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Abstract

In this paper, we employ the generalized fractional calculus operators on the generalized Mittag-Leffler function.
Some results associated with generalized Wright function are obtained. Recent results of Chaurasia and Pandey are
obtained as special cases.

2000 Mathematics Subject Classification: 33C45, 47G20, 26A33

Keywords: Generalized Mittag-Leffler Function; Generalized fractional calculus operators; Generalized wright function

Introduction
In 1903, the Swedish mathematicianMittag-Leffler (1903)
introduced the function

Eν(z) =
∞∑
s=0

zs

�(νs + 1)
, (ν > 0, z ∈ C), (1.1)

where z is a complex variable and ν ≥ 0. The Mittag-
Leffler function is a direct generalization of exponential
function to which it reduces for ν = 1. For 0 < ν < 1 it
interpolates between the pure exponential and hypergeo-
metric function 1

1−z . Its importance is realized during the
last two decades due to its involvement in the problems
of physics, chemistry, biology, engineering and applied
sciences. Mittag-Leffler function naturally occurs as the
solution of fractional order differential or fractional order
integral equation. The generalization of Eν(z) was studied
by Wiman (1905) and he defined the function as

Eν,ρ(z) =
∞∑
s=0

zs

�(νs + ρ)
, (ν > 0, ρ > 0, z ∈ C), (1.2)

which is known as Wiman function.
In 1971, Prabhakar (1971) introduced the function

Eδ
ν,ρ(z) in the form of

Eδ
ν,ρ(z) =

∞∑
s=0

(δ)szn

�(νs + ρ)s!
(1.3)
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where ν, ρ, δ, z ∈ C , Re(ν > 0) and Eδ
ν,ρ(z) is an entire

function of order [Re(ν)]−1. Special Cases: (i) Setting
δ = 1 in (1.3), we have

E1ν,ρ(z) = Eν,ρ(z)

(ii) Setting ρ = δ = 1 in (1.3), we have

E1ν,1(z) = Eν(z)

(iii) Setting ν = ρ = 0 in (1.3), we have

Eδ
0,0(z) = 1F0(δ; z)

For various properties and other details of (1.3), see
(Kilbas et al. 2004).
The generalized Wright function p�q defined for

z ∈ C, ai, bj ∈ C and αi,βj ∈ R(αi,βj �= 0; i = 1, 2, ..., p;
j = 1, 2, ..., q) is given by the the series

p�q(z)=p�q

⎡
⎣ (ai,αi)(1,p) ;

z
(bj,βj)(1,q) ;

⎤
⎦=

∞∑
s=0

∏p
i=1 �(ai+αis)zs∏q
j=1 �(bj+βjs)s!

,

(1.4)

where �(z) is the Euler gamma function ((Erdlyi et al.
1953), Sec. 1.1) and the function (1.4) was intro-
duced by Wright (1935) and is known as general-
ized Wright function. Conditions for the existence of
the generalized Wright function (1.4) together with its
representation in terms of Mellin-Barnes integral and
in terms of H-function were established in (Wright
1934). Some particular cases of generalized Wright
function (1.4) were established in ((Wright 1934), Sec.
6). Wright (1940a,c) investigated, by “steepest descent”
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method, the asymptotic expansions of the function
φ(α,β ; z) for large values of z in the cases α > 0
and−1 < α < 0, respectively. InWright (1940c) indicated
the application of the obtained results to the asymptotic
theory of partitions. In (Wright 1935, 1940a,b) Wright
extended the last result to the generalized Wright func-
tion (1.4) and proved several theorems on the asymptotic
expansion of generalized Wright function p�q(z) for all
values of the argument z under the condition,

q∑
j=1

βj −
p∑

i=1
αi > −1. (1.5)

For a detailed study of various properties, generaliza-
tions and applications of Wright function and generalized
Wright function, we refer to papers ofWright (1934, 1935,
1940a,b,c) and Kilbas (2002)

Fractional calculus operators and generalized
fractional calculus operators
The left and right-sided Rimann-Liouville fractional cal-
culus operators are defined by Samko et al. (1993),
Sec. 5.1. For α ∈ C(Re(α) > 0)

Iα0+ f = 1
�(α)

∫ x

0

f (t)
(x − t)1−α

dt, (2.1)

Iα0− f = 1
�(α)

∫ ∞

x

f (t)
(x − t)1−α

dt, s (2.2)

(
Dα
0+f

)
(x) =

(
d
dx

)[α]+1 (
I1−α
0+ f

)
(x)

= 1
�(1 − {α})

(
d
dx

)[α]+1 ∫ x

0

f (t)
(x − t){α} dt,

(2.3)

(
Dα
0−f

)
(x) =

(
d
dx

)[α]+1 (
I1−α
0− f

)
(x)

= 1
�(1 − {α})

(
d
dx

)[α]+1 ∫ x

0

f (t)
(x − t){α} dt,

(2.4)

where [α] means themaximal integer not exceeding α and
{α} is the fractional part of α.
An interesting and useful generalizations of the

Riemann-Liouville and Erdlyi-Kober fractional integral
operators has been introduced by Saigo (1978) in terms
of Gauss hypergeometric function as given below. Let
α,β , γ ∈ C and x ∈ R+, then the generalized fractional
integration and fractional differentiation operators asso-
ciated with Gauss hypergeometric function are defined as
follows:

Iα,β ,γ0+ f (x)= x−α−β

�(α)

∫ x

0
(x − t)α−1

2F1
(
α + β ,−γ ; 1− t

x

)
f (t)dt,

(2.5)

Iα,β ,γ0− f(x) = 1
�(α)

∫ ∞

x
(t − x)α−1t−α−β

2F1
(
α + β ,−γ ;α; 1− x

t

)

× f (t)dt,
(2.6)

(
Dα,β ,γ
0+ f

)
(x)= I−α−β ,α+γ

0+ f (x)=
(

d
dx

)k(
I−α+k,−β−k
0+ f

)
(x),

(2.7)

(Re(α) > 0); k =[Re(α) + 1]

(
Dα,β ,γ
0− f

)
= I−α−β ,α+γ

0− f (x)=
(

− d
dx

)k (
I−α+k,−β−k,α+γ
− f

)
(x),

(2.8)

(Re(α) > 0); k =[Re(α) + 1]
Operators (2.5)-(2.8) reduce to that in (2.1)-(2.4) as

follows:

(Iα,−α,γ
0+ f )(x) = Iα0+ f (x), (2.9)

(Iα,−α,γ
0− f )(x) = Iα0− f (x), (2.10)

(Dα,−α,γ
0+ f )(x) = Dα

0+ f (x), (2.11)

(Dα,−α,γ
0− f )(x) = Dα

0− f (x). (2.12)

Here, we also need the basic result given below (see
Rainville (1960), Theorem 18, p. 49.)

Lemma 1. If Re(c − a − b) > 0 and if c is neither zero
nor a negative integer, then

F(a, b; c; 1) = �(c)�(c − a − b)
�(c − a)�(c − b)

. (2.13)

Left-sided generalized fractional integration of
generalizedMittag-Leffler function
In this section we consider the left-sided generalized
fractional integration formula of the generalized Mittag-
Leffler function.

Theorem 1. If α,β , γ , ρ, δ ∈ C, Re(α) > 0, Re(ρ +
γ − β) > 0, ν > 0, λ > 0, and a ∈ R. If the condi-
tion (1.5) is satisfied and Iα,β ,γ0+ be the left-sided operator of
generalized fractional integration associated with Gauss
hypergeometric function, then there holds the following
formula:
(
Iα,β ,γ0+ (tρ−1)Eδ

ν,ρ [ atλ]
)

(x) = xρ−β−1

�(δ)
3�3

×
⎡
⎣ (ρ − β + γ , λ), (ρ, λ), (δ, 1) ;

axλ

(ρ − β , λ), (α + ρ + γ , λ), (ρ, ν) ;

⎤
⎦ ,

(3.1)
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Proof. Denote L.H.S. of Theorem 1 by �, then

� =
(
Iα,β ,γ0+ (tρ−1)Eδ

ν,ρ[atλ]
)

(x)

Using the definition of generalized Mittag-Leffler func-
tion (1.3) and fractional integral formula (2.5), we get

� = x−α−β

�(α)

∫ x

0
(x − t)α−1

2F1
(

α + β ,−γ ; 1 − t
x

)

× (tρ−1)Eδ
ν,ρ[atλ] dt

By using Gauss hypergeometric series ((Srivastava and
Karlsson 1985), p.18, Eq. 17), series form of general-
izedMittag-Leffler function (1.3), interchanging the order
of integration and summations and evaluating the inner
integral by the use of the known formula of Beta Integral
and finally by the use of above lemma, we have

�=xρ−β−1

�(α)

∞∑
s=0

�(ρ − β + γ + λs)�(ρ + λs)�(δ + s)
�(ρ − β + λs)�(ρ + α + γ + λs)�(ρ + νs)

× (axλ)s

s!
or

�= xρ−β−1

�(δ)
3�3

⎡
⎣(ρ − β + γ , λ), (ρ, λ), (δ, 1) ;

axλ

(ρ − β , λ), (α + ρ + γ , λ), (ρ, ν) ;

⎤
⎦,

which completes the proof.

Corollary 1. If α,β , γ , ρ,∈ C, Re(α) > 0, Re(ρ + γ −
β) > 0, ν > 0, λ > 0, a ∈ R and if the condition
(1.5) is satisfied and Iα,β ,γ0+ be the left-sided operator of
generalized fractional integration associated with Gauss
hypergeometric function, then there holds the following
formula:
(
Iα,β ,γ0+ (tρ−1)Eν,ρ [ atλ]

)
(x) = xρ−β−1

3�3

×
⎡
⎣ (ρ − β + γ ), (ρ, λ), (1, 1) ;

axλ

(ρ − β , λ), (α + ρ + γ , λ), (ρ, ν) ;

⎤
⎦ .

(3.2)

Remark 1. If we set λ = ν in our result (3.1), we arrive
at the result ((Chaurasia and Pandey 2010), (3.1)) given by
Chaurasia and Pandey.

Right-sided generalized fractional integration of
generalizedMittag-Leffler function
In this section we consider the left-sided generalized
fractional integration formula of the generalized Mittag-
Leffler function.

Theorem 2. If α,β , γ , ρ, δ ∈ C, Re(α) > 0, Re(α +
ρ) > max[−Re(β),−Re(γ )] with the conditions Re(β) �=
Re(γ ), ν > 0, λ > 0 and a ∈ R. If the condition
(1.5) is satisfied and Iα,β ,γ0− be the right-sided operator of
generalized fractional integration associated with Gauss

hypergeometric function, then there holds the following
formula:
(
Iα,β ,γ0− (t−α−ρ)Eδ

ν,ρ [at−λ]
)
(x)= x−ρ−α−β

�(δ)
3�3

×
⎡
⎣(α+β+ρ, λ), (α+ρ+γ , λ), (δ, 1) ;

ax−λ

(ρ, ν), (α+ρ, λ), (2α+β+γ +ρ, λ) ;

⎤
⎦

(4.1)

Proof. Denote L.H.S. of Theorem 2 by I2, then

I2 =
(
Iα,β ,γ0− (t−α−ρ)Eδ

ν,ρ[at−λ]
)

(x)

Using the definition of generalized Mittag-Leffler func-
tion (1.3) generalized fractional integral formula (2.6) and
proceeding similarly to the proof of theorem 1, we have

I2=x−ρ−α−β

�(δ)

∞∑
s=0

�(α+β+ρ+λs)�(α+ρ+γ +λs)�(δ+s)
�(α+ρ+λs)�(2α+β+γ +ρ+λs)�(ρ+νs)

× (ax−λ)s

s!
or

I2= x−ρ−α−β

�(δ)
3�3

⎡
⎣(α+β+ρ, λ), (α+ρ+γ , λ), (δ, 1) ;

ax−λ

(ρ, ν), (α+ρ, λ), (2α+β+γ +ρ, λ) ;

⎤
⎦.

Corollary 2. If α,β , γ , ρ, δ ∈ C, Re(α) > 0, Re(α +
ρ) > max[−Re(β),−Re(γ )] with the conditions Re(β) �=
Re(γ ), ν > 0, λ > 0 and a ∈ R. If the condition (1.5) is sat-
isfied and Iα,β ,γ0− be the right-sided operator of generalized
fractional integration associated with Gauss hypergeo-
metric function, then there holds the following formula:

(
Iα,β ,γ0− (t−α−ρ)Eδ

ν,ρ [at−λ]
)
(x)=x−ρ−α−β

3�3

×
⎡
⎣(α+β+ρ,λ), (α+ρ+γ ,λ), (1, 1) ;

ax−λ

(ρ, ν), (α+ρ, λ), (2α+β+γ+ρ, λ) ;

⎤
⎦.

(4.2)

Remark 2. If we set λ = ν in our result (4.1), we arrive
at the result ((Chaurasia and Pandey 2010), (4.1)) given by
Chaurasia and Pandey.

Left-sided generalized fractional differentiation of
generalizedMittag-Leffler function
In this section we consider the left-sided generalized frac-
tional differentiation formula of the generalized Mittag-
Leffler function.

Theorem 3. If α,β , γ , ρ, δ ∈ C, Re(α) > 0, Re(ρ + β +
γ ) > 0, ν > 0, λ > 0, and a ∈ R. If the condition (1.5)
is satisfied and Dα,β ,γ

0+ be the left-sided operator of gen-
eralized fractional differentiation associated with Gauss
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hypergeometric function, then there holds the following
formula:
(
Dα,β ,γ
0+ (tρ−1)Eδ

ν,ρ [ atλ]
)

(x) = xρ+β−1

�(δ)
3�3

×
⎡
⎣ (α + β + γ + ρ, λ), (ρ, λ), (δ, 1) ;

axλ

(ρ + β , λ), (ρ + γ , λ), (ρ, ν) ;

⎤
⎦ .

(5.1)

Proof. Denote L.H.S. of Theorem 3 by I3, then

I3 =
(
Dα,β ,γ
0+ (tρ−1)Eδ

ν,ρ[ atλ]
)

(x)

Using the definition of generalized Mittag-Leffler func-
tion (1.3) and fractional differentiation formula (2.7), we
have

I3 =
(

d
dx

)k (
I−α+k,−β ,α+γ−k
0+ (tρ−1)Eδ

ν,ρ[ atλ]
)

=
(

d
dx

)k xα+β

�(−α + k)

∫ x

0
(x − t)−α+k−1

2F1

×
(

−α − β ,−γ − α + k;−α + k; 1 − t
x

)

. (tρ−1)Eδ
ν,ρ[ atλ] dt

I3 = xρ+β−1

�(δ)

∞∑
s=0

�(ρ+α+β+γ +λs)�(ρ+λs)�(δ+s)
�(ρ+β+λs)�(ρ+γ +λs)�(ρ+νs)

(axλ)s

s!

or

I3 = xρ+β−1

�(δ)
3�3

⎡
⎣ (ρ + α + β + γ , λ), (ρ, λ), (δ, 1) ;

axλ

(ρ + β , λ), (ρ + γ , λ), (ρ, ν) ;

⎤
⎦ .

Corollary 3. If α,β , γ , ρ,∈ C, Re(α) > 0, Re(ρ + β +
γ ) > 0, ν > 0, λ > 0, and a ∈ R. If the condition (1.5) is
satisfied , then there holds the following formula:
(
Dα,β ,γ
0+ (tρ−1)Eδ

ν,ρ [ atλ]
)

(x) = xρ+β−1
3�3

×
⎡
⎣ (ρ + α + β + γ , λ), (ρ, λ), (1, 1) ;

axλ

(ρ + β , λ), (ρ + γ , λ), (ρ, ν) ;

⎤
⎦ .

(5.2)

Remark 3. If we set λ = ν in our result (5.1), we arrive
at the result ((Chaurasia and Pandey 2010), (5.1)) given by
Chaurasia and Pandey.

Right-sided generalized fractional differentiation
of generalizedMittag-Leffler function
In this section we consider the left-sided generalized frac-
tional differentation formula of the generalized Mittag-
Leffler function.

Theorem 4. If α,β , γ , ρ, δ ∈ C, Re(α) > 0, Re(ρ) >

max[ Re(α+β +k,−Re(γ )] , ν > 0, λ > 0, and a ∈ R with
Re(α + β + γ ) + k �= 0 (where k = [Re(α)]+1). If the
condition (1.5) is satisfied and Dα,β ,γ

0− be the right-sided
operator of generalized fractional differentiation asso-
ciated with Gauss hypergeometric function, then there
holds the following formula:
(
Dα,β ,γ
0− (tα−ρ)Eδ

ν,ρ [at−λ]
)

(x)= xα+β−ρ

�(δ)
3�3

×
⎡
⎣(ρ+γ , λ), (ρ−α−β , λ), (δ, 1) ;

ax−λ

(ρ−α, λ), (ρ+γ−α−β ,λ), (ρ, ν) ;

⎤
⎦.

(6.1)

Proof. Denote L.H.S. of Theorem 4 by I4,then

I4 =
(
Dα,β ,γ
0− (tα−ρ)Eδ

ν,ρ[at−λ]
)

(x)

Using the definition of generalized Mittag-Leffler func-
tion (1.3) and fractional differentation formula (2.8), we
have

I4 =
(−d
dx

)k (
I−α+k,−β−k,α+γ
0− (tα−ρ)Eδ

ν,ρ[at−λ]
)

=
(

− d
dx

)k 1
�(−α + k)

∫ ∞

x
(t − x)−α+k−1tα+β

2F1

×
(
−α − β ,−α − γ ;−α + k; 1 − x

t

)

. (tα−ρ)Eδ
ν,ρ[at−λ] dt

= xα+β−ρ

�(δ)

∞∑
s=0

�(ρ−α−β+λs)�(ρ+γ+λs)�(δ+s)
�(ρ−α−β+γ+λs)�(ρ−α+λs)�(ρ+νs)

(ax−λ)s

s!

or

I4= xα+β−ρ

�(δ)
3�3

⎡
⎣(ρ−α−β , λ), (ρ+γ , λ), (δ, 1) ;

ax−λ

(ρ−α−β+γ , λ), (ρ−α, λ), (ρ, ν) ;

⎤
⎦.

Remark 4. If we set λ = ν in our result (6.1), we arrive
at the result ((Chaurasia and Pandey 2010), (6.1)) given by
Chaurasia and Pandey.
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