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Abstract

containing an approximation of the real solution.

The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion
of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of
non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used

for the solution of certain integer ambiguity problems in Geodesy.

The overall approach is based on additional (a priori) information for the unknown variables. In the past, such
information was used either to linearize equations around approximate solutions, or to expand systems of
observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional
information is used in a third way, as topological constraints to the unknown n variables, leading to an R" grid

The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in
each system of underdetermined equations in order to identify an optimal closed space in the R" containing the
real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions.
The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including
fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
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Introduction

Redundant systems of non-linear equations with n vari-
ables and m measurements (m > n) are frequent in vari-
ous fields of science and engineering, but there does not
exist a unique or general method for their solution. In
the case of various non-linear problems, such as those
arising from observations of distances and angles, as in
various fields of Geodesy, algebraic solutions are ob-
tained on the basis of linearization of the observation
equations leading to a system of equations (Mikhail
1976). In the case of highly non-linear systems, however,
this is not possible, and either certain observation equa-
tions are selected to solve a non-redundant system (Ren
and Hong 2009), or various numerical/statistical, usually
Monte Carlo-based approaches (or genetic algorithms,
especially PSO and annealing simulations, Pedersen
et al. 2003; Li 2009; Voglis et al. 2012) are used. Some
limitations of these techniques are that they usually
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ignore the error properties (uncertainties) of observa-
tions and of the solutions, and they may be trapped in
local solutions (see Saltogianni and Stiros 2012a).

A topological inversion technique for the solution of re-
dundant systems of non-linear equations with n un-
knowns has recently been presented by Saltogianni and
Stiros (2012b; 2013) and was further assessed by Harvey
(2013). This technique, thereafter called TOPINV (from
Topological Inversion, or TGS, Topological Grid Search),
exploits the power of modern computers and is based on
the principle of intersection of geometric loci in the R"
space. It is a technique inspired from the traditional light-
house navigations, and one of its major advantages is that
it does not require any inversion of matrices. For this rea-
son, it was proposed that this method can also be applied
for the solution of certain types of underdetermined sys-
tems of equations (Harvey 2013), the solution (inversion)
of which traditionally leads to inversion of singular matri-
ces (Matsu'ura and Hirata 1982).

In this article we present a generalization of the idea of
Harvey (2013) that TOPINV (or TGS) can cover a wide
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range of underdetermined systems of equations observed
in engineering and geophysics. We also explain that the
only requirement for this method of inversion is the a
priori knowledge of the possible range of values for each
of the unknown variables. This requirement is far from be-
ing unusual, and in fact it represents another way to ac-
commodate additional information or external constraints
conventionally used for the solution of underdetermined
systems of equations (Matsu'ura and Hirata 1982; see “A
priori information used for the inversion”).

Several examples and case studies are presented and
permit to validate the results of this method on the basis
of surrogate (synthetic) data, in comparison to SVD-
based solutions. This is an accuracy-oriented validation,
based on the comparison of a priori known (“true”) solu-
tions of a system of equations with that deriving from
the TOPINV (or TGS) algorithm.

The TOPINV method
The TOPINV (or TGS) algorithm is fully explained in
Saltogianni and Stiros (2012b; 2013) and is summarized
in this section.

Let us assume a system of m (non-linear) equations
Jf»j=1,2, ..., m with n unknowns x;, i=1, 2, ...n

Sixi) =€+ v (1)

where {; indicates a measurement with standard devi-
ation 0; and v; an unknown random error. These equa-
tions are not mutually consistent because of errors in
measurements and imperfections of the model adopted;
this is schematically shown for three observations of azi-
muths in Figure la.

In conventional algebraic (least squares) the point so-
lution is obtained on the basis of minimization of
weighted squares of vj, but this requires an inversion of
linearized equations (Mikhail 1976) which is possible in
the case of redundant systems only.

The TOPINV method is based on two considerations.

First, on a priori constraints for the solution of a sys-
tem, i.e. that the possible values (solution) of each un-
known variable x; are subject to the conditions

xi,minsxisxh,mux (2)

Wwith %; i % 1max known values, and that the above range
of possible values can be approximated by a series (sets)
of discrete, equally spaced points.

For the n variables, these sets of points define an n-
dimensional grid G which defines a closed space con-
taining all possible solution of the system of equations;
some of the grid points approximating the solution of
the system of Eq. (1).
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Second, in order to overcome the problem of non-
mutually consistent observation equations (Figure 1),
each equation (1) is transformed into an inequality

V;‘&” < g; (3)

Forward computations and Boolean logic permit to
identify which points of G (in fact a set S; of gridpoints)
satisfy Eq. (1), i.e. to identify the geometric locus S; of
the solution of this equation. If a certain point M repre-
sents the solution of the system of equations Eqs (1), it
must satisfy all inequalities (3) for j=1,2, ... m, and it
will be located in the intersection S of all areas S;.

§=8:nS,..nS;cG (4)

It is possible this intersection to be very large (Fig-
ure 1d), or not even exist (Figure 1c). This problem can
be overpassed introducing a scale (optimization) factor k
according to the equation

-6 < ko 5)

This scale factor k is determined empirically (with tri-
als) and permits to shrink or expand the uncertainty
margin of each observation (shown as an angle, highly
exaggerated in Figure 1) and of S; and S, until a mini-
mum (optimal) common intersection, i.e. until a mini-
mum space S containing the solution of the system of
equations is obtained (Figure le). The overall approach
is described in Figure 1 for two variables, ie. in an R*
space, but it can be generalized for n variables, i.e. for a
grid G in the R" (n-D space).

By definition, the set of grid points S represents a
space containing the real solution. The centre of gravity
of the grid points of set S (first moment of the popula-
tion of these grid points included in set S) defines statis-
tically a very good (minimum bias) estimator x of the
true solution ¥ of the system of observation equations, i.
e

||#-%]—0

and from the population of its grid-points, it is easy to
compute the variance-covariance matrix of the estimated
solution.

This is valid only if the n-D space S is compact, con-
vex. If not, this is indicative of different solutions, and in
this case, S should be split into sub-spaces, each provid-
ing an independent solution.

Other practical problems may arise, for instance a grid
too large, requiring too much computer time. In this
case, a large and coarser grid G is selected first, a space
S is identified, and then a smaller and finer grid around
S is used to refine the solution each providing a different
solution.
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uncertainty
area

ki<ks<k,

optimal common section S of areas S; can be obtained.

Figure 1 Schematic representation of the TOPINV inversion in the case of intersection of three azimuth lines. (a) Because of
measurement errors (shaded areas), the three azimuths (directions relative to the north) do not converge into a single point. (b) Introducing an
uncertainty angle based on the standard errors o, each of these areas corresponds to an uncertainty area S;. (c-e). Using a scale factor k, the

This technique has several main advantages, especially
that it does not require inversion of matrices, it is not
focusing on point solutions, and hence the solution is
not trapped into local maxima/minima (see Saltogianni
and Stiros 2012a) and it is free of the limitations of the
various sampling techniques (see Li 2009), because it is
based on a deterministic analysis of the whole grid G.

Underdetermined systems of observation equations
Underdetermined systems of observation equations are
of different types, and their classification can be easily
made on the basis of visualized, simple geometric (geo-
detic) observation systems, i.e. of systems of observa-
tions of angles and of distances in a 2-D space, as is
explained in Example 1. The solution of such underde-
termined systems is usually based on SVD techniques,
but the quality of the corresponding solutions depends
on the initial conditions (Example 2). Alternative tech-
niques, such as Bayesian statistics have also been used
(Zhu et al. 2001).

Example 1

Figure 2a shows a quadrangle of which there have been
measured the angles and one diagonal, while the coordi-
nates of two of the corner points are known. The available
data permit to define a redundant system of non-linear
equations combining observations (angles and lengths)
with the coordinates of four known and unknown points.

This system can be solved using typical least squares tech-
niques, after the equations are linearized (Mikhail 1976).
As will be emphasized later, this linearization requires a
certain a priori knowledge/constraint/condition that the
solutions are in the vicinity of a priori known approximate
solutions.

In Figure 2b only the length of the sides and one diag-
onal of a quadrilateral have been measured, and no coor-
dinates are known. The available data permit to define the
geometry (shape and dimensions) of the quadrilateral, but
the coordinates of its corner points cannot be computed.
This example is representative of a large category of
underdetermined systems of equations, reflecting a datum
defect. In the past, this defect was usual before the advent
of GPS in tectonics studies, because the available geodetic
observations of distances and of angles did not permit es-
timations of absolute displacements. Still, the addition of
some constraints (additional information for coordinates
or for fault-slip) permitted to overpass the datum defect
(Brunner 1979; Prescott 1981).

In Figure 2c, the coordinates of two adjacent points of
a quadrilateral are known, and only the lengths of the
three sides have been measured. Hence the coordinates
of the two remaining corners cannot be defined, because
the available data do not permit to constrain the shape
of the quadrilateral; it corresponds to a mechanism. The
system of observations cannot hence been solved, be-
cause an observation necessary to constrain the shape of
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Figure 2 Geometric visualization of over-determined systems and of systems with datum defect or configuration defect. (a) over-determined
systems (b) systems with datum defect or (c) with configuration defect. Two small lines indicate measured angle or distance, solid circles points

the quadrilateral is missing. This leads to a geometry/shape
not defined, and to a configuration defect (or to singular
configuration).

No solution for such cases is readily available. Such a
defect may be found in any field of science and engin-
eering. An example: an earthquake recorded in only one
seismogram, permits to compute only the distance be-
tween the epicentre and the seismogram, but not the
epicentre; the latter is typically defined as the intersec-
tion of two geometrical loci, of two circles defined by
the computed distances of the epicentre from two seis-
mological stations. Singular configurations in robot ma-
nipulators (Sokolov and Xirouchakis 2006) are another
example.

In certain common special cases the configuration de-
fect derives from a scale ambiguity, for instance from a
triangle in which only angles have been measured. An
additional information (constrain, hypothesis) for a
length is necessary to remove this defect (ambiguity);
this is the case of the analysis of traditional triangulation
data (Stiros 1993). In other cases a certain type of con-
figuration defect derives from an integer ambiguity. Such
an ambiguity derives from phase measurements of a
wave of certain wavelength A emitted from an instru-
ment, reflected on a certain surface and then received
back by the instrument. In this case the distance s can
be computed from the equation

2s = n\ + ¢p1/360 (6)

where n is an unknown integer and ¢ the measured
phase between emitted-received wave. Such integer am-
biguities represent a major source of error in GPS posi-
tioning (Han and Rizos 1996), but also in satellite radar
measurements (Usai 2003; Kampes and Hanssen 2004)
etc. As has been shown by Harvey (2013), certain of
these problems can be solved on the basis of the
TOPINV.

From the analytical point of view, any configuration or
datum defect leads to a certain singular matrix which
cannot be inverted, and this problem is usually solved
on the basis of generalized matrix inverses and especially
the Single Value Decomposition (SVD) technique (Mat-
su'ura and Hirata 1982; Strang 2003). The overall signifi-
cance of SVD is that it identifies the best solution which
satisfies observations. If certain conditions are satisfied,
SVD permits optimal solutions and this explains its ap-
plication in a large number of studies in different fields
of sciences and engineering. The limitations and require-
ments for a successful SVD solution are explained in the
following Example 2.

Example 2
Let us assume that there has been measured the height
difference /1 = 2.1 (arbitrary units) between two points A,
B with elevations z4 =4 and zp =2 but unknown to the
observer. This leads to the equation
zZa—zg=h+v (7a)
with v indicating an unknown observation error as in
Eq. (1). This equation can be written in matrix form

(1 —1]{2‘4]:h+u (7b)

ZB

This system of one equation is rank defect because of
a datum defect, it leads to an infinity of solutions, and
typically cannot be solved. The SVD solution, however,
leads to a minimum norm solution, z4 =#h/2 =1.05,
zg=-h/2=-1.05.

Clearly, this solution is different from the real values
of z4 and zp. If an a priori additional information (con-
straint) is available, for example that the approximate
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elevations of the two points A and B are Hy =4.1 and
Hg =1.9, Eq. (7a) becomes

(Ha +384)-(Hp +3p) =h+v (8a)

where d4, 05 are the unknown differences between real
and approximate elevations of A and B. Hence, Eq. (8a)
takes the form

(1 —1][‘;2} = (h-Hu + Hg) +v (8b)
and the corresponding SVD solution would be

Zp = HA + (h—HA + HB)/2 =4.05 and (9)

Zp — HB—(h—HA + HB)/Z =195

These new estimates tend to the real values of eleva-
tions of A and B if the approximate estimations H, and
Hgp were very close to the real values. Egs. (9) indicate
that the accuracy of the SVD-derived solution depends
on the accuracy of approximate values and the noise of
measurements (cf. Xu 1998). The overall approach of
course can be easily generalized to more variables and
observation equations.

A priori information used for the inversion

The solution of the systems of observation equations de-
pends on their type, linear or not, and redundancy, and
is based either on algebraic or numerical techniques
(Mikhail 1976; Kaipio and Somersalo 2005; Tarantola
2005; Vogel 2002).

The algebraic solution of certain systems of redundant,
non-linear equations (adjustment in Geodesy) is based
on the linearization of equations using Taylor’s formula
and the application of the least squares criterion which
permits to solve systems of linear equations of the form

Ax=C+v (10)

(Mikhail 1976), the linearization of these equations is,
however, not unconditional, and has a meaning only in
the vicinity of the true position ¥ (“ideal” solution) of an
unknown variable x, i.e.

X =Xx+¢€¢e>0

(11)

where %, ¥, € and 0 are n-dimensional vectors, 0 a zero
vector, and each component of € can be regarded as a
random variable with zero mean and variance o, i.e. with
statistical distribution (0, ¢®); otherwise the linearization
is not valid. Condition (11) hence represents an a priori
additional information or an external constraint, neces-
sary for the solution of non-linear systems of equations.
This a priori or additional information is classified as the
first type of a priori information.

Certainly, approximate solutions can in many cases be
obtained from preliminary solutions of the system of
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equations (for instance selecting a number of equations).
Still, this is possible only in the case of relatively simple
equations, such as observations of distances or angles, usu-
ally in geodetic applications, or in the cases of iterative,
converging solutions (Schaffrin and Wieser 2011). On the
contrary, in the cases of highly non-linear, redundant sys-
tems of equations met in various geophysical problems,
preliminary or iterative solutions may lead to local solutions
(local minima) very different from the real (global) solution
(see figure thirteen in Saltogianni and Stiros 2012a) and
hence the conditions of linearization are not met.

Any algebraic solution of Eqs (1) requires the inversion
of a certain matrix (Mikhail 1976; Kotsakis 2012). If the
system of observation equations is not well-determined,
this matrix is rank-defect and a formal least-square solu-
tion (i.e. a unique solution) is not possible. However, in
some cases of singular matrices, a single (optimal) solu-
tion is possible using additional information which
removes the rank defect and permits a unique solution,
though at the risk of biased results (cf. Usai 2003).

In most cases this additional information is incorpo-
rated in the system of equations, for instance pseudo-
equations (Kampes and Hanssen 2004), hypotheses for
the coordinates or for displacement vectors (Brunner
1979; Prescott 1981), or for the statistical characteristics
of some variables, in the case of a hypothesis for Bayes-
ian statistics (Jackson and Matsu’'ura 1985; Zhu et al.
2001). These approaches are usually based on general-
ized matrix inverses (Bjerhammar 1973; Matsu’'ura and
Hirata 1982). This approach is known in Geodesy as free
net adjustment and is discussed by Brunner (1979), Pres-
cott (1981) and recently by Kotsakis (2012) who includes
an extensive literature on this topic. This is indeed a sec-
ond type of additional information (or of additional con-
ditions) imposed on a system of equations in order to
obtain its algebraic solution.

TOPINV (TGS) introduces a third type of additional/a
priori information that can be used for the solution of
systems of equations. This information corresponds to
constraining the expected solution of each of the un-
known variables to a certain range of possible values and
defining a grid G in the R" space. This grid G is then
used for the application of the TOPINV algorithm (see
section “The TOPINV method”).

The physical significance of this type of a priori con-
straints is in some cases evident: the epicentre of an
earthquake should be inside the earth, in a certain range
of depths, in most cases a GPS receiver can only be on
or near the ground surface, etc.

Methodological approach

Internal (structural and geometric) constraints in defective systems
The basic characteristic of underdetermined systems is
that they can accept an infinite number of solutions.
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However, such possible solutions are not randomly dis-
tributed and are dominated by certain internal con-
straints, structural and geometric. For instance, the
locus of the foot of the moving leg of a robot is usually a
sphere, with centre at the joint of the leg and radius
equal to its length (a geometric locus). Additional geo-
metric constrains (another geometric locus, a plane, a
torus, etc.) permit to define analytically the position of
this foot and control the robot motion using systems of
equations (Sokolov and Xirouchakis 2006; Ren and
Hong 2009). Intersections of geometric loci therefore de-
fine structural constraints and this is easily highlighted
in the following example.

Example 3

Let us consider a mechanism consisting of four equal
legs of length d with hinges at their edges (Figure 3).
This mechanism corresponds to a rhomb ABCD which
has one degree of freedom in its configuration, i.e. one
observation is missing to unambiguously define its shape
and this leads to a configuration defect. In addition, the
lack of information in coordinates leads to a datum de-
fect. If the centre of gravity of the rhomb is assumed
fixed on the origin of the coordinate system, and it is
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assumed without loss of generality that one point is lo-
cated on axis x, the datum defect is removed (see Brunner
1979; Prescott 1981). If in addition a value S of the diag-
onal is assumed, the configuration defect will be also re-
moved and the coordinates of the corners of the rhomb
can be computed.

More explicitly, corners A, B, C, D will be located on
axes x and y in positions (coordinates) constrained by
the length d of sides and the selected length s of the di-
agonal, defined by the relationship

2(S/2)* = & (12)

It can easily be deduced that 0 < S <2d and as a conse-
quence, for all possible values of S the loci of all corner
points are segments of length d along the axes x, y
(Figure 3).

This example highlights the fact that in various under-
determined systems their (infinite) solutions are subject
to two types of constraints:

First, geometric (structural) constraints; in the case of
the mechanism of Figure 3 this constrain is expressed
by Eq. (12).
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Figure 3 A mechanism consisting of four equal legs with hinges at their edges. This mechanism corresponds to a rhomb, shown for two
cases (solid and dashed lines). Assuming a fixed centre of gravity at the origin and one of the coordinates on the x-axis, the loci of the edge points are
defined. Red lines (segments of length d) indicate the loci of points A, B, C, D. In addition, structural constraints are expressed by Eq. 12.
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Second, topological (location) constraints, expressed by
the geometric loci of the variables of the system.

These constraints are not always clear, especially in
complicated systems or systems with several degrees of
freedom and several variables. Still, the situation is clari-
fied in the following Example 4.

Example 4

Three sides of a triangle ABC have been measured, fully
constraining its configuration (structural constraints).
No information on the coordinates of the triangle exist
(datum defect) and hence the system of observation
equations formed by the three length measurements has
an infinite number of solutions (Figure 4). It is assumed
that there exists a priori additional information about
the location (coordinates) of points A, B and C, for sim-
plicity shown as squares. The traditional approach is to
use these equations as additional equations in the system
of observations, and solve this system using a conven-
tional generalized matrix approach (Kotsakis 2012).

An alternative approach is to use the additional informa-
tion for the coordinates of the three points as topological
constraints of the unknown variables, as is highlighted in
Figure 4. In this Figure, the possible locations of each
point are shown by squares G, Gg, G¢. The three points
A, B, C should form a triangle of specific shape (structural
constrain). This means that if point A is constrained to
grid Gg, point B can be only in certain parts of grid Gg,
and vice-versa. Hence some parts of these two grids can
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be discarded as possible locations of these points (shaded
areas). The possible combinations of coordinates of A and
B for the same reason permit to discard some parts of grid
Gc. The role of TOPINV is indeed to identify and exploit
the critical combination of the geometry of the triangle
(structural constraint) and of the loci of points A,B,C
(topological constraints).

Alternative solution of underdetermined systems of equations
Among the (infinite) possible solutions for the system of
Figure 3, an unconstrained SVD would lead to a solution
with equal diagonals, a solution characterized by minimum
norm in the differences of the coordinates of the corner
points. This solution, however, requires linearization of the
non-linear equations, and this requires additional (a priori)
information (or constraints) for the unknown variables
(coordinates).

We shall show that a solution to such non-linear prob-
lems is possible without any linearization, simply adopt-
ing the TOPINV algorithm.

A usual problem is to estimate the unknown coordi-
nates of a point M using measurements of distance from
two, three or more points P; of known coordinates; this
is a common problem in conventional Surveying (deter-
mining an unknown position using mapping intersection
techniques), in Seismology (computation of the epicentre
of an earthquake from recordings of seismographic sta-
tions) and in Satellite Geodesy (computation of the un-
known coordinates of a GPS receiver from the measured

-
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Figure 4 A triangle of known shape with information about the possible location of its vertices (square areas). The existing geometric
(structural) constraints for the triangle permit to discard certain parts of the squares as possible locations of A, B, C (shaded areas) and define
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distances of the receiver from the known coordinates of
satellites).

The conventional analytical approach can be visualized
as determination of the area of uncertainty of each
measurement, and then of their intersection. The most
probable value of the location (coordinates) or best esti-
mate of M will be at the centre of the ellipse inscribed
in this intersection area (Mikhail 1976). In a 2-D space,
this of course requires at least two observations of dis-
tance to avoid singular matrices (Figure 5b).

In the case of a single observation of distance, a singular
matrix is obtained, but an a priori knowledge of coordi-
nates of M can lead to additional observation equations
and a redundant system.

A modification of this approach is indeed adopted by
TOPINYV, as explained below.

The geometric locus of M typically is a circle with
centre P; (known point) and radius S (distance measure-
ment; Figure 5a). However, measurement S contains er-
rors, assumed for simplicity random with a statistical
distribution (0, ¢?). For this reason point M is assumed
to be located not in a circle with centre P; (locus of M
in the Euclidean Geometry), but in a ring (2-D space)
bounded by two circles with radii r; =S + ko, ro=S - ko,
with a probability (statistical significance level) depend-
ing on the value of k (Mikhail 1976; Figure 5a).

If additional information for the location of M is available,
i.e. that it is located in a rectangular of uncertainty, the likely
area of location of M will be the intersection of the two loci,
of the ring and of the rectangular (cf. Eq. 4; Figure 5¢). The
centre of gravity of their intersection practically coincides
with the Best Linear Unbiased Estimator (BLUE-type esti-
mate) of M. This approach explains the function of the
TOPINYV algorithm (Saltogianni and Stiros 2012a, b; Harvey
2013). The variance (quality, uncertainty) of the estimator,
however depends on the prior information for point M, i.e.
the quality (accuracy) of the selected grid G.
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These explain that the TOPINV algorithm can be used
for the inversion of underdetermined systems because it
is based on forward computations only (no need for in-
version of singular matrices).

Case studies

The efficiency of this method is demonstrated in certain
problems leading to under-determined systems of equa-
tions, both simple geometric, which permit an easy
visualization, and geophysical. The solution is checked in
comparison to reference (real) values and SVD solutions.

Case study 1: a 2-D linear geometric/survey problem

We examine an underdetermined 2D geometric network
consisting of 4 points. For simplicity and without any
loss of generality, point 1 was selected as the origin of
the coordinate system x-y and points 2 and 4 to lie on
axis y and x, respectively (Figure 6).

The technique adopted is the following. We assumed
we know the real (reference) coordinates of the four
points, and from these coordinates we computed the
distances of points lying on the same axis (linear mea-
surements). Adding random noise (0;=+4 mm) there
were formed three hypothetical (synthetic, surrogate)
measurements of differences of coordinates (x,—x;=
l; + v, etc.; Table 1). We then assumed that four coordi-
nates, y», %4, %3, ¥3 are unknown, but we a priori know
their approximate coordinates, i.e. that they range to
+5 c¢m from the real (reference) values. These observa-
tions lead to a system of observation equations with
configuration defect (underdetermined shape, system).

This system was solved first with SVD and then with
the TOPINV algorithm, and the results were compared
with the reference (true) values.

The four unknown coordinates y,, x4 x3, y3 define a
4-D problem. The additional information of the location
(possible values) of these unknown coordinates permits

(C) Mest\'mated

Py

grid G of TOPINV.

Figure 5 Uncertainty areas and their intersections. (a) A ring defines the uncertainty area (locus) of point M, the distance S of which has
been measured from point P; with standard error o. (b) Schematic representation of the problem of intersection. The coordinates of a point M
are defined from the common space (intersection) of the areas of uncertainty of each observation. The best estimate of the coordinates of point
M is defined as the centre of the ellipse inscribed in this common area (space). (c) Topological estimation of the coordinates of point M as
intersection of the area of uncertainty of M (ring) and a square, reflecting an a priori condition for its location. This last area corresponds to the
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Figure 6 The 4-point 2-D network examined in Case study 1. Arrows indicate the degrees of freedom (possible shifts in corresponding axes).
Observations £; are shown. Point 1 corresponds to the origin and points 2 and 4 lie on the y and x axis, respectively.

to define a search grid G with characteristics summa-
rized in Table 2.

System of equations
The system of equations describing the problem is

¥, =41+ 0
x3—x4 = b+ v }=f;(0) =G +v; or
y3=~¢€+u3
100 0 ? 2 u
01 0 -1 Sl=|t|+|v|24Ax=2C+0
001 o0]]|”? A U3
X4
(13)

This is an underdetermined system of equations of the
type (10) with i=1,2,...,.n=4 unknown variables and
j=1,2,..,m =3 measurements/equations.

Table 1 Coordinates and synthetic measurements of
differences of coordinates in the 2-D network of Case
study 1

Fixed (known) Reference (unknown) Synthetic
coordinates (m) coordinates (m) measurements (m)
X 0.000 Vs 100.000 2, 100.003
Vi 0.000 X3 200.000 2, 99.996
X2 0.000 V3 200.000 23 200.001
Va4 0.000 X4 100.000

SVD solution
At first, an unconstrained SVD solution (i.e. with no a
priori constrains for the unknown variables), was readily
computed from Egs. (13) and is marked as SVD1 in
Table 3. Some of the computed coordinates significantly
deviate from the reference values. For this reason we fo-
cused on a SVD solution using additional information.
We computed approximate values ¥ of the unknown co-
ordinates adding white noise to their reference (true)
values, x; = {100.025, 199.977,200.032, 99.966 }

System (13) was then remodelled on the basis of the
equation

X = X; + 0x; (14)

in order to take advantage of the additional constraints
and is solved for dx; using SVD. Then the estimate £ of
x was computed using Eq. (14). Results are summarized
as SVD2 in Table 3 and are very close to the reference

Table 2 Details of grid G used for the TOPINV inversion
of Case study 1

Coordinates  Reference Grid Spacing  Grid Total grid
coordinates boundaries (m) (mm) points points in G
Yo 100.000 99.950-100.050 1.0 101 101* = 104,
060, 401
X3 200.000 199.950-200.050 101
Vs 200.000 199.950-200.050 101
X4 100.000 99.950-100.050 101
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Table 3 Comparison of the TOPINV and SVD solutions
with the reference values for case study 1

Reference TOPINV (k=0.25) SVD1 SVD2
coordinates (m) ﬁ & &

Vo 100.000 100.003 0.001 100.003 100.003
X3 200.000 199.998 0.028 49.998 199.970
Y3 200.000 200.002 0.001 200.010 200.001
X4 100.000 100.002 0.028 —49.998 99.974

Biased estimates are shown bold. Values in meters.

(true) values of the unknown variables. This is because
the approximate values of the unknown variables were
selected close to the real values. This is practically the
second type of constraints (additional information incor-
porated in the system of observation equations).

TOPINV solution

At first, the system of Eq. (13) was transformed into a
system of inequalities (3) in order to account for the sto-
chastic properties of the measurements, and a 4-D grid
G with all possible values of vector x was formed
(Table 2); this grid consists of 101* grid points in total
and summarizes the additional information available.
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Then it was searched which points (4-D vectors) of G
satisfy inequality (3) for various values of k. The optimal
set S including the solution of the system of equations
for k=0.25 was identified and the centre of gravity of
the grid points of S and their variances were computed
and are shown in Table 3. A close match between esti-
mated and reference (real) values is observed.

Case study 2: a 2-D nonlinear geodetic/geometric problem

We examine another underdetermined 2D geometric
(geodetic) network consisting of 4 points. For simplicity
and without any loss of generality, the coordinates of
point 1 were assumed known and points 1 and 2 were
assumed to share the same abscissa (Figure 7). We as-
sumed known the true (reference) coordinates of the
four points defining the quadrangle, and from these co-
ordinates we computed the lengths of its four sides.
Adding random noise (0; = £4 mm) four synthetic (hypo-
thetical) measurements were formed (Table 4). These
observations lead to an underdetermined system of four
non-linear observation equations (i =1,2,....,m =4) with
five unknowns (j = 1,2,...,n = 5), i.e. a system with config-
uration defect. We then assumed that five coordinates,
Y2, X3, ¥3, X4 Y4 are unknown, but we are priori know

A2

3(2(3,\’3;[

L
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i
.
-
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<
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Figure 7 A 2D geodetic network and the corresponding observations of distances of Case study 2. Red arrows indicate possible
movements of points 2, 3, 4 (degrees of freedom of the system), shaded areas 2-D areas of uncertainty of points. The coordinates of point 1 and

.I
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Table 4 Point coordinates and synthetic measurements of
distances in the examined 2-D network of case study 2
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Table 6 Comparison of the TOPINV and SVDsolutions
with the reference values for Case study 2

Fixed (known) Reference (unknown) Synthetic

coordinates (m) coordinates (m) measurements (m)

X 100.000 )% 200.000 2, 99.996

Vi 100.000 X3 200.000 2 100.002

X5 100.000 Y3 200.000 23 100.003
X4 200.000 2, 99.999
Ya 100.000

that they range to +2.5 cm from their true (reference)
values. The details of the network are described in
Table 5. This system was again solved first with SVD
and then with TOPINYV, and the results were compared
with the reference (true) values.

System of equations
The system of four equations with five unknowns describ-
ing the problem is symbolically described by Eqs (15)

L2 =6 +or (34l =€+vsy_ 0\ _,p
”273H =0+ v ”471” — €4+U4} f/(xz) *€/+U} (15)
SVD Solution

Because the functions fin Egs. (15) connecting unknown
variables x and measurements € are nonlinear, the sys-
tem was first linearized assuming approximate values of
x % = {200.005,199.978,199.986,200.018,99.976} de-
riving from the reference (true) values. Then, based on
the linear transformation x = x + dx, system (15) yields
the linear system

Jox =068+ v (16)
where ] is the Jacobian of f, §€ = f(X) a vector of known
terms, and v a vector of unknown errors. Eq. (16) was
readily solved for §€ using SVD and then the estimate
" of x was computed and is shown in Table 6. ™ is an

Table 5 Details of grid G used for the TOPINV inversion
for Case study 2

Coordinates Reference Grid Spacing Grid Total grid
coordinates boundaries (mm) points points in
(m) G
)% 200.000 199.975- 1.0 51 51° =
200.025 345,025,251
X3 200.000 199.975- 51
200.025
V3 200.000 199.975- 51
200.025
X4 200.000 199.975- 51
200.025
Va4 100.000 99.975- 51
100.025

Reference TOPINV (k=0.25) SVD
coordinates % to I

Yo 200.000 199.997 0.001 199.996
X3 200.000 200.002 0.001 200.002
Y3 200.000 200.001 0.014 199.983
X4 200.000 199.999 0.001 199.999
Ya 100.000 99.998 0.014 99.980

Values in meters.

unbiased and precise estimator of x because ¥ was also
an unbiased and precise estimator of x. This is a solution
corresponding to the first type of accommodation of
additional (a priori) information (see section “A priori
information used for the inversion”).

TOPINV solution

As in the previous Case Study, the system of Eq. (15)
was transformed into a system of inequalities (5), and
the 5-D grid G with all possible values of vector x (51°
grid points in total) was formed under the assumption
that the possible values of variables are in a range
+2.5 c¢m around their reference values (Table 5). Then
on the basis of the TOPINV algorithm it was searched
which set of 5-D points of G satisfy inequalities (5) for
various values of k. The optimum solution was obtained
for k=0.25, and from the set of grid points, their centre
of gravity and variances were computed and are shown
in Table 6. The computed coordinates are very close to
the reference values, and statistically similar.

Case study 3: a 2-D nonlinear geodetic/geometric
problem

In order to confirm that the previous result was signifi-
cant and representative of the efficiency of the TOPINV
method to solve a wide range of underdetermined sys-
tems of equations, a variation of Example 2 is analysed.
A rhomb 1-2-3-4 with known coordinates is assumed.
From these coordinates the side lengths are computed
and white noise (0j=+4 mm) was added in order to
form surrogate measurements of side lengths. The coor-
dinates x;, y; and y3, y;=y3; were assumed known, so
that an under-determined system with configuration de-
fect was formed (Figure 8). Data are summarized in
Table 7. The system of observation equations are as in
section “Case study 2: a 2-D nonlinear geodetic/geomet-
ric problem”, but for j=1,2,...,.n=5 unknown variables
and i = 1,2,...,m = 4 measurements/equations.

SVD solution
The same process as in “Case study 2: a 2-D nonlinear
geodetic/geometric problem” was followed using
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Figure 8 A 2D geodetic network and the corresponding observations of distances of Case study 3. (a) Coordinates x;, y;, 3 are assumed
fixed. Red arrows indicate possible movements of points 2, 3, 4 (degrees of freedom of the system), shaded areas 2-D areas of uncertainty of
points. (b) The subsets of grid points defining the intersection S and which are used to compute the corresponding centers of weight, representing
the best estimates values of the unknown coordinates (red triangles), summarized in Table 8.

approximate coordinates #={150.007, 149.976, 200.015,
150.009, 49.983}. Results are summarized in Table 8 and
indicate that #™ is an unbiased and precise estimator of
x because ¥ was also an unbiased and precise estimator
of x.

TOPINV solution

The methodology followed is similar to that in the previ-
ous Case Study, for a 5-D grid providing the additional
information that possible values of coordinates are in a
range of +3 cm around the reference values (see Table 9).
The solution obtained for k=125 is summarized in
Table 8 and is again very accurate and precise. In Fig-
ure 8b is shown in symbolic visualization the final grid
points in G and the best estimated coordinates.

Case study 4: a 9-D non-linear geophysical problem

We examine a common problem in geophysics-
seismology-geodesy, the modelling of a seismic fault
from observations of displacements of ground stations,
derived from the comparison of pre- and post-seismic
coordinates, usually on the basis of GPS observations.

Table 7 Coordinates and synthetic measurements of
distances in the examined 2-D network for case study 3

Fixed (known) Reference (unknown) Synthetic

coordinates (m) coordinates (m) measurements (m)

X1 100.000 X 150.000 2, 70.7067

)2 100.000 )% 150.000 2, 70.7127

Vs 100.000 X 200.000 2, 70.7137
X4 150.000 2 70.7097
Va 50.000

Seismic faults are defined by 9 parameters constraining
their location and kinematics, and certain highly non-
linear equations permit to relate the fault characteristics
with surface deformation at a selected point on the
ground surface (Okada 1985). Because of the complexity
of the system of equations and the large number of vari-
ables defining a fault (nine variables), fault modelling is
usually based on forward analysis (e.g. Feigl and Dupre
1999).

On the basis of two examples it is shown that the
TOPINV algorithm can invert an underdetermined sys-
tem of equations deriving from GPS observations and
certain a priori constraints for the fault characteristics
and define the fault.

The technique adopted is the following: A certain ref-
erence fault is assumed, and from this fault, the pre-
dicted reference displacements are computed and
regarded as observations; each point (station) contrib-
utes with one observation for each coordinate. In each
of the two cases, an underdetermined system with 9 un-
knowns and 3x2 = 6 observations is hence formed. Some
reasonable a priori constraints for the fault (a range of

Table 8 Comparison of the TOPINV and SVD solutions
with the reference values for Case study 3

Reference TOPINV (k=1.25) SvD
coordinates % to IG

X5 150.000 150.000 0.001 150.003
Vo 150.000 150.000 0.001 149.991
X3 200.000 200.006 0.003 200.015
X4 150.000 150.002 0.002 150.005
Va 50.000 50.003 0.002 50.006

Values in meters.
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Table 9 Details of the grid used in the TOPINV inversion
for case study 3

Coordinates Reference Grid Spacing  Grid  Total grid
coordinates boundaries (m) (mm)  points points in G
X 150.000 149.970-150.030 61
¥a 150.000 149.970-150.030 61
61° = 844,
X3 200.000 199.970-200.030 1.0 61 596, 301
X4 150.000 149.970-150.030 61
Va 50.000 49.970-50.030 61

possible values for each variable) are then made, shown
in Figure 9¢,d (for instance that this centre is located
somewhere in the rectangular of Figure 9a or b), and
then, the TOPINV algorithm is applied. Modelled values
(solution) of the fault characteristics are shown. The
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differences between reference (real) and modelled values,
as well as their standard deviations are shown in
Figure 9¢, d. It is evident that modelled values are statis-
tically non different from the reference values mostly at
the 66% significance level.

These estimates were compared with the correspond-
ing reference values and the results for both study cases
are summarized in Figure 9. This Figure indicates that
bias in results (estimates) is minimum, for in both cases
estimates are usually within 1-0 and only in a few cases
within 2-0 from the reference (true) values.

It must be noticed, that the TOPINV algorithm was not
applied in a single step, because the range of possible values
of the 9 parameters is large. For this reason, and in order to
avoid a huge grid (>10° points) delaying computations, the

possible
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Figure 9 Two cases of modelling of seismic faults with TOPINV algorithm. The inversion was basedon limited GPS observations using a
priori information (constraints to the fault characteristics derived from geological/seismological information). Top (a), (b): two different cases

of oblique strike slip faults. Reference and modelled faults and displacement vectors are shown. Solid lines indicate their surface trace and
rectangulars their projection on the surface. Observation stations are marked with numbers. Shaded rectangles indicate the likely position of the
centre of the fault. Bottom (c), (d): Deviations of estimated values from their reference values (zero lines) and their 1-o0 standard deviations for
each case respectively. Units for each variable are marked on the each variable, also is shown the a priori assumed possible range of values, used
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algorithm was applied first for the grid G shown in Figure 9,
but with a small number of points (large spacing between
grid points). This permitted to identify a compact, convex
space S which contains the solution. This process was re-
peated with a new grid G* covering a smaller 9-D space
than the initial grid G (G* cG) but with finer resolution
around S, and a new space S* was computed. This process
was repeated four times, and the final solution S was identi-
fied, and the estimates of the 9 variables, along with their
variances, were computed.

Discussion

Any underdetermined system is satisfied by an infinite
number of solutions, and various sampling techniques
can identify some of these solutions. The advantage of
SVD is that it offers minimum norm solutions (Strang
2003), the accuracy of which (i.e. their distance from the
“real” solution, see Mikhail 1976) depends on the initial
conditions; if a good approximation of the unknowns is
made, precise and accurate solutions are obtained, as is
highlighted in Example 2.

The main limitation of SVD approach is that it re-
quires linear equations and inversion of matrices, and
this is not possible in highly non-linear systems, for in-
stance in fault and magma source modelling using sur-
face displacement data. Problems of this type are used
on the basis of sampling-based approaches (Pedersen et al.
2003), solutions at steps, with up to two variables solved at
each step (Feng and Newman 2009), or forward modelling
(Feigl and Dupre 1999; for a discussion see Saltogianni and
Stiros 2013). TOPINV (or TGS sensu Harvey 2013) offers
the opportunity to solve such problems using a determinis-
tic topological, quasi-deterministic approach, based on sim-
ple, forward calculations only, avoiding matrix inversion in
the n-D space. In particular, the optimization factor k in Eq.
(5) permits to identify an optimal solution, a minimum
norm solution, not trapped in local minima (see Saltogianni
and Stiros 2012a). Hence it offers an algorithm not subject
to the limitations of the various sampling-based (mostly
Monte-Carlo) approaches (Li 2009).

In reality, what this method permits is to fully exploit
the structural and topological constraints existing in each
system and imposed by the a priori external information
and to identify an n-D closed space containing all possible
solutions. This closed space is approximated by a set of
gridpoints in R" and their centre of weight defines an opti-
mal solution, compatible to the SVD minimum norm-
solution, where this is possible (Case studies 2, 3, 4).
Hence the population of possible solutions of the system
is at first determined with a quasi-deterministic approach,
as intersecting loci, and then the optimal solution is deter-
mined using a simple and efficient stochastic approach.

The concept of intersecting geometric loci, on which
the proposed method is based, is of course not new, and
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has been widely used. For instance, intersections of cir-
cles, planes, spheres, tori are also used to determine po-
sitioning in robotics (Sokolov and Xirouchakis 2006; Ren
and Hong 2009), while sources of sound can be defined
as intersections of hyperboloids (Hardin et al. 2005).

The use of additional, a priori information for the so-
lution is also not new, but TOPINV permits to exploit
this information in a different way: as topological con-
straints to build-up grid G, while in the past this infor-
mation was used either for the linearization of equations
or the formation of additional equations (Brunner 1979;
Prescott 1981; Matsu’ura and Hirata 1982; Jackson and
Matsu'ura 1985; Usai 2003; Kampes and Hanssen 2004;.
Kotsakis 2012). Obviously this approach simplifies com-
putations and permits to identify the closed space of
possible solutions, as is highlighted in section “Methodo-
logical approach” and Figure 5.

Obviously, the degrees of freedom of the system (num-
ber of equations required for a fully determined equa-
tion), the quality of observations (measurements) and
the selection of the grid G influence (better control) the
quality of the final TOPINV solution. Still, as the case
study of “Case study 4: a 9-D non-linear geophysical
problem” indicates, the method seems suitable for very
non-linear systems and systems with a relatively large
number of unknown variables.

The overall approach is possible because it fully ex-
ploits the capabilities of modern computers for searches
in large grids (with > ~10® points, see Tables 2, 5, and 9).
Much larger grids, however, should be avoided, and the
analysis should be made in steps, keeping the number of
grid points below a certain threshold for common com-
puters; larger grids with lower density at first, gradually
leading to smaller, denser grids. This process permits to
identify different clusters of solutions, i.e. different solu-
tions, for each of which a different n-D space S should
be identified.

Limitations

So far it was assumed that a solution in the underdeter-
mined system exists. Clearly, the quality of a solution,
even the possibility of a solution depends on the a priori
conditions. This can be highlighted in Figure 5. In Fig-
ure 5c the intersection of the space defined by internal
constraints (a ring, part of which is shown) and of the a
priori conditions (rectangular) is small and permits a
clear solution, the precision of which increases with the
decrease of the dimensions of the intersection (i.e. the
number of its grid points). If the a priori conditions are
somewhat vague, simulated by a square around the ring
representing the internal constraints (Figure 5a), the
intersection is identified with the ring, and does not lead
to a closed space and a solution. In such cases, a sto-
chastic geometric locus, corresponding to the mean
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radius of the ring can only be computed. In the n-D
space this situation corresponds to a torus or a toroid.

Conclusions

The topological inversion algorithm (TOPINV or TGS),
initially proposed for the solution of redundant systems
of highly non-linear equations was used for certain cases
of “free-net adjustments”, i.e. the solution of a certain
type of under-determined type of systems of equations
by Harvey (2013). Evidence presented above indicates
that this algorithm can be successfully used for the solu-
tion of a wide range of under-determined problems,
such as those found in geophysics (elastic dislocation
modelling of a fault, see “Case study 4: a 9-D non-linear
geophysical problem”).

This algorithm fully exploits the power of modern
computers and the a priori information (constraints)
available for most underdetermined systems and can
lead to a minimum-norm solution, without the need of
matrix inversions.

Notation
Bold characters indicate vectors

n, m: number of unknowns and of observations

: variable

: true value

: approximate value

: TOPINV best estimate,

xT: SVD best estimate

U, € errors

£: measurements

dx: difference between approximate and true value
G: n-D grid

S: subset of G bounding the solution

A: design matrix in a linear system of observations
J: Jacobian of the system of non-linear equations

R R KRR
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