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Abstract

In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of
nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is
circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this
proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with
a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential
nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result
shows that the MTSMmethod is capable to generate easily computable and highly accurate approximations for
nonlinear equations.
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Introduction
Nonlinear differential equations are a popular tool to
model complicated dynamical phenomenons of many
branches of sciences. Unfortunately, a drawback of this
approach arises when exact solutions are required but
not available. On one side, pure numerical methods
employed to solve nonlinear differential equations can
exhibit numerical instabilities, oscillations or false equi-
librium states, among others. On the other side, approx-
imative methods are a good option when semi-analytic
solutions are required. Some examples of such methods
are: homotopy perturbation method (HPM) (Filobello-
Nino et al. 2012a; Filobello-Nino et al. 2012b; He 1999;
2009; Khan et al. 2013; Vazquez-Leal 2012; Vazquez-Leal
et al. 2012a; Vazquez-Leal et al. 2012b; Vazquez-Leal et
al. 2012c), homotopy analysis method (HAM) (Hassana
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and El-Tawil 2011; He 2004; Tan and Abbasbandy 2008),
variational iteration method (VIM) (Chang 2010; Khan et
al. 2012), Taylor series method (TSM) (Barrio et al. 2011;
Rodriguez and Barrio 2012; Shiraishi et al. 2011; Wazwaz
1998), Adomian decomposition method (Duan and Rach
2011; Wazwaz 1998), among others. Nevertheless, TSM
highlights because of its simplicity and power; it does
not require a perturbation parameter as the perturba-
tion based techniques or trial functions as HAM or HPM
does. In addition, TSM is straightforward and can be pro-
grammed using computer algebra packages like Maple
or Mathematica. What is more, TSM method was con-
ceived as a tool to solve differential equations governed
by Dirichlet conditions (DC), although, mixed boundary
condition (MBC) problems are important and common in
several fields of physics. Therefore, in this work, we pro-
pose a modified Taylor series method (MTSM) for MBC
problems that is based on the induction of shooting con-
stants (SC) (Stoer and Bulirsch 2002). Such constants arise
from two sources:
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1. The conversion of MBC to DC. This process implies
the choosing of an expansion point (usually at zero)
and the conversion of the MBC that are not at the
expansion point to SC constants to be determined
later by MTSM. The number of these constants is
the same as the number of boundary conditions that
are not at the expansion point.

2. Increasing the order of the original differential
equation by the application of extra derivatives; as a
strategy to add integration constants to solution that
work as shooting constants or adjustment
parameters. The number of this SC constants
depends of the level of accuracy that we require from
the approximate MTSM solution. For all the cases
study of this work only one extra derivative is
required to obtain a good fitting with respect to the
exact solution, although it depends of the particular
problem under study.

The aforementioned combined shooting technique of
MTSM aids to circumvent the issue of TSM method
with MBC. In order to show the benefits of this pro-
posal, three nonlinear problems described with MBC on
finite intervals are solved: three-point BVP for a third-
order nonlinear differential equation with a hyperbolic
sine nonlinearity (Duan and Rach 2011), two-point BVP
for a second-order nonlinear differential equation with
an exponential nonlinearity (Duan and Rach 2011; Scott
and Vandevender 1975) and a two-point BVP for the
third-order nonlinear differential equation with a radical
nonlinearity (Duan and Rach 2011).
This paper is organized as follows. In Section ‘MTSM

method’, we introduce the basic idea of MTSM method.
In Section ‘Cases study’, we show the solution proce-
dure for three nonlinear problems. Numerical simula-
tions and a discussion about the results are provided in
Section ‘Numerical simulation and discussion’. Finally, a
brief conclusion is given in Section ‘Conclusion’.

MTSMmethod
We consider a nonlinear differential equation expressed as

u(n) = N(u) − f (x), x ∈ �, (1)

having as boundary condition

B(u,
∂u
∂η

) = 0, x ∈ �, (2)

where n is the order of the differential equation, N is a
general operator; f (x) is a known analytic function, B is a
boundary operator, � is the boundary of domain �, and
∂u/∂η denotes differentiation along the normal drawn
outwards from �.

Firstly, we increase the order of the differential equation

u(n+k) = dk

dxk
[N(u) − f (x)] , x ∈ �, (3)

where k is a constant related to the number of the desired
SC constants.
Next, it is possible to express the Taylor series solution

for (3) as

uT = u(x0) + u′(x0)
1!

(x − x0)1 + u′′(x0)
2!

(x − x0)2

+ u′′′(x0)
3!

(x − x0)3 + u(4)(x0)
4!

(x − x0)4 + · · · ,
(4)

where x0 is the expansion point and derivatives u(i)(x0)
(i = 0, 1, . . . ) are expressed in terms of the parameters and
boundary conditions of (3).
As we require to solve MBC problems, the boundary

conditions not located at the chosen expansion point x0
will be replaced by shooting constants giving as result tra-
ditional DC conditions. Next, in order to obtain the coef-
ficients of (4) (u(i)(x0), i = 0, 1, . . . ), MTSM requires (I)
calculate the successive derivatives of (3) and (II) evaluate
each derivative using the Dirichlet conditions. Finally, in
order to fulfil the boundary conditions originally replaced
by the SC constants is necessary to evaluate (4) in such
points; then, the resulting system of equations is solved
to obtain the value of the SC constants. It is important
to remark that the order of the Taylor expansion (4) is
chosen in order to include all the shooting constants in
the polynomial; as long as we satisfy such condition the
order of the Taylor expansion can be increased to improve
accuracy.
The constants due to the extra k-derivatives (see (3)) are

applied tominimize themean square residual (MSR) error
defined as

∫ xf

xi

(
u(n)
T − N(uT ) + f (x)

)2
dx, (5)

where uT is the approximated TSM solution (4), and
[ xi, xf ] is the finite interval delimited by the MBC.

Cases study
In the present section, we will solve three cases study to
show the utility of the MTSM method to solve nonlinear
problems. For all cases study the expansion point of TSM
is at x0 = 0 and the derivatives were performed using
Maple 17 software.
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Third-order nonlinear equation
Consider the three-point BVP for the third-order nonlin-
ear differential equation with a hyperbolic sine nonlinear-
ity (Duan and Rach 2011)

u′′′ − 1 − x sinh(u) = 0, u(0) = 0,u(0.25) = 1,u(1) = 0,
0 ≤ x ≤ 1,

(6)

where prime denotes derivative with respect to x and the
exact solution is unknown.
Firstly, we derive (6), resulting

u(iv) − xu′ cosh(u) − sinh(u) = 0,
u(0) = 0,u′(0) = c1,u′′(0) = c2,u′′′(0) = c3, 0 ≤ x ≤ 1,

(7)

where the boundary conditions of (6) are replaced by its
Dirichlet conditions accordingly to the increased order.
Next, we resolve (7) for u(iv) and perform successive

derivatives, resulting

u(iv) = xu′ cosh(u) + sinh(u),
u(v) = 2u′ cosh(u) + x(u′)2 sinh(u) + xu′′ cosh(u),
u(vi) = 3(u′)2 sinh(u) + 3u′′ cosh(u) + · · ·

(8)

Now, the boundary conditions of (7) are substituted into
(8), yielding

u(iv)(0) = 0,
u(v)(0) = 2c1,
u(vi)(0) = 3c2,
...

(9)

Finally, using (9) and the initial conditions of (7), we can
formulate the sixth-order Taylor series expansion (see (4))

uT (x) = c1x + 1
2
c2x2 + 1

6
c3x3 + 1

60
c1x5 + 1

240
c2x6.

(10)

Finally, if we substitute the boundary conditions
u(0.25) = 1 and u(1) = 0 into (10) and solve for the
shooting constants (c1 and c2), it results

c1 = 5.347659477+ 0.04132001785c3,

c2 = −10.78371002 − 0.4139015236c3.
(11)

Next, c3 is used as adjustment parameter to minimize
the mean square residual (MSR) error by resolving

∂

∂c3

[∫ 1

0

(
u′′′
T − 1 − x sinh(uT )

)2 dx
]

= 0, (12)

where c1 and c2 were previously substituted by (11). It
is important to notice that in order to obtain a symbolic
expression for c3 the hyperbolic sine was replaced by its
fifth-order Taylor series.
The result of solving (12) is c3 = 1.1353380202 giving a

minimum MSR error of

∫ 1

0

(
u′′′
T − 1 − x sinh(uT )

)2 dx = 0.007337036421.

(13)

Second-order nonlinear differential equation
Consider the two-point BVP second-order nonlinear dif-
ferential equation with an exponential nonlinearity (Duan
and Rach 2011; Scott and Vandevender 1975)

u′′ − exp(u) = 0, u(0) = 0, u(1) = 0, 0 ≤ x ≤ 1,
(14)

where prime denotes derivative with respect to x and
exact solution is

u(x) = 2 ln
(
C sec

(
C(2x − 1)

4

))
− ln(2),

C = 1.336055694906108.
(15)

Now, we derive (14), resulting

u′′′ − u′ exp(u) = 0, u(0) = 0,u′(0) = c1,u′′(0) = c2,
0 ≤ x ≤ 1,

(16)

where the boundary conditions of (14) are replaced by its
Dirichlet conditions accordingly to the increased differen-
tial equation order.
As the aforementioned procedure for first case study, we

obtain the following sixth-order Taylor series

uT (x) = c1x + 1
2
c2x2 + 1

6
c1x3 + 1

24
(c21 + c2)x4

+ 1
120

(c31 + 3c1c2 + c1)x5

+ 1
720

(c41 + 6c21c2 + 5c21 + 3c22 + c2)x6.

(17)
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Finally, if we substitute the boundary condition u(1) = 0
into (17) and solve for the shooting constant c2, it results

c2 = − c12 − 3c1 − 391
6

+ 1
6
√
24c14 + 144c13 + 4596c12 + 3924c1 + 152881,

(18)

where the negative square root term was discarded
because it did not minimize the mean square residual
error.
Repeating the procedure for first case study (see (12)),

we find that c1 = -0.4582864419 minimize the MSR error,
resulting∫ 1

0

(
u′′
T − exp(uT )

)2 dx = 0.0004389212651, (19)

where uT corresponds to (17).

Third-order nonlinear differential equation with a radical
nonlinearity
Consider the two-point BVP for the third-order nonlinear
differential equation with a radical nonlinearity (Duan and
Rach 2011)

u′′′ +
√
1 − u2 = 0, u(0) = 0,u′(0) = 1,u(π/2) = 1

0 ≤ x ≤ π/2,
(20)

where prime denotes derivative with respect to x and
exact solution is

u(x) = sin(x). (21)

Firstly, we derive (20), resulting

u(iv) − uu′
√
1 − u2

= 0,

u(0) = 0,u′(0) = 1,u′′(0) = c1,u′′′(0) = c2, 0 ≤ x ≤ π/2,
(22)

where the boundary conditions of (20) are replaced by its
Dirichlet conditions accordingly to the increased order.
As the aforementioned procedure for first case study, we

obtain the following sixth-order Taylor series

uT (x) = x + 1
2
c1x2 + 1

6
c2x3 + 1

120
x5 + 1

240
c1x6.

(23)

Finally, if we substitute the boundary condition
u(π/2) = 1 into (23) and solve for the shooting constant
c2, it results

c2 = − 1
320

c1π6 + 4π5 + 1920c1π2 + 7680π − 15360
π3 .

(24)

Repeating the procedure for first case study (see (12)),
we find that c1 = 0.001065300514 minimizes the MSR
error, resulting

∫ π/2

0

(
u′′′
T +

√
1 − u2T

)2
dx = 0.0001811801833,

(25)

where uT corresponds to (23).

Figure 1MTSM approximation (10) of (6). The MSR error is 0.007337036421.
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Figure 2 Exact solution (15) (solid circles) and approximateMTSM solution (17) (solid line) for (14). The MSR error is 0.0004389212651.

Numerical simulation and discussion
From Figures 1, 2 and 3, we observe the high accu-
racy of the proposed MTSM approximations for all cases
study. For all cases study, only one extra derivative was
required to obtain an acceptable low MSR error. It is
important to mention that for Figures 2 and 3 the com-
parison is of MTSM approximations are versus the exact
solutions (see (15) and (21)) depicting the accuracy of the
approximations. Nonetheless, the problem (6) do not pos-
sess a known exact solution and the build-in professional
numerical routines for BVP problems from Maple does

failed to deal with this problem. Therefore, the only ref-
erence to know the error from exact solution is the MSR
error of 0.007337036421 (see (13)), which is considered
very low. This means that (10) is highly accurate.
The usefulness of coupling of a shooting method (Stoer

and Bulirsch 2002) along with extra derivatives and the
TSM method was exhibited by the solution of different
highly nonlinear boundary value problems expressed in
terms of nonlinearities such as: high order derivatives
combined with hyperbolic sine, exponential and radi-
cal terms, among others. What is more, the shooting

Figure 3 Exact solution (21) (solid circles) and approximateMTSM solution (23) (solid line) of (20). The MSR error is 0.0001811801833.
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constants were used to fulfil the boundary conditions
originally discarded by the artificial Dirichlet conditions.
Finally, an extra derivative induced an extra shooting con-
stant to minimize the MSR error giving as result high
accurate (see (13), (19) and (25)) handy power series
solutions. Finally, if users require more accurate approx-
imated solutions, they should augment the number of
SC constants (increasing k) to improve the potential of
minimizing the MSR error (5).
In this work, we presented a modified Taylor series

method to deal with nonlinear problems exhibiting mixed
boundary conditions defined on finite intervals. The
aforementioned procedure and results show that MTSM
can obtain power series solutions using only deriva-
tives without requiring to solve a system of differential
equations or the proposal of trial functions as HPM (He
1999; 2009) or HAM (He 2004; Tan and Abbasbandy
2008) methods, or an iterative solution procedure of inte-
grals as VIM (Chang 2010) method. In addition, MTSM
is not based on the existence of a perturbation parame-
ter (Filobello-Nino et al. 2013). Therefore, further work
will address more potential applications of the proposed
method to other type of problems or inclusive other type
of boundary conditions as: Robin or Neumann.

Conclusion
This work introduced the application of a modified Taylor
series method (MTSM) for solving boundary value prob-
lems (BVPs) with mixed boundary conditions defined on
a finite interval. We were able to obtain accurate, easy
computable, handy approximations for all cases study. The
shooting constants arising from the substitution of the
mixed boundary conditions by Dirichlet conditions and
the extra derivatives of the differential equation demon-
strate - with examples - to be a powerful strategy that
provides easy computable and accurate approximations.
In addition, more extra derivatives can be applied to the
differential equation to increase the number of shoot-
ing/adjustment constants, giving as result an enhanced
convergence of the MTSMmethod.
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