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Abstract

Starting from an electrical dissipative illuminated one-diode solar cell with a given model data at room temperature
(Isc, Voc, Rs0, Rsh0, Imax); we present under physical considerations a specific mathematical method (using the Lambert
function) for unique determination of the intrinsic electrical parameters (n, Is, Iph, Rs, Rsh). This work proves that for a
given arbitrary fixed shunt resistance Rsh, the saturation current IS and the ideality factor n are uniquely determined
as a function of the photocurrent Iph, and the series resistance Rs. The correspondence under the cited physical
considerations: Rs does not exceed ]0, 20[Ω and n is between ]0, 3[ and Iph and Is are arbitrary positive IR�þ

� �
, is biunivocal.

This study concludes that for both considered solar cells, the five intrinsic electrical parameters that were determined
numerically are unique.

Keywords: Solar cell model; Electrical parameters; Electrical characterization; Lambert function; Shokley’s equation;
Numerical modeling
Introduction
Although the electrical dissipative one diode model has
a potential of improvement in the efficiency and the sta-
bility of the solar cell structure under illumination, to
our knowledge the uniqueness and the authenticity of
the extracted intrinsic electrical parameters associated to
the model have not been studied previously.
In this work we attempt to develop this concept and prove

the uniqueness of the determination of these parameters.
The one-diode model gives sufficient efficiency for

earthly applications (Charles 1984). A precise numerical
method using this model was presented in the early
1980s by Charles et al. (1981; 1985).
The use of the Lambert W-Function proposed by Corless

et al. (1996) allowed demonstrating explicitly the Shokley’s
modified eq. (1) which is related to the equivalent elec-
trical circuit model as shown in Figure 1.
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Where Iph is the photocurrent, n is the diode ideality
factor of the junction, Isis the reverse saturation current,
Rsis the series resistance and Rsh is the shunt resistance.
Each of these parameters is connected to the suited in-

ternal physical mechanism acting within the solar cell.
Their knowledge is therefore important.
Several methods were proposed to determine the in-

trinsic electrical parameters: Iph; n; Is; Rs; Rsh presented
in eq. (1) of the solar cell. In particular, Jain and Kapoor
(2005) established a practical method to determine the
diode ideality factor of the solar cell.
Ortiz-Conde et al. (2006) have used a co-content func-

tion to determine these parameters. Jain et al. (2006) de-
termine these parameters on solar panels. Chegaar et al.
(2006) have used four comparative methods to deter-
mine these parameters.
More recently, Kim and Choi (2010) have used an-

other method to determine the intrinsic parameters of
the cell by making a remarkable initialization of the
ideality factor n and the saturation current Is (Kim &
Choi 2010).
Theoretical study: problem formulation
To determine the solar cell intrinsic electrical parame-
ters (n, Is, Iph, Rs, Rsh), we put together a system of five
equations (Lemma 2), and, solved by two different
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Figure 1 Solar cell one-diode equivalent circuit model, under specified illumination and temperature.
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numerical methods. The Lambert W-function is the re-
verse of the function F defined from C+ in C by F (W) =
W eW for every W in C+.
Lemma 1: The Lambert W-function was derived from

eq. (1) by expressing the current I in function of the
voltage V and vice-versa, as follows

I ¼ V
Rs þ Rsh

−

W
RsRshIsexp

Rsh Rs IsþIphð ÞþVð Þ
nVT RsþRshð Þ
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Figure 2 I (V) characteristics of a solar cell under illumination in gene
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We consider the following I (V) solar cell characteris-

tics under illumination in generator convention as pre-
sented in Figure 2.
Where Isc and Voc represent the short-circuit current

and the open-circuit voltage respectively, Rsh0 is the
slope of the I-V curve at the (0, Isc) point, Rs0 is the slope
of the I-V curve at the (Voc, 0) point and Imax is the max-
imum power current, and Iph, Is, n, Rs, and Rsh are the in-
trinsic electrical parameters that should be determined.
In order to simplify the problem formulation, we adopt

the following abbreviations

X¼ Isc;Voc;Rs0;Rsh0;Imaxð Þ; Y¼ðn;Is;Iph;Rs;RshÞ

A1¼ exp
Rsh Rs IsþIph

� �
n VT RsþRshð Þ

� 	
; A2¼exp

Rsh IsþIph
� �
n VT

� 	

A3¼exp
Rsh −IscþIsþIph

� �
n VT

� 	
; A4¼exp

Rsh −ImaxþIsþIph
� �

n VT

� 	
rator convention.



Table 1 SAT and Cu2S-CdS cells experimental data

Experimental data SAT cell (E = 1 S) Cu2S-CdS cell (E = 1 S)

Voc (V) 0.536 0.469

Rs0 (Ω) 0.45 6.857

Isc (A) 0.1025 0.04075

Imax (A) 0.0925 0.025

Rsh0 (Ω) 1000 41.905

VT (V) 0.025875 0.023527
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From eq. (2) and at the point (0, Isc) we obtained

f 1 X;Yð Þ¼−
W Rs Rsh Is A1

n VT RsþRshð Þ
� �

n VT

Rs
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� �
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−Isc

ð5Þ
Idem from eq. (3) and at the point (Voc, 0) we obtained

f 2 X;Yð Þ¼Rsh Iph−W
Is Rsh A2

n VT

� 	
n VTþRsh Is−Voc

ð6Þ
The slope at the point (Voc, 0) of the eq. (2) we obtained

f 3 X;Yð Þ¼−Rsh

W Is Rsh A2
n VT

� �

1þW Is Rsh A2
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� �−Rs0þRsþRsh ð7Þ

The slope at the point (0, Isc) of the eq. (2) gives
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W Is Rsh A3
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For differentiating eq. (4) and at the point (I = Imax) stems
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Lemma 2: We have the following system

f 1 X;Yð Þ¼0
f 2 X;Yð Þ¼0
f 3 X;Yð Þ¼0
f 4 X;Yð Þ¼0
f 5 X;Yð Þ¼0

8>>>><
>>>>:

ð10Þ

Proof: For I = Isc and V= 0, eq. (2) implies that f1(X,Y) =
0 and for V =Voc and I = 0 eq. (3) implies that f2(X,Y) = 0.
The differential resistances: Rs0 and Rsh0 lead to the

following two equations: f3(X,Y) = 0 and f4(X,Y) = 0.
From eq. (4), maximal power obtained by: ∂P

∂I

� �
I¼Imax ¼ 0

implies that f5(X,Y) = 0.
In order to solve the system presented in Lemma 2

(eq. 10) and determine the intrinsic electrical parameters,
a set of experimental measurements (data) were used
(Table 1).
These measurements were collected from two dif-

ferent solar cells under AM1 illumination (E = 1 S =
100 mW/cm2) at room temperature.
Our study concerns p-n junctions at both homo- and
hetero-junctions: For the homo-junction, a 4 cm2 blue
type monocrystalline silicon cell produced by SAT
(1980) was used. For the hetero-junction we have used a
frontwall Cu2S-CdS cell produced by a wet (Cleveite)
process with significant losses of 4.28 cm2 square area.
Two different numerical methods were applied in order
to prove their authenticity.

Numerical approach of the intrinsic parameters
Newton’s method
The following function was considered

F X;Yð Þ ¼ f 1 X;Yð Þ; f 2 X;Yð Þ; f 3 X;Yð Þ; f 4 X;Yð Þ; f 5 X;Yð Þð Þ:

Let JF denote the Jacobian matrix defined by

JYF X;Yð Þ ¼ ∂f i X;Yð Þ
∂Y j

� �
1 ≤ i; j ≤ 5

So, Newton’s method can be formulated as follows: For

Y 0 ¼ n0; I0s ; I
0
ph;R

0
s ;R

0
sh

� �
as an initial condition and for

all k = 0, 1 … until convergence; we have to resolve the un-
known variable Yk using the following system of equa-
tions: JF (Yk) δ Yk = ‐ F (Yk), where: Yk + 1 = Yk + δ Yk and:

Yk ¼ nk; Iks ; I
k
ph;R

k
s ;R

k
sh

� �
.

In order to apply the Newton’s method to this system an
iterative program was developed in a MAPLE environment
Monagan et al. (2003) using an accuracy of 20-digits.
It depends on the choice of the initial data Y0 by mak-

ing sure that JF (Yk) ≠ 0 and by continuing the iteration
process until a quadratic convergence is reached.
At each increment, the program performs a test be-

tween two successive iterations by assessing the Euclid-
ean norm of their difference. The program was designed
to stop the calculation when the test reaches a value
smaller than the pre-set tolerance value.

Hooke-Jeeves’s method
The Hooke-Jeeves method is based on numerical calcu-
lation of the minimum of a function G without the use
of gradient. This method is widely used in applications
with convex G.



Figure 3 Rs and n dependences of Det (Rs, n).

Table 3 Frontwall Cu2S-CdS solar cell’s intrinsic electrical
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This method was used in this study to find the zero of
function G (eq. 11) by minimizing in X and Y such that

G X;Yð Þ¼0; G X;Yð Þ¼ f 1 X;Yð Þj jþ f 2 X;Yð Þj j
þ f 3 X;Yð Þj j þ f 4 X;Yð Þj jþ f 5 X;Yð Þj j

ð11Þ
We recall that G (X, Y) = 0 is equivalent to the system

presented in eq. (9) which leads to the determination of
the intrinsic electrical parameters.
This method has the advantage of being easily pro-

grammed except the need to calculate gradient G.

Existence and uniqueness of the solution
To determine the existence and the uniqueness of the sys-
tem presented in lemma 2 (eq. 9), we use the following

Table 2 SAT solar cell's intrinsic electrical parameters (E = 1 S)

Intrinsic parameters Newton’s method Hooke-Jeeve’s method

Iph (A) 0.102502 0.102002

Is (A) 5.987171985 × 10-7 5.97501 × 10-7

n 1.709464 1.721481

Rs (Ω) 0.016437 0.016437

Rsh (Ω) 1014.244754 1000.412260
implicit functions theorem where: H represents a continu-
ously differentiable real-valued functions defined on a do-
main D in IR2x IR2 into IR2:

H Iph; Rs; n; Is
� �¼ðh1 ðIph; Rs; n; IsÞ; h2 Iph; Rs; n; IsÞ

� �
:

h1 Iph; Rs;n; Is
� �¼−IscþIph−

RsISC
Rsh

−Is

�
exp

�
q Rs Iscð Þ

nkT
−1

�
; and

h2 Iph; Rs; n; Is
� �¼Iph‐

Voc

Rsh
‐Is exp

q V ocð Þ
nkT

‐1

���

By using the following notations: A = (Iph, Rs); B = (n, Is)
Let JBH A; Bð Þ be the following Jacobian matrix:

JBH A; Bð Þ ¼ ∂hi A;Bð Þ
∂Bj

h i
1≤i;j≤2
parameters (E = 1 S)

Intrinsic parameters Newton’s method Hooke-Jeeve’s method

Iph (A) 0.045528 0.045487

Is (A) 8.2455 × 10-6 8.0 × 10-6

n 2.183476 2.176611

Rs (Ω) 5.355408 5.298477188

Rsh (Ω) 49.838828 49.175974



Table 4 SAT solar cell’s calculated I-V values by Hooke’s
method

V (V) Iexp (A) IHooke (A) D (%)

0.000000 0.102500 0.102501 0.000009

0.100000 0.102500 0.102396 0.001015

0.150000 0.102500 0.102333 0.001631

0.200000 0.102500 0.102245 0.002494

0.250000 0.102500 0.102079 0.004124

0.300000 0.101500 0.101669 0.001665

0.325000 0.101200 0.101241 0.000405

0.350000 0.100500 0.100510 0.000099

0.375000 0.099500 0.099246 0.002559

0.400000 0.09770 0.097048 0.006718

0.425000 0.09450 0.093216 0.013774

0.450000 0.08900 0.086533 0.028509

0.475000 0.07780 0.074895 0.038787

0.500000 0.05750 0.054718 0.050842

0.536000 0.00000 0.000000 0.000000

Table 6 Frontwall Cu2S-CdS solar cell’s calculated I-V values
by Hooke’s method

V(V) Iexp (A) IHooke (A) D(%)

0.000000 0.0408000 0.041010 0.0051470

0.050000 0.0393 0.039746 0.011348

0.100000 0.0373 0.038120 0.021983

0.200000 0.0315 0.032689 0.037746

0.250000 0.0273 0.028445 0.041941

0.275000 0.0250 0.025929 0.037160

0.300000 0.0225 0.023173 0.029911

0.325000 0.0196 0.020201 0.030663

0.350000 0.0165 0.017038 0.032606

0.375000 0.0132 0.013705 0.038257

0.400000 0.0099 0.010225 0.032828

0.450000 0.0025 0.002895 0.158000

0.469000 0.000000 0.000000 0.000000
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Let: (A0, B0) be a point in D such that H (A0, B0) = 0,
and JBH A0; B0

� �
is invertible i.e. Det JBH A0;B0

� �� �
≠0

� �
.

The last step is to determine the neighborhood U × V
where the following determinant of the Jacobian matrix
will remain

Det JBH A;Bð Þ� � ¼ IS
n2VT



Voc exp

V oc

nVT

� 	
1− exp

RsIsc
nVT

� 	� 	

−RsIsc exp
RsIsc
nVT

� 	
1− exp

V oc

nVT

� 	� 	�
Table 5 SAT solar cell’s calculated I-V values by Newton’s
method

V (V) Iexp (A) INewton (A) D (%)

0.000000 0.102500 0.102500 0.000000

0.100000 0.102500 0.102397 0.001005

0.150000 0.102500 0.102337 0.001592

0.200000 0.102500 0.102255 0.002395

0.250000 0.102500 0.102104 0.003878

0.300000 0.101500 0.101739 0.002354

0.325000 0.101200 0.101359 0.001571

0.350000 0.100500 0.100708 0.002069

0.375000 0.099500 0.099580 0.000804

0.400000 0.09770 0.097614 0.000881

0.425000 0.09450 0.094173 0.003472

0.450000 0.08900 0.088149 0.009654

0.475000 0.07780 0.077613 0.002409

0.500000 0.05750 0.059257 0.030556

0.536000 0.00000 0.000000 0.000000
This determinant does not depend on Iph and is linear
with Is. The Rs and n dependences of the determinant
are illustrated in the following figure (Figure 3).
The minimum of the determinant in ] 0, 20[×]0, 3 [ is

10-3. Consequently the investigated neighborhood U ×
V is IR�

þ��0; 20½��0; 3½�IR�
þ:

The implicit functions theorem gives the existence of a
unique function B = ϕ (A) defined in U into V of class
C1 and for any (A, B) ∈U × V, H (A, ϕ (A)) = 0. As a

result the φ Jacobian matrix is given by the formula: Jϕ
Að Þ ¼ JBH A;ϕ Að Þð Þ−1JAH A;ϕ Að Þð Þ and consequently, we
prove for a given arbitrary fixed shunt resistance Rsh, that
the saturation current Is and the ideality factor n are
uniquely determined in function of the photocurrent Iph,
and the series resistance Rs.
Table 7 Frontwall Cu2S-CdS solar cell’s calculated I-V
values by Newton’s method

V(V) Iexp (A) INewton (A) D(%)

0.000000 0.0408000 0.040750 0.001226

0.050000 0.0393 0.039420 0.003053

0.100000 0.0373 0.037667 0.009839

0.200000 0.0315 0.031870 0.011746

0.250000 0.0273 0.027522 0.008131

0.275000 0.0250 0.025000 0.000000

0.300000 0.0225 0.022273 0.010191

0.325000 0.0196 0.019362 0.012292

0.350000 0.0165 0.016290 0.012891

0.375000 0.0132 0.013075 0.009560

0.400000 0.0099 0.009737 0.016740

0.450000 0.0025 0.002748 0.099200

0.469000 0.000000 0.000000 0.000000
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Experimental and theoretical results, discussion of
related authenticity
Tables 2 and 3 list the intrinsic electrical parameters
values of the two cells determined by Newton’s
method and Hooke-Jeeves’s.
Figure 4 Experimental I-V Characteristics. (A) c-Si blue SAT solar cell. (B
To prove the authenticity of the model, we should
calculate the current I listed as Ith by the use of the
obtained intrinsic parameters at different points
of the I-V curves. These points are compared
with the corresponding experimental current values
) Frontwall Cu2S-CdS solar cell.
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listed as Iexp. The accuracy is evaluated by the par-
ameter D (%). The values of the called accuracy D
(%) corresponding to the percentage deviation
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Figure 5 Absolute error between experimental and calculated curren
between experimental and theoretical results are also
listed in Tables 4, 5, 6 and 7 and does not exceed
0.2%.
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The graphs presented in Figure 4A and B show how
close the values calculated by the two used numerical
methods to the experimental ones.
These figures are very sensitive to the effects of the circuit

parameters with localized constants and especially to the
quality of the cell. Figure 5A and B outline the absolute er-
rors between the experimental and calculated current as a
function of the cell bias voltage by the two numerical
methods. Although D values of the SAT solar cell in the
state of the art are weaker than those of Cu2S-CdS solar cell
with significant losses; absolute error (Figure 5A) goes to a
maximum at Voc-neighborhood. This maximum is weaker
in the case of Newton’s method, so denoting a better con-
vergence of this method compared to Hooke’s. Although in
the case of the Cu2S-CdS solar cell with significant losses
this indeterminacy on Rs disappears, the calculated I-V
curves show a better convergence of Newton’s method.

Conclusion
In this study a simple and specific method (without ap-
proximations) was proposed to extract intrinsic electrical
parameters of the one-diode solar cell model under
AM1 illumination (1S).
The proposed approach includes parasite and dissipa-

tive elements such as series resistance Rs and shunt re-
sistance Rsh.
The use of the Lambert W-function has allowed to ex-

press explicitly the current I as a function of the voltage
V from the modified Shockley’s eq. (1).
However, it is important to highlight that the proposed

method is valid for all measured I-V characteristics
under any illumination intensity.
The implicit functions theorem was used to demon-

strate the uniqueness of the solution. The physical consid-
erations of the problem have also been taken into account.
This procedure has proved the uniqueness of the solution.
Two different numerical methods: Newton’s method

and Hooke-Jeeves’s were used to determine these param-
eters and reconfirm the uniqueness of the solution.
To prove the authenticity of this extraction method, two

different types of solar cell structure were used: a SAT mono-
crystalline silicon homostructure in the state of the art, and a
frontwall Cu2S-CdS heterostructure with significant losses.
Moreover, as MATLAB has limitations toward large

numbers manipulation (≥ exp (100)), MAPLE software
was selected for this calculation.
For the two cell types, both used numerical methods

converge in each of cases, towards two series of theoretical
results with relative accuracy about 3% in the case of the
weak series resistance.

Nomenclature
T: Thermodynamic Temperature in Kelvin (K)
q: Electron Charge = 1.602*10-19 C
k: Boltzmann constant = 1.38*10-23 J/K
VT: Thermal voltage = kT/q
Voc: Open circuit voltage
Isc: Short-current voltage
I: Output current
V: Output voltage
Imax: Maximum power current
Vmax: Maximum power voltage
Pmax: maximum power
Iph: Photocurrent
Is: Diode reverse saturation current
Ioc: Calculated current at the (Voc, 0) point
Vsc: Calculated voltage at the (0, Isc) point
n: Diode quality factor
Rsh: shunt resistance
Rsh0: Differential Resistance at the (0, Isc) point
Rs: Series resistance
Rs0: Differential resistance at the (Voc, 0) point
W: Lambert’s function
C+: the set of complex numbers with positive real part.
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