, APR – areapinright,
DMR – distmidright, AMR – areamidright (compare List of Abbreviations and camera trait description in paragraph “Further processing: application “ExT”” and
Figure 9). Coefficients of determination had been calculated restricted to individual cows (R2cow , mean and maximum in brackets, all minimums zero) and for the
whole datasets using a generalized linear model with a piecewise linear link function (R2). Last columns contain the correlations to BFT (corrBFT) and BCS (corrBCS),
p= 0.05, “NS” indicates that the linear connection was not significant.

Seasons effects
Taking into account that e.g. the number of flying insects,
sun light, or fur structure underlay seasonal variations
and effected the image quality, significant differences in
the traits’ means among seasons were to be expected.
These effects were medium to large in the recording of

FV cows in Grub, but not for all traits significant. For the
recording of HF cows in Karkendamm the seasonal effects
were small. It was, however, noticeable that only all traits
extracted from the left side and exceptionally the trait
depthright were effected significantly. This might have
been caused by asymmetries in recording scenery. The
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Table 3 Effect sizes (η2) cow and season effect

Size of cow effect Size of season effect

Trait Karkendamm Grub Karkendamm Grub

BCS - 0.6 - NS

BFT 0.59 0.39 0.02 0.04

HH 0.65 0.53 NS 0.06

DL 0.69 0.64 0.02 0.06

DR 0.71 0.77 0.02 NS

VL 0.79 0.34 NS 0.12

VR 0.76 0.56 0.01 0.04

DPL 0.71 0.43 0.03 NS

APL 0.70 0.42 0.01 0.02

DML 0.75 0.49 0.02 NS

AML 0.76 0.54 0.01 0.02

DPR 0.75 0.29 NS 0.02

APR 0.75 0.34 NS NS

DMR 0.78 0.51 NS NS

AMR 0.8 0.43 NS NS

The traits were specified in column 1 using the following abbreviations: BFT
backfat thickness, BCS body condition score, HH hip2hip, DL depthleft, DR
depthright, VL volumeleft, VR volumeright, DPL distpinleft, APL areapinleft, DML
distmidleft, AML areamidleft, DPR distpinright, APR areapinright, DMR
distmidright, AMR areamidright (compare List of Abbreviations and camera trait
description in paragraph “Further processing: application “ExT”” and Figure 9).
“NS” indicates that group means did not differ significantly. Means between
cows were significantly different with very large effect sizes for all traits. Season
effects were small to medium, except for “VL” within the Grub dataset.

camera was positioned accurately above the box’s longitu-
dinal axis, but the box’s walls were not equally made, and
the recording scenery was exposed to different influences
from left and from right (description in subsection “Instal-
lation and recording”). Additionally, depending on the
walls’ materials the cows might have had preferences in
leaning on one wall more often than the other.

Comparing measurement precision
Overall coefficients of determination
For both breeds and all camera traits as well as BFT/BCS
the same generalized linear model with a piecewise lin-
ear link function was used to compute coefficients of
determination. The purpose had not been prediction, but
providing a measure to compare the precision of methods
between manually gathering BFT/BCS and calculating
traits with the presented software.
In HF cows BFT and camera traits had been measured

comparably precise. Therefore, it could be promising to
establish a larger dataset for the camera traits and to
analyze their usability in functional traits.
In FV cows the R2 - values were lower and their range

was wider. As the groups in this study happend to be

unbalanced the significance of the breed’s effect on R2 -
values has not been analyzed.Within the FV dataset, most
of the camera traits showed a comparable R2 to that of
BFT. For BCS a considerable higher coefficient of determi-
nation was computed than for BFT. The precision in BCS
exceeded the precision in measuring most of the cam-
era traits. Exceptions were the depths of the dishes of the
rump. Although BFT gathering also included touching the
animal, BCS is the only trait considered in this study which
involved palpation of the fat layers. This might indicate
that purely visual determination of body traits or detecting
the measurement point for the ultrasound device could be
more difficult with FV cows than HF cows. As the coef-
ficients of determination were still moderate to high, a
larger dataset to analyze a potential usage in functional
traits should be considered.

Individual coefficients of determination
The wide spread between the R2

cow-values showed, that
some cows abetted measuring both camera traits and
BFT/BCS, and from other cows hardly any reliable mea-
surements could be gathered. But similarity of cows
was difficult to quantify because of the high number of
comparative aspects. The superficial reasons cow height,
weight, lactation, BFT/BCS starting level, and lactation
stage had been excluded as significant influences (para-
graph “Traits’ descriptive statistics and coefficients of
determination”). Further careful analyses have to be done
here, to find meaningful criteria for cows’ measurability
and to explain the trait values’ deviation in more detail.

Observed differences between breeds
FV cows had lower maximal R2

cow - values and means,
indicating a reduced reliability in information gathering
in comparison to HF cows. FV cows had less visible bone
structure in the concerning area, and their body shapes
showed greater convexity, i.e. the surface was less sunken
between the bones. As a result, the extracted profiles
expressed less distortion from a spatial connecting line or
described smaller areas. The camera traits were thus more
susceptible to deviation in depth measurement as well as
to smoothing and rounding values. The FV cows’ convex
body shape could also be recognized in smaller max-min
differences for the camera traits dealing with diagonal
sections through the rear area or the area under the hip to
hip connection compared to HF cows.
The dissimilar group sizes have to be named as an other

potential reason for the observed differences. As the Kark-
endamm herd had free access to the electronic feeding
dispenser equipped with the camera, no influence could
be taken in advance which and how many animals were
recorded. Because the groups were unbalanced by fac-
tor three, no analysis of variance has been done with the
breed as factor. The present study discovered a large cow
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Figure 10 Groupmeans for data grouped after season. The year has been subdivided in the following seasons: season 1: weeks 49-52, 1-9;
season 2: weeks 10-22; season 3: weeks 23-35; season 4: weeks 36-48. Group means for BFT (top) and the camera traits with maximal effect size for
HF (left, trait distpinleft) and FV (right, trait volumeleft) cows are presented. Non intersecting confidence intervals indicate significant differences in
group means.

effect regarding all traits, and no significant characteristic
to group the cows and explain the differences in individ-
ual measurability could be found. The effect of balancing
the groups afterwards could not have been controlled.

Conclusion
The whole process of automated information gathering
had been implemented, and since traits could be gath-
ered at comparable precision as BFT, the application of
TOF in determination of body traits is promising. How-
ever, the animal effect is very large. Thus further analyses
to specify the cows’ properties leading to the differences in
image quality, reliability in measurement and trait values
need to be carried out. For inferential statistics the cow
effect should be taken into account, and additionally, more
than one trait should be used as independent variable for
estimating or predicting BFT or BCS. Larger datasets of
camera traits should be prepared in order to analyze their
usability in functional traits. To achieve a better quantifi-
cation of the effect of the dairy cow’s breed, further studies
should aspire a balanced design.

Methods
The data used for analysis was collected from 96 HF
cows from July 2011 to May 2012 at the dairy research

farm Karkendamm of the Institute of Animal Breed-
ing and Husbandry, Christian-Albrechts-University Kiel
(Germany). Additionally, data was collected from 30 FV
cows by the Institute for Agricultural Engineering and
Animal Husbandry of Bavarian State Research Center for
Agriculture in Grub (Germany) between August 2010 and
July 2012. On both farms, prior recordings had taken place
and were used for the control of the preprocessing results
(paragraph “Control of preprocessing and determination
of ROI”).

Manual gathering of BCS and BFT
In Kiel and Grub, BCS was determined within a 5 point
scale (Wildman et al. 1982; Edmundson et al. 1989) with
quarter point increments. On both participating farms,
BFT was measured with a portable ultrasound generator
(Tringa Linear VET, Esaote SPA, Italy). Within approx-
imately one-quarter to one-fifth of the line connecting
tuber coxae and tuber ischiadicum the point with maxi-
mal fat layer was chosen for measurement (Schröder and
Staufenbiel 2006). As the linear distance between Kiel
and Grub is ≈700 km, the BCS and BFT could not be
gathered by the same personnel on both farms. In Kark-
endamm, an employee who was trained to measure BFT
with the ultrasound generator gathered BFT on a weekly
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basis (N = 2848). In accordance with the farm’s usual oper-
ational procedures BCS (N = 710) was determined every
four weeks by an experienced external BCS instructor. HF
cows had a mean BFT of 9.71 mm (±3.78) and a mean
BCS of 2.99 mm (±0.39). In Grub an employee gathered
both BFT (N = 542) and BCS (N = 540) once a week at
the day of TOF recording. The BFT measuring persons
in Grub and Karkendamm had joint the same training on
how to use the ultrasound generator. As a result of feeding
experiments conducted in Grub, the herd’s range in body
condition was above-average. FV cows had a mean BFT of
20.42 mm (±0.88) and a mean BCS of 3.76 mm (±0.43).

Time-of-flight technology
The TOF camera (SR4000, Mesa Imaging AG) emits
infrared light (modulated with 30MHz), which is reflected
by the object. The distance between object and camera is
calculated from the phase shift. According to the manual,
the camera’s range is 0.8 to 5 m, its accuracy of measure-
ment is 1 cm, and it is recording up to 54 images (176×144
pixels) per second depending on the exposure time. The
camera is able to output distance and (x, y, z) coordi-
nate data, amplitudes, confidence maps as an estimate of
reliability, and Swiss Ranger streams (srs) consisting of
sequences of images (MESA-Imaging 2013). The cameras
were provided by GEA.

Installation and recording
In Karkendamm a camera was installed 2.55 m above one
of four electronic feeding dispensers. The left wall was a
solid stone wall of ≈3 m height and ≈2.5 m length. From
this side no influence of sun light or other cows needed to
be considered. The right wall is made of wood and only
≈0.3 m higher than the cows’ back. It did not stretch out
of the cameras field of view. Cows could only enter or leave
the box in a straight way or evade to the right. The cam-
era was carefully positioned so that the visiting cow’s rear
area was in the field of view while it was feeding (Figure 4).
Recording was done with a 2-core system having 2 gb
of RAM. Once the computer was switched on, recording
started automatically (“Karkendamm.exe”, Figure 1, para-
graphs “Configuration and recording” to “Calibration and
preprocessing”). Approximately every two weeks a TOF
data recording was initiated and ran for averagely 4 days or
until the removable hard disk was full. An RFID antenna
(Nedap) near the feeder identified the cow by reading
its responder. The eight-digit ID-number was gathered
through serial communication by a splitter constructed by
GEA.
In Grub a 2-core system having 3.43 gb RAM was

used for short term recording once a week. The cows
were individually led into a weighting box where top
view recordings were taken from 2.55 m height. The used
recording software (“Grub.exe”) had a modified graphical

user interface allowing the cows’ IDs to be entered manu-
ally. This was necessary, because no automatic ID system
was present.
At both recording locations the SR4000 was used with

default settings. After 1st of November 2011 only srs data
was recorded.

Dataset
The application “EKB” generated one list per recording
day (subsection “Developed software”) containing the out-
put of “ROI” and “ExT” (paragraphs “Further processing:
application “ROI”” and “Further processing: application
“ExT””). These lists held values for every valid image of
the recorded cows and had to be converted into a uniform
dataset containing one value per trait, cow, and week.
In a first step, all values from one cow and recording day

were within traits cleaned from outliers and afterwards
averaged to produce one value per trait, cow, and day.
With this, the conversion of the FV dataset was com-

plete, because recording and BFT -/BCS - determination
had taken place at the same day once a week in Grub. The
dataset contained at least 16 consecutive lactation weeks
of each of the 30 considered FV cows.
As according to (Hady et al. 1994) the body condition

scores determined in a 30 days interval are significant
and precise, BCS had only been gathered every 4 weeks.
The subsequent analysis of the camera traits’ changes
indicated, that a reference measure with higher tempo-
ral resolution was required. Therefore, for Karkendamm
only results related to BFT are presented. No influence
could be taken which animal visited the electronic feeding
dispenser at what time. Therefore, the days with camera
traits did not coincide with the days of manually collected
BFT values. In a second step, the Karkendamm data set
had to be converted from a daily to a weekly basis, i.e. for
every week the mean of all (daily based) camera traits’ val-
ues was taken to match the week’s BFT value. The final
Karkendamm dataset included 96 dairy cows with at least
20 consecutive lactation weeks. None of these cows had
more than one lactation period with at least 20 consec-
utive lactation weeks, thus only one lactation period per
cow was considered.

Additional information on the recorded dairy cows
Regarding the HF cows, 63 animals were in their first, 21
in their second, and 12 in their third to sixth lactation.
When the recording period started, 32 cows were in the
first lactation week, 35 cows were in the second to fifth
lactation week, 24 cows were in the sixth to twelfth lacta-
tion week, and 5 cows were in lactation week 17 or higher
(maximum of lactation weeks = 32, mean = 4.8, ± 5.4).
The amount of consecutive lactation weeks in the dataset
reached from 20 to 57 (mean = 35.3,± 8.4). The milk yield
ranged from 19.3 kg to 46.1 kg (mean = 34.1 kg, ± 4.9).
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The HF cows had a minimal and maximal body weight
of 500.2 kg and 769.1 kg (mean = 626.1 kg, ± 64.9 kg),
respectively.
Regarding the FV cows, 11 animals were in their first,

8 in their second, and 11 in their third to sixth lactation.
At the beginning of the recording period, all cows were in
their first lactation week. Some FV cows were needed for
additional studies and taken out of the present study early.
As only 6 cows have been recorded 20 or more consecu-
tive lactation weeks, theminimum amount was lowered to
16. 24 cows have been recorded between 16 and 19 con-
secutive lactation weeks (max=26, mean=18.1,±2.9 ). The
milk yield ranged from 19.3 kg to 46.5 kg (mean = 32.9
kg, ± 7.5). The FV cows had a minimal and maximal body
weight of 614.8 kg and 894.6 kg (mean = 741.6 kg, ± 67.9
kg), respectively.

Descriptive statistics
For every trait sample size, minimum, maximum, mean
value, standard deviation, and its correlation with BFT
(and BCS for the Grub dataset) were calculated within
breeds (Table 2).
To measure reliability in information gathering within

cows, coefficients of determination were calculated for all
traits restricted to each individual cow (R2

cow). For both
breeds has afterwards been separately tested, if weight,
lactation number, lactation stage at the beginning of the
recording period, or BFT/BCS starting level were signifi-
cant for the R2

cow-values.
In addition, coefficients of determination (R2) were

determined for both breeds, to compare the overall pre-
cision in measurements between manually gathered traits
and camera traits. Generalized linear models of the form
f (y) = b ∗ X with a piecewise linear link function f
and the trait’s observations of all cows were used. The
predictor matrix X contained a constant term, lacta-
tion week, and the trait’s starting level as independent
variables.
Additionally, the data was grouped within breeds with

respect to cows and seasons, separately. Weeks 49 to 52
and 1 to 9 of each year belonged to season 1, weeks 10
to 22, weeks 23 to 35 and weeks 36 to 48 formed season
2, 3, and 4, respectively. Within performing the analy-
ses of variance the effect sizes η2 were calculated in case
significance was given. η2 = SS due to grouping

total sumof squares is the pro-
portion of variance in the data explained by the grouping.
Comparisons of themeans within the groups were plotted.
The descriptive statistics were calculated using MAT-

LAB’s functions “mean”, “std”, “corrcoef”, “anovan”,
“grpstats”, and “glmfit” (MATLAB R2007a, (The Math-
Works I Statistics Toolbox For Use with MATLAB User‘s
Guide)). As this study focused on feasibility and analyzing
the measurement setting, inferential statistics have to be
done in further investigations.
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with recording data from one day belonging to one cow, named after the
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