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Abstract

A theoretical study of rotational collision of LiH(X1Σ+,v = 0, J) with Ar has been carried out. The ab initio potential
energy surface (PES) describing the interaction between the Ar atom and the rotating LiH molecule has been
calculated very accurately and already discussed in our previous work [Computational and Theoretical Chemistry
993 (2012) 20–25]. This PES is employed to evaluate the de-excitation cross sections. The ab initio PES for the LiH
(X1Σ+)-Ar(1S) Van der waals system is calculated at the coupled-cluster [CCSD(T)] approximation for a LiH length
fixed to an experimental value of 3.0139 bohrs. The basis set superposition error (BSSE) is corrected and the bond
functions are placed at mid-distance between the center of mass of LiH and the Ar atom. The cross sections are
then derived in the close coupling (CC) approach and rate coefficients are inferred by averaging these cross
sections over a Maxwell-Boltzmann distribution of kinetic energies. The 11 first rotational levels of rate coefficients
are evaluated for temperatures ranging from 10 to 300 K. We notice that the de-excitation rate coefficients appear
large in the order 10−10 cm−3 s−1 and show very low temperature dependence. The rate coefficients magnify
significantly the propensity toward Δ J = −1 transitions. These results confirm the same propensity already noted for
the cross sections.
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Introduction
The analysis of atom diatom scattering of molecular col-
lisions shows a field of current interest (Santiago et al.
2008; Aguillon et al. 2000). The rotational collisions be-
tween diatomic molecules and atomic partners give rise
to complex energy transfer processes which provide one
of the most rigorous tests of high-level ab initio poten-
tial energy surfaces (Paterson et al. 2011; Dagdigian et al.
1995, 1997; Eyles et al. 2011). The LiH molecule has
much interest in atmospherical models (Dalgarno et al.
1996; Gianturco et al. 1999) thanks to its importance in
chemistry of the lithium. These calculations of rate coef-
ficients are stimulated by the studies of Ren et al. (2006)
which have shown that the high-purity Ar atmosphere at
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room temperature contribute significantly to the stability
of LiH in environment.
The collision dynamics of LiH(X1Σ+) with rare gas

(Rg) has received particular attentions. Theoretically, the
electronic structure methods, semi-empirical as well as
ab initio, have been employed to calculate intermolecu-
lar potential energy surfaces to study the LiH in excited
rotational levels by collision with the atoms H (Berriche
and Tlili 2004; Berriche 2004), He (Gianturco et al.
1997a, 1997b; Bodo et al. 1998; Forni 1999) and Ne (Lu
et al. 2000; Feng et al. 2004; Feng et al. 2005). These
studies have shown the weakly van der Waals forces
interacting molecular systems of LiH in its ground elec-
tronic state with Rg atoms. The competition between the
charge transfer processes and the chemical binding have
done that the interactions of van der Waals systems repre-
sent a critical test for the potential energy surfaces (PESs).
In our previous work for the LiH-Ar system, we have

reported the first quantum mechanical close coupling
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Table 1 MOLSCAT parameters used in the present calculations

INTFLG = 6 STEPS = 20, 10 OTOL = 0.001 DTOL = 0.01

Be = 7.513100 cm−1 De = 0.00086170 cm−1 Jmax = 10, 15, 30 Rmin = 3.0 bohr Rmax = 30 bohr
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calculations of integral cross sections for transitions be-
tween the lower rotational levels of LiH induced by colli-
sion with Ar based on the ab initio potential energy
surface. We have used in all the calculations the ab
initio coupled-cluster [CCSD(T)] level of theory and
with aug-cc-pVQZ Gaussian basis set for the H and Ar
atoms and cc-pVQZ Gaussian basis set for the Li atom.

Interaction potential energy surface
We have computed the interaction PES for the LiH
(X1Σ+)–Ar(1S) Van der Waals system using the rigid-
rotor approximation and the Jacobi coordinate system in
which re is the LiH internuclear distance, R the distance
from the center of mass (c.m) of LiH to Ar atom, and θ
the angle between the two distance vectors. The collin-
ear LiH…Ar geometry corresponds to θ = 0° while the
LiH bond length is frozen at the experimental equilib-
rium geometry of the ground state re = 3.0139 bohr
(Huber & Herzberg 1979). Treating all geometries in the
CS symmetry group, the PES has been computed with
the CCSD(T) method (Knowles et al. 1993; 2000) as im-
plemented in the MOLPRO2002 package (Werner et al.
2009). The H and Ar atoms have been described by the
standard aug-cc-pVQZ basis set (Hutson & Green 1994;
Smith et al. 1979; Lique et al. 2007). The Li atom has
been described with cc-pVQZ basis set which we have
added (1s1p1d1f1g) functions (Dunning 1989; Kendall
et al. 1992; Woon and Dunning 1994, 1995). To this
basis, we have added a set of (3s3p2d2f1g) bond
Figure 1 Rotational de-excitation cross sections of LiH in collision wit
functions defined by Cybulski and Toczylowski (1999)
and placed at mid-distance between the center of mass
of LiH and Ar atom. The basis set superposition error
(BSSE) has been corrected at all geometries with the
counterpoise procedure of Boys and Bernadi (1970). The
PES obtained has a global minimum of 525.13 cm−1 lo-
cated at R = 5.30 bohr and θ = 180°. The anisotropy of
the PES is very large because of the character stems
from the electronic structure of the LiH.
The basic input required by the MOLSCAT (Hutson

& Green 1994) package used in dynamics calculations,
were obtained by expanding the interaction potential in
terms of Legendre polynomials as:

V R; θð Þ ¼
Xλmax

λ¼0

Vλ Rð ÞPλ cosθð Þ

From ab initio grid containing 19 values of θ, we have
been able to include terms up to λmax = 18 The standard
deviation between the analytical form and the calculated
surface remains below 1.0%.

Results and Discussion
Rotational cross sections
Using the propagator of Manolopoulos (1986) as imple-
mented in the MOLSCAT quantum mechanical code
(Hutson and Green 1994), the scattering cross sections
have been calculated with the close coupling approach
developed by Arthurs and Dalgarno (1960) for a total
h Ar as a function of the relative kinetic energy.



Table 2 Downward rate coefficients (given as A(B) = A.10B) of rotational levels of LiH in collisions with Ar as a function
of kinetic temperature (in units of cm3s−1)

Initial Final Rate coefficients

level J level J’ 10 K 30 K 50 K 100 K 150 K 200 K 300 K

1 0 1.4523(−10) 1.4645(−10) 1.4592(−10) 1.5986(−10) 1.7872(−10) 1.9545(−10) 2.2034(−10)

2 0 5.8075(−11) 7.1884(−11) 7.2722(−11) 6.7117(−11) 6.3849(−11) 6.2450(−11) 6.1586(−11)

2 1 2.4694(−10) 2.8061(−10) 2.7242(−10) 2.4286(−10) 2.3069(−10) 2.2910(−10) 2.3796(−10)

3 0 3.9204(−11) 5.6170(−11) 5.7489(−11) 5.0864(−11) 4.4844(−11) 4.0685(−11) 3.5799(−11)

3 1 1.2052(−10) 1.7421(−10) 1.8270(−10) 1.6721(−10) 1.4951(−10) 1.3632(−10) 1.1974(−10)

3 2 2.2353(−10) 2.7512(−10) 2.8660(−10) 2.7651(−10) 2.6171(−10) 2.5181(−10) 2.4369(−10)

4 0 3.5679(−11) 4.6672(−11) 4.7499(−11) 4.2990(−11) 3.8446(−11) 3.4945(−11) 3.0214(−11)

4 1 1.0461(−10) 1.3556(−10) 1.4080(−10) 1.3174(−10) 1.1999(−10) 1.1031(−10) 9.6563(−11)

4 2 1.5181(−10) 1.8957(−10) 1.9925(−10) 1.9695(−10) 1.8754(−10) 1.7818(−10) 1.6299(−10)

4 3 1.9458(−10) 2.2991(−10) 2.3826(−10) 2.4094(−10) 2.3928(−10) 2.3746(−10) 2.3571(−10)

5 0 3.2612(−11) 3.8686(−11) 3.8332(−11) 3.4966(−11) 3.1964(−11) 3.9586(−11) 2.6135(−11)

5 1 8.1900(−11) 1.0025(−10) 1.0301(−10) 9.8940(−11) 9.2976(−11) 8.7593(−11) 7.9068(−11)

5 2 1.2049(−10) 1.3733(−10) 1.4167(−10) 1.4138(−10) 1.3770(−10) 1.3348(−10) 1.2550(−10)

5 3 1.4602(−10) 1.6247(−10) 1.6695(−10) 1.6875(−10) 1.6826(−10) 1. 6712(−10) 1.6388(−10)

5 4 1.5841(−10) 1.8774(−10) 1.9702(−10) 2.0350(−10) 2.0674(−10) 2.0968(−10) 2.1505(−10)

6 0 2.3956(−11) 2.7303(−11) 2.7071(−11) 2.5504(−11) 2.4158(−11) 2.3035(−11) 2.1228(−11)

6 1 5.6627(−11) 6.6954(−11) 6.8777(−11) 6.8459(−11) 6.6913(−11) 6.5130(−11) 6.1593(−11)

6 2 7.8772(−11) 9.0165(−11) 9.3549(−11) 9.6310(−11) 9.6931(−11) 9.6642(−11) 9.4753(−11)

6 3 9.9003(−11) 1.1003(−10) 1.1335(−10) 1.1672(−10) 1.1871(−10) 1.2005(−10) 1.2111(−10)

6 4 1.1464(−10) 1.3069(−10) 1.3559(−10) 1.4003(−10) 1.4277(−10) 1.4518(−10) 1.4885(−10)

6 5 1.4103(−10) 1.6839(−10) 1.7655(−10) 1.8257(−10) 1.8621(−10) 1.9002(−10) 1.9764(−10)

7 0 1.5219(−11) 1.6972(−11) 1.7037(−11) 1.6840(−11) 1.6642(−11) 1.6479(−11) 1.6070(−11)

7 1 3.6069(−11) 4.1334(−11) 4.2680(−11) 4.4206(−11) 4.5119(−11) 4.5593(−11) 4.5618(−11)

7 2 4.8848(−11) 5.5593(−11) 5.8314(−11) 6.2473(−11) 6.5332(−11) 6.7306(−11) 6.9356(−11)

7 3 6.2249(−11) 6.9436(−11) 7.2594(−11) 7.7704(−11) 8.1503(−11) 8.4507(−11) 8.8581(−11)

7 4 7.5679(−11) 8.5248(−11) 8.9100(−11) 9.4838(−11) 9.9007(−11) 1.0250(−10) 1.0795(−10)

7 5 9.5470(−11) 1.0918(−10) 1.1370(−10) 1.1934(−10) 1.2351(−10) 1.2726(−10) 1.3370(−10)

7 6 1.3671(−10) 1.6099(−10) 1.6733(−10) 1.7162(−10) 1.7462(−10) 1/7817(−10) 1.8590(−10)

8 0 8.8089(−12) 9.7013(−12) 9.9159(−12) 1.0294(−11) 1.0690(−11) 1.1032(−11) 1.1471(−11)

8 1 2.1408(−11) 2.4022(−11) 2.5081(−11) 2.7118(−11) 2.8920(−11) 3.0395(−11) 3.2349(−11)

8 2 2.9185(−11) 3.2861(−11) 3.4919(−11) 3.9058(−11) 4.2518(−11) 4.5355(−11) 4.9356(−11)

8 3 3.7481(−11) 4.1756(−11) 4.4470(−11) 4.9984(−11) 5.4442(−11) 5.8151(−11) 6.3736(−11)

8 4 4.6666(−11) 5.2136(−11) 5.5420(−11) 6.1976(−11) 6.7113(−11) 7.1358(−11) 7.8001(−11)

8 5 5.9281(−11) 6.6721(−11) 7.0434(−11) 7.7459(−11) 8.3015(−11) 8.7657(−11) 9.5109(−11)

8 6 8.2936(−11) 9.3863(−11) 9.7797(−11) 1.0386(−10) 1.0884(−10) 1.1334(−10) 1.2110(−10)

8 7 1.3408(−10) 1.5491(−10) 1.6003(−10) 1.6371(−10) 1.6652(−10) 1.6996(−10) 1.7762(−10)

9 0 4.7020(−12) 5.2283(−12) 5.4786(−12) 6.0201(−12) 6.5558(−12) 7.0524(−12) 7.8370(−12)

9 1 1.1801(−11) 1.3287(−11) 1.4146(−11) 1.6069(−11) 1.7895(−11) 1.9553(−11) 2.2164(−11)

9 2 1.6467(−11) 1.8651(−11) 2.0197(−11) 2.3731(−11) 2.6917(−11) 2.9747(−11) 3.4258(−11)

9 3 2.1330(−11) 2.4051(−11) 2.6216(−11) 3.1200(−11) 3.5466(−11) 3.9152(−11) 4.5064(−11)

9 4 2.6912(−11) 3.0344(−11) 3.3040(−11) 3.9293(−11) 4.4497(−11) 4.8862(−11) 5.5809(−11)

9 5 3.4467(−11) 3.8889(−11) 4.1962(−11) 4.9054(−11) 5.5023(−11) 6.0004(−11) 6.7897(−11)
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Table 2 Downward rate coefficients (given as A(B) = A.10B) of rotational levels of LiH in collisions with Ar as a function
of kinetic temperature (in units of cm3s−1) (Continued)

9 6 4.6934(−11) 5.2930(−11) 5.6296(−11) 6.3612(−11) 6.9894(−11) 7.5266(−11) 8.3952(−11)

9 7 7.1389(−11) 8.0616(−11) 8.4337(−11) 9.1006(−11) 9.6683(−11) 1.0180(−10) 1.1054(−10)

9 8 1.2869(−10) 1.4711(−10) 1.5162(−10) 1.5584(−10) 1.5917(−10) 1.6291(−10) 1.7084(−10)

10 0 2.4197(−12) 2.7180(−12) 2.9313(−12) 3.4324(−12) 3.9173(−12) 4.3837(−12) 5.1889(−12)

10 1 6.2689(−12) 7.1015(−12) 7.7515(−12) 9.3244(−12) 1.0841(−11) 1.2286(−11) 1.4776(−11)

10 2 8.9852(−12) 1.0238(−11) 1.1346(−11) 1.4105(−11) 1.6691(−11) 1.9095(−11) 2.3229(−11)

10 3 1.1774(−11) 1.3402(−11) 1.4980(−11) 1.8997(−11) 2.2613(−11) 2.5840(−11) 3.1273(−11)

10 4 1.4982(−11) 1.7035(−11) 1.9048(−11) 2.4279(−11) 2.8911(−11) 3.2908(−11) 3.9456(−11)

10 5 1.9199(−11) 2.1785(−11) 2.4145(−11) 3.0330(−11) 3 ?5872(−11) 4.0614(−11) 4.8262(−11)

10 6 2.5855(−11) 2.9221(−11) 3.1888(−11) 3.8707(−11) 4.4906(−11) 5.0278(−11) 5.8978(−11)

10 7 3.7560(−11) 4.2255(−11) 4.5290(−11) 5.2547(−11) 5.0100(−11) 6.4872(−11) 7.4413(−11)

10 8 6.1122(−11) 6.8648(−11) 7.2240(−11) 7.9634(−11) 8.6010(−11) 9.1702(−11) 1.0130(−10)

10 9 1.2147(−10) 1.3727(−10) 1.4152(−10) 1.4706(−10) 1.5149(−10) 1.5590(−10) 1.6445(−10)
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energy ranging from 15 to 2500 cm−1. The energy steps
are 0.1 cm−1 below 100 cm−1, 0.5 cm−1 from 100 to
500 cm−1, 1 cm−1 from 500 cm−1 to 1000 cm−1, 10 cm−1

from 1000 cm−1 to 1500 cm−1 and 500 cm−1 from
1500 cm−1 to 2500 cm−1. For the rotational basis sets,
we have used Jmax = 10 for E ≤ 100 cm−1, Jmax = 15 for
100 < E ≤ 1000 cm−1 and Jmax = 30 for E ≥ 1000 cm−1.
The scattering calculations have been performed to rota-
tional basis sets of adequate size for a good accuracy of
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Figure 2 Calculated downward rate coefficients for the collisions of L
J = 2 – 5) and J→ 1(J = 2 – 5) panel (b) transitions as a function of the
the results. The other parameters required as input in
MOLSCAT and displayed in Table 1 have been fixed
after the convergence tests. However, the maximum
values of the total angular momentum JTOT was chosen
according to a convergence criterion of the cross sec-
tions to within 0.01 Å for diagonal terms and 0.001 Å
for off-diagonal ones. For example, we have JTOT = 97,
179, 229 and 317 for the collision energies of 100 cm−1,
500 cm−1, 1000 cm−1 and 2500 cm−1 respectively.
400 600 800
T(K)

2     1

3     2
4     3
5     4

3     1

4     1
5     1

iH with Ar for J→ 0 (J = 2 – 5) panel (a) and ΔJ = −1 (J’ = 1 – 4;
kinetic temperature.
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The Figure 1 presents the energy dependence of the
LiH-Ar collisional de-excitation cross sections for the
ΔJ = J' – J = − 1, J = 3→ 1, J = 4→ 1 and J = 5→ 1 rota-
tional transitions. As one can see for collision energy
below 200 cm−1, this figure illustrates some resonances.
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Figure 3 Calculated downward rate coefficients for the collisions of L
kinetic temperature.
These resonances are the shape resonances due to the
quasi-bound states arising from the trap of Ar atom into
the well depth (Smith et al. 1979; Christoffel and
Bowman 1983) and the Feshbach resonances in the
vicinity of the opening of a new j level derived to
T = 10 K
T = 50 K
T = 100 K
T = 300 K

5 6 7 8 9
J’

T = 10 K
T = 50 K 
T = 100 K 
T = 300 K 

4 5 6 7 8
J’

iH with Ar for J’ + 1→ J’ and J’ + 2→ J’ transitions for selected
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tunneling through the centrifugal energy barrier. These
facts have been discussed by Vincent et al. (2007).
The de-excitation cross sections decrease with increas-

ing ΔJ as a function of the kinetic energy. An analysis of
this figure shows clearly that the magnitude of the transi-
tion 2→ 1 is larger than the others included the transition
1→ 0 in our previous work (Niane et al. 2012). The plots
of de-excitation cross sections decrease with increasing ΔJ
and have almost the similar behavior. The Figure 1
illustrates the propensity in favor of the transitions
ΔJ = J' – J = − 1. This is consistent with similar results by
Hammami et al. (2009). The features in our recent excita-
tion cross sections (Niane et al. 2012) for the transitions
1→ J allow understanding the detailed balance equation
that relate excitation and de-excitation cross sections.

Downward rate coefficients
The downward rate coefficients are calculated by averaging
from rotational cross sections σJ→J’(Ek) over a Maxwell-
Boltzmann distribution of kinetic energies Ek following the
procedure used in previous works (Hammami et al. 2008a,
2008b, 2009; Nkem et al. 2009).

qJ→J 0 Tð Þ ¼ 8β3

πμ

� �
�
Z ∞

0
Ekσ J→J 0 Ekð Þe−βEk dEk

where T is the kinetic temperature, μ = 6.68193048 a.u.
is the reduced mass of the LiH-Ar collision partners, β ¼ 1

kBT
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Figure 4 Calculated downward rate coefficients for the collisions of L
selected kinetic temperature.
(kB is the Boltzmann constant) and Ek = E – Ej is the
relative kinetic energy. The Table 2 displays the results
at selected temperatures.
To better analyse the rates variation with temperature

are shown in Figure 2.
We notice that the downward rate coefficients depend

on low temperature. This effect of temperature depend-
ence has been seen by Taylor and Hinde (2005) at little
temperature, they explain that the lack of dependence is
indicated of downward mechanism in which attractive
collisions dominate the energy transfer process for ion-
molecule processes. The LiH-Ar system is very attracted
when the Ar atom is near the lithium end of LiH. The
Figure 2 shows the propensity toward ΔJ = − 1 transi-
tions. This result confirms the same propensity observed
with the cross sections and remains an important conse-
quence of atmospherical chemistry.
We report in Figures 3 and 4 the downward rate coef-

ficients as a function of J for selected ΔJ = −1, −2 and
J→ 1 transitions respectively. Except the ΔJ = −1 transi-
tion at 10 K, the plots of rate coefficients exhibit the
same trends and decrease with increasing J’ from J' = 2.
For J→ 1, the downward rate coefficients decrease with
increasing J and the gap between the plots narrow con-
siderably. In addition, the collision rate coefficients re-
flect the similar behavior with the general trends
observed earlier for HCP-He (Hammami et al. 2008b)
and HCP-H2 (Hammami et al. 2008c) systems.
T = 10 K

T = 50 K

T = 100 K 

T = 300 K 

6 7 8 9 10
J’

iH with Ar for panel (a) J’→ 0 and panel (b) J’→ 1transitions for
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Conclusion
In this work, using the ab initio PES LiH(X1Σ+)–Ar(1S)
van der Waals system computed in our previous work
(Niane et al. 2012), we have obtained results of a
quantum mechanical close coupling calculation of inte-
gral cross sections for lower rotational levels. By aver-
aging the cross sections over a Maxwell-Boltzmann
distribution of kinetic energies, we have inferred the
downward rate coefficient for the lowest 11 levels.
The downward rate coefficients at 300 K for the tran-

sitions 1→ 0, 2→ 1 and 3→ 2 are estimated respectively
at 2.5664 10−10, 2.7792 10−10 and 2.5272 10−10 cm3s−1. It
is obvious that these results may be useful for the atmo-
spherical chemistry as well as for experiments. Finally,
encouraged by this result, we will be undertaking the
study of the spectroscopy of complex and the vibrational
dependence of potential energy surface which is crucial
for the diatomic molecular.
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