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Abstract

Milk yield and its composition vary according to individual cows as well as to a variety of different environment
conditions, such as temperature. Previous studies suggest that heat exerts considerable negative effects on milk
production and its composition, especially during summer months. We investigate the production and fat
composition of milk from individual dairy cows and develop a modelling framework that investigates the effect of
temperature by extending a traditional lactation curve model onto a more flexible statistical modelling framework, a
generalised additive model (GAM). The GAM simultaneously copes with multiple different conditions (temperature,
parity, days of lactation, etc.), and, importantly, their non-linear relationships. Our analysis of retrospective data
suggests that individual cows respond differently to heat; cows producing relatively high quantities of milk tend to be
particularly sensitive to heat. Our model also suggests that most dairy cows studied fall into three distinct cases that
underpin the variation of the milk fat ratio by different mechanisms.
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Background
It has been well recognised that milk yield and its com-
position vary according to individual cows as well as to a
variety of different environment conditions, such as tem-
perature. Previous studies indicate, for example, that heat
exerts considerable negative effects on milk production.
Extensive efforts have been made to quantify the effect
of heat on milk production, investigating such factors
as humidity, wind speed, daylight length, and tempera-
ture and humidity indices (THIs). The results generally
suggest that heat stress results in decreased milk produc-
tion (Barash et al. 2001; Bouraoui et al. 2002; West et al.
2003; Bohmanova et al. 2007) and altered composition
(Bandaranayaka and Holmes 1976; McDowell et al. 1976;
Schneider et al. 1988); since dairy cows prefer a relatively
cool atmosphere, these findings are logical.
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To investigate the extent to which the variation of milk
production and its composition are driven by individual
differences as well as differing environment conditions,
including temperature effects, a number of modelling
attempts have been undertaken. There are two major
modelling streams: lactation curve models (Wood 1976)
and random regression test-day models (Schaeffer 2004).
The most challenging aspect of modelling is construct-
ing a flexible model that copes with the non-linear nature
of milk production and the individual differences in dairy
cows; the actual functional relationships are far more
complex than simple linear relationships. In this respect,
the lactation curve model is a non-linear model, but it
is not flexible enough to deal simultaneously with indi-
vidual differences and other multiple differing conditions.
On the other hand, the random regression test-day model
is capable of describing both individual differences and
other multiple conditions, but it often restricts its atten-
tion to particular linear relationships.
In this study, we aim to develop a flexible mod-

elling framework that utilises the previous two modelling
approaches. Our modelling framework is built directly
on the lactation curve model. We extend this traditional
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model onto a well-known statistical modelling frame-
work: the generalised additive model (GAM; Hastie and
Tibshirani 1990). The GAM provides enhanced modelling
flexibility that copes with both multiple differing condi-
tions and individual differences, and is therefore effective
in modelling non-linear relationships.
We model the effect of temperature on the yield and

fat composition of milk produced by individual cows. Our
analysis of retrospective data suggests that cows produc-
ing high quantities of milk are sensitive to heat and tend
to decrease their milk production as the ambient tempera-
ture increases. Additionally, most dairy cows studied here
fall into three distinct cases that underpin the variation of
milk fat ratios by different mechanisms.

Results
Models
The composition of milk varies according to individual
cows as well as to different environment conditions. We
investigate two major components of milk production:
(i) the milk yield, y, and (ii) the milk fat ratio, z′, as
recorded in the test-day data (see Materials and methods).
To investigate the extent to which the variation of these
components is driven by different factors, a number of
modelling attempts has been undertaken. These have
utilised lactation curves (Allore et al. 1997; Barash et al.
2001; Bouraoui et al. 2002; Wood 1976) and test-day data
modelling (Bignardi et al. 2012; Kettunen et al. 2000;
Schaeffer 2004), independently fitting a single model to
each component. In doing so, however, these studies have
incorrectly made a model assumption of the error struc-
ture, which may lead to biased inference. We can clearly
see this from the definition of the milk fat ratio:

z′ = z
y
, (1)

where z is the amount of milk fat. Here, the milk fat ratio,
z′, is a function of the milk yield, y, and the milk fat yield,
z. Accordingly, the variation of themilk fat ratio originates
from that of the milk yield as well as the milk fat yield.
In other words, the milk fat ratio is derived from the milk
yield or themilk fat; they are, therefore, always dependent.
We here propose a simple modelling approach that

properly copes with relationship (1). Our model is also
related with traditional lactation curve models as well as
random regression test-day models (see Discussion). We
model the milk yield, yit , and themilk fat yield, zit , (not the
milk fat ratio) from the i-th cow at time t in the natural
logarithmic scale as

log( yit) = αi + aiwt +
∑
j
sj(xjt) + εit , (2)

log(zit) = βi + biwt +
∑
j
tj(xjt) + ξit , (3)

where εit and ξit are respectively independent Gaussian
noise with variance σ 2

εi and σ 2
ξi

between cows, i. The
functions here, sj(·) and tj(·), are smoothing spline func-
tions whose functional form can differ among the covari-
ates, xj’s such as parity, days of lactation, calving month,
amount of concentrate feed, and day length: the various
calving conditions. Some of these can be individual-
dependent, for which the notation should be xijt , but we
drop the subscript i for simplification.
The model here assumes a linear relationship with the

daily maximum temperature, wt . This can be regarded as
a linear approximation of the smooth non-linear function
s(wt) or t(wt). Such an approximation is able to cap-
ture the temperature effect in a parsimonious way; the
effect is now expressed by only one parameter, the tem-
perature coefficient ai or bi that varies among individual
cows, i. A negative value indicates decreased milk or milk
fat production as the maximum temperature increases; a
positive value indicates the opposite situation, increased
milk or milk fat production, because of an increase of the
maximum temperature.
The parameters αi, ai, σ 2

εi and the smooth function sj in
Equation (2) are estimable from the data under the gener-
alised additive modelling (GAM; Wood 2006) framework
(see Materials and methods). In contrast, the parameters
βi, bi, σ 2

ξi
and the smooth function tj in Equation (3) can-

not be directly estimated from our test-day data since
no records of milk fat, zit , are actually available. How-
ever, by noting the relationship (Equation (1)), they can be
estimated through the milk fat ratio, z′, recorded in the
test-day data. Since we know relationship (1), the milk fat
ratio in the natural logarithmic scale can be described as

log(z′
it) = log(zit) − log(yit)

= βi + biwt +
∑
j
tj(xjt) + ξit − log(yit), (4)

where log(yit) is an offset term and ξit is an error term.
We can then fit the models (Equations (2) and (3)) using
the relationship given in Equation (4). A disregard for the
offset term when fitting the model is equivalent to fitting
a single independent model to the milk fat ratio. In doing
so, if models (2) and (3) are correct, an inappropriate error
structure is introduced, by minimising the sum of squared
residuals

∑
i
∑

t(ξit − log(yit))2. As Equation (4) shows,
the correct procedure in parameter estimation should be
to minimise

∑
i
∑

t ξ
2
it , instead.

Temperature effects on individual dairy cows
Temperature has a greater influence on cows that produce
relatively high amounts of milk and fat content. Figure 1
shows the scatter plots of the intercept of milk produc-
tion, αi, (left) and the milk fat yield, βi, (right) against their
respective temperature coefficient, ai or bi. A negative
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Figure 1 Plots of the constants for milk production and themilk fat yield against the respective temperature coefficients. The superposed
dashed line separates individual cows into groups according to whether their temperature coefficient is positive or negative. This negative
correlation between the constant and the temperature coefficient suggests that relatively highly productive cows are sensitive to heat.

temperature coefficient indicates decreased milk or milk
fat production as the maximum temperature increases. A
positive one implies increased milk or milk fat production
due to an increase in the maximum temperature. Each
plot shows a clear negative correlation, indicating that
the cows that are relatively highly productive tend to be
more sensitive to heat andmay decrease their productivity
when the temperature increases. Our results support the
findings of previous studies (Johnston 1958; Bianca 1965;
Barash et al. 2001) as well. They report that highly produc-
tive cows tend to have a relatively high body temperature,
and are therefore more sensitive to heat.

Variation of themilk fat ratio according to temperature
Many farms use the milk fat ratio as an indicator of milk
quality. We rewrite the milk fat ratio, z′, from Equation (4)
as

log(z′
it) = γi + riwt +

∑
j
uj(xjt) + ηit ,

where γi = βi − αi, ri = bi − ai, uj(xjt) = tj(xjt) − sj(xjt)
and ηit = ξit − εit . Figure 2 shows the variation of the
milk fat ratio according to heat; the intercept γi is plotted
against the temperature coefficient, ri. The plot also shows
a negative correlation, indicating that temperature has a
greater effect on the cows that produce milk with a higher
milk fat ratio. A negative temperature coefficient indicates
a decrease in the milk fat ratio, while a positive one indi-
cates an increase in the milk fat ratio when the maximum
temperature increases.
We have found that there are three main scenarios

responsible for a decrease in the milk fat ratio: (1) a
decrease in milk fat and an increase in milk production
(Case 1, bi < 0 < ai); (2) an increase in milk fat and

milk production, but a relatively faster increase in the lat-
ter (Case 2, ai > bi > 0); and (3) a decrease in milk fat
and milk production, but a relatively faster decrease in the
former (Case 3, bi < ai < 0). The reverse three scenarios
are responsible for an increase in themilk fat ratio (Case 4,
ai < 0 < bi; Case 5, ai < bi < 0; and Case 6, bi > ai > 0).
Figure 3 illustrates how individual cows fall into these

six cases, by plotting the temperature coefficient of the
milk fat against the temperature coefficient of the milk
yield. The solid line (bi = ai) separates the individual cows
into two categories according to whether their milk fat
ratio increases (left) or decreases (right) as the maximum
temperature increases. Clearly, most individual cows fall
into one of three cases: Case 1, Case 2, and Case 5. This
underscores the fact that for some dairy cows, heat stress
leads to an increase in the milk fat ratio. However, few of
these cases are caused by an increase in the milk fat yield
(Case 4); most are the result of a relatively faster decrease
in milk production (Case 5).

Response curves of milk production andmilk fat yield
Our model also describes how the milk content responds
to different calving conditions, such as parity, days of lac-
tation, calving month, and day length. Figure 4 shows the
response curve of milk production to each calving con-
dition. The amount of concentrate feed is excluded, as it
is dependent upon the amount of milk produced by each
cow.
The estimated lactation curve is illustrated in Figure 4b.

It shows a typical shape, with a peak around 60 days in
lactation followed by a continuous decline.Madalena et al.
(1979) report that under intensive production systems in
temperate regions such as those existing throughout most
of Japan, the lactation curve reaches a peak in week five to
six of lactation. In general, however, lactation curves differ
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Figure 2 Plot of the constant for the milk fat ratio against the temperature coefficient. The superposed dashed line separates individual cows
into groups according to whether their temperature coefficient is positive or negative. This negative correlation between the constant and the
temperature coefficient suggests that relatively highly productive cows are sensitive to heat.

Figure 3 Scatter plot of the temperature coefficients frommilk production (ai) and milk fat (bi). There are six possible scenarios (cases)
causing a decrease or an increase in the milk fat ratio. These cases are distinguished by the combination of the signs of the temperature coefficients
(ai , bi). Most individual cows fall into one of three distinct cases, Case 1 (28 individuals), Case 2 (37 individuals), and Case 5 (78 individuals).
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Figure 4 The estimated response curves of milk production, sj . Each panel illustrates how the milk yield responds to different calving or
environment factors: a) parity; b) days of lactation; c) calving month; and d) day length. The dashed lines are point-wise twice standard-error bands.

according to region. For instance, the lactation curve of
European breeds becomes practically linear or has a flat
peak (Madalena et al. 1979) in tropical regions; for British
herds, the maximum production normally occurs in week
five of lactation (Wood 1969).
Milk production also varies according to parity and calv-

ing month. Production peaks around the fourth lactation
(Figure 4a). In comparison with days of lactation and par-
ity, calving month had a smaller effect on the lactation
curve (Figure 4c). As Barash et al. (2001) report, the lowest
production occurs in summer, and the highest in winter.
We have also investigated the photoperiod effect, that is,
varying daylight length. Figure 4d shows a slight increase
trend according to longer day length, but its influence is
muted in comparison with parity and days of lactation.
Figure 5 shows the response of the milk fat compo-

nent to the conditions of parity, days of lactation, calving
month, the amount of concentrate feed, and day length.
The responses to parity (Figure 5a) and calving month
(Figure 5c) are similar to those shown by milk produc-
tion; the response curve to parity also shows a peak at the
second to fifth lactation. As Barash et al. (2001) report,
calving month has a smaller effect on the milk fat com-
ponent, with the lowest milk fat yield occurring during
summer. The response of the milk fat component to days

of lactation (Figure 5b) differs most from that of milk
production. The fat component is richest at the start of
lactation, falls sharply until around 60 days, and thereafter
continues to decrease, although relatively more slowly
than in the first 60 days. The effect of daylight length
(Figure 5d) also shows an almost flat trend. The response
curve to concentrate feed increases gradually, indicating
that higher feed intake triggers increased production of
milk fat.

Discussion
Relation to previous studies
Lactation curves
Our model is a direct extension of traditional lactation
curvemodels. The early study of the lactation curve can be
found in Gaines (1927) and Vujicic and Bacic (1961) and
then Wood (1976) refine the traditional lactation curve
model. There have been extensive studies undertaken
since then (Gnanasakthy and Morant 1990; Goodall 1983;
Lannox et al. 1992; Wood 1969; Wood 1972; Wood 1976).
Wood (1976) describes milk yield in a non-linear manner:

yt = atbe−ctηt , (5)
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Figure 5 The estimated response curves of the milk fat yield, tj , with point-wise twice standard-error bands. Each panel illustrates how the
milk fat yield responds to different calving or environment factors: a) parity; b) days of lactation; c) calving month; d) day length; and e) the amount
of concentrate feed. The dashed lines are point-wise twice standard-error bands.
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where a, b, and c are parameters to be estimated and ηt
is an error term. Note that this parametric model is a
function of the time t since calving.
The non-linear model shown in Equation (5) gener-

ally works well, but only takes into account the time
since calving.Many model extensions have been proposed
that allow the parameters to vary according to different
conditions, such as seasonal variation (Gnanasakthy and
Morant 1990; Goodall 1983; Wood 1972; Wood 1976)
regional variation (Gnanasakthy and Morant 1990), and
livestock diet (Lannox et al. 1992).
Our present model provides a more flexible framework,

which encompasses theWood model and its extensions as
special cases. For example, taking a natural logarithm of
Equation (5), it can be written as

log(yt) = log(a) + b log(t) − ct + εt ,

where εt = log(ηt). By comparing this with Equation (2),
and rewriting the time since calving as t = xj′t , we obtain

log(a) = αi + aiwt +
∑
j�=j′

sj(xjt),

b log(t) − ct = sj′(xj′t).

Clearly, our model has extended the lactation curve
model, re-parameterising parameters a, b, and c in a
more flexible manner. This re-parametrisation provides
enhanced modelling flexibility. First, the constant term,
log(a), is able to cope with the variation originating from
factors such as temperature and different calving con-
ditions. Second, the traditional lactation curve is now
described as a nonparametric function, sj′ , the shape of
which can be estimated from the data.

Random regression test-daymodels
Random regression models for test-day data have become
increasingly common in animal breeding research. Our
model is also related to this modelling approach. A large
number of applications can be found in the analysis of the
genetic evaluation of dairy cows; see Schaeffer (2004) for
a concise review of the model in this area. The basic form
of the model consists of three parts: random effects, fixed
effects, and an error term, and these terms are accordingly
described in the model form as

log(yit) =
∑
j
Aijzijt +

∑
j
fj(xjt) + εit , (6)

for the milk yield yit of the i-th individual at time t, for
example. On the right-hand side of the model (Equation (6)),
the first term, random effects, has a linear form, and
each parameter Aij is assumed to be normally distributed
with mean zero (E

[
Aij

] = 0) and a constant variance
(Var

[
Aij

] = σ 2
Aj
); the second term, fixed effects fj(xjt)

(including a constant term f1(1)), can have a linear or

non-linear form (but is often linear); and the error term
εit is the Gaussian error with mean zero, but it is not
identical; the variance of the error differs in individ-
ual cows (Var [εit] = σ 2

εi ), but they are uncorrelated
(Cov [εit , εi′t] = 0 for i �= i′). In the context of ran-
dom regression test-day models, the random effect often
represents two effects, genetic and permanent environ-
mental effects. The construction of the model also relies
on its variance-covariance structure, for which a variety of
structures are available.
Taking zi1t = 1, zi2t = wt (accordingly Ai1 = αi and

Ai2 = ai) and fj = sj, it is clear that the random regression
test-day model becomes almost identical to our model
(Equation (2)) except for the fact that parameter Aij is
assumed to be normally distributed; our model does
not assume any distributions for the parameters, but
instead estimates them for each individual cow as α̂i or
âi(i = 1, 2, . . . , 153). They are fixed effects, in other words.
This is the essential difference between the two models.
However, it is interesting to note that this makes little
difference in the estimation, although it does make a dif-
ference in the prediction. For example, the random regres-
sion test-day models cannot distinguish individual cows
by parameter Aij as we have done and discussed in the
Results section. In contrast, our model cannot give a pre-
diction for absent cows in the data because the individual-
dependent parameters are inestimable for unobserved
cows. There is no single answer of the question of which
model is actually ‘correct’; the choice is largely depen-
dent on the research question. If it aims to predict for
a general population of cows regardless of whether they
are observed or not, then the random regression test-day
model would be more appropriate, but if it intends to
distinguish individual cows, as we have discussed, then
our model becomes a more suitable candidate.

Effects of temperature on individual dairy cows
Our present results highlight the importance of investi-
gating individual differences. Although it is beyond our
present study, it is likely that such differences, even within
the same species, are somehow related to genetic differ-
ences. A number of studies on Holsteins have investigated
the interaction between genotypes and environmental
conditions. Ravagnolo et al. (2000) conclude that consid-
erable genetic variation exists within the Holstein breed.
Our model is, however, still able to cope with such genetic
differences indirectly as a constant effect, allowing the
intercept to differ between individual cows, even though
we have no genetic data to characterise individuals. This
is the virtue of our modelling approach.

Management indications
In comparison with milk production, the variation of milk
fat content is relatively small. Thus, the milk fat ratio
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resembles the reciprocal of milk production, as shown in
Equation (1). This fact vindicates an empirical finding by
Wood (1976). Of course, there is a variety of choices of
which indicator to use for management, and it is abso-
lutely the farm’s choice. If the milk fat ratio tends to be
preferable, the six different scenarios leading to a variation
of themilk fat ratio provide useful indications for manage-
ment planning strategies. Although management actions
to reduce the negative effects of heat cannot be applied to
each individual within a large production system (André
et al. 2011), our present analysis highlights only six dif-
ferent required treatment strategies. Further, these may
be reduced to the three major cases shown in Figure 3.
Appropriate management action can be taken regarding
feed composition and the prioritised allocation of cows in
the barn. For Case 2, in which the production of milk and
milk fat increase, no special treatment is actually required
despite a decrease in the milk fat ratio. The reason for
this is the faster increase of milk production compared
to that of milk fat yield. For Case 5, cows are strongly
affected by heat, but the milk fat ratio increases. The
decreased production ofmilk andmilk fat may be offset by
allocating the cows as cool a space as possible and provid-
ing them with easily digestible and high-calorie feed. For
Case 1, the decreased production of milk fat may be offset
by providing cows with a fat-productive feed.

Concluding remarks
We have presented a modelling framework for milk pro-
duction and its fat component from individual dairy cows
by extending both the traditional lactation curve model
(Wood 1976) and random regression test-day data models
(Schaeffer 2004) onto a more flexible statistical mod-
elling framework, GAM. The GAM allows simultaneous
modelling of various calving conditions in an appropriate
non-linear structure. Ourmodel has shown clear evidence
that cows producing high quantities of milk are sensitive
to heat and tend to decrease their milk production as the
temperature increases. However, some individuals rela-
tively increase their milk production as the temperature
increases.
Our analysis has suggested that the milk fat ratio is

dependent upon and driven by the variation of milk and
milk fat production according to heat. We have identi-
fied six distinct scenarios that underpin an increase or a
decrease in the milk fat ratio. Our results indicate that
efficient managing strategies are required for each group;
varying the feed composition may be effective.
Given the retrospective nature of our study data, we are

unable to determine whether the variation in milk pro-
duction is directly driven by high temperature itself or
whether a high temperature indirectly triggers poor feed
supply. Nevertheless, by revealing different scenarios lead-
ing to a variation in the milk fat ratio, our model provides

useful indications for management planning strategies.
The model can also be applied to milk components such
as the protein yield and protein ratio (also a common indi-
cator of milk quality). Moreover, providing that sufficient
data are available, the model can be used to predict future
milk production and composition.

Materials andmethods
Data
Throughout this paper, we focus on two data sets: (i) the
test-day data and (ii) the environment data, which include
daily maximum temperature records and daylight length
for the studying period (1989–1998) at Jiyu Gakuen Nasu
Farm (36°56′N, 139°58′E) in Tochigi Prefecture, which has
the second-largest dairy cow population in Japan.
The test-day data for individual dairy cows comprise

six items, namely, milk yield, milk fat ratio (the amount
of milk fat is not given), parity, days of lactation, calv-
ing month, and amount of concentrate feed (see Table 1
for the summary statistics). The test is undertaken and
reported every month by the Livestock Improvement
Association of Japan Inc.
We have selected 153 lactating Holstein cows from the

farm for which test-day data are available over a mini-
mum of twelve months. The number of data points vary
according to individual cows; they comprise between 12
and 65 observations in total for each. Those data all are
used to estimate the parameters of the models. The cows
are housed in a covered tie stall barn with no cooling sys-
tem for 20 hours per day. Except when raining, the cows
are generally kept outside from 10 a.m. to 2 p.m. All of
the cows are milked and fed twice daily, at 5 a.m. and
4:30 p.m. Although the amount and composition of feeds
vary depending on cows’ condition, a combination of for-
ages and concentrate feed consisting of carbohydrate and
protein (maize and oats (32%), wheat and rice bran, and
soy (25%), oil cake of soy and coleseed (10%), and others
(33%)) is supplied.
To investigate the effect of temperature, we use the

daily maximum temperature recorded on the day of test-
ing by using a maximum-minimum thermometer in an

Table 1 Summary statistics of the test-day data

Min Median Mean Max

Milk production [kg] 3.20 26.20 26.33 53.00

Milk fat ratio [%] 2.20 3.80 — 7.90

Parity 1.00 2.00 2.58 9.00

Calving month 1.00 8.00 7.03 12.00

Days of lactation 1.00 173.00 176.10 430.00

Amount of concentrate feed [kg] 1.00 10.00 9.52 20.00

The arithmetic mean is shown for all data except for the milk fat ratio, which is
given as a percentage.
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instrument shelter located 20 metres from the dairy barn.
The monthly variation shows a typical unimodal trend,
with a peak of around 30°C during summer and a trough
of around 7°C during winter (Figure 6a). The greatest dif-
ference, around 23 degrees, occurs between January and
July.
The daylight length of each test day is calculated as

follows. Given a solar location on the celestial sphere;
that is, the declination and right ascension (δ(d), α(d))
of a particular date and time, sunrise and sunset times,
d, at a geological location (λ,ψ) on the Earth satisfy the
following equation (Nagasawa 1999):

sin δ(d) sinψ + cos δ(d) cosψ cos t(d) − sin k(d) = 0,

where t(d) = �0(d) + λ − α(d) is the solar hour angle
and k(d) is the solar elevation. The monthly variation of
the daylight length of test days is illustrated in Figure 6b;
it varies within a five-hour difference (between about 9.5
to 14.5 hours) over a year, which is a narrower variation
in comparison with other higher-latitude countries. The
monthly variations also show a typical unimodal trend,
with a peak at June and a trough at December, the sum-
mer and winter solstices. Note that this peak and trough
do not coincide with those of the maximum temperature
(Figure 6a).

Parameter estimation
For ease of exposition, we describe the parameter
estimation procedure, taking the model of milk yield
(Equation (2)) as an example. We rewrite the model using
vector notation as

log(y) = α + aw +
∑
j
sj + ε,

where y = (y11, y12, . . . , y1T1 , y21, . . . , y31, . . . , y153 T153)
�,

for example. The parameters to be estimated here are α, a,

and the smooth function sj. In particular, each sj is mod-
elled by a smooth spline function (Hastie and Tibshirani
1990). We also assume the heteroscedasticity of ε, which
means that the error εit is not identical but uncorrelated
between individual cows; the covariance matrix of the
error, �, is then given as

� = E
[
εε�]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 I1 0

σ 2
2 I2

. . .

0 σ 2
153I153

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where I i is an identity matrix whose diagonal elements are
all 1. Note that the variances σ 2

i , (i = 1, 2, . . . , 153) are
now also parameters to be estimated. As to the covari-
ance matrix structure here (Equation (7)), it specifically
assumes statistical independence within cows over time;
no temporal correlations, in other words, are assumed
which can be relaxed for future model extension.
To estimate those parameters and smooth functions, we

minimise the weighted least squared

ε��−1ε −→ min (8)

under the GAM framework, recalling that ε = log(y) −
(α + aw + ∑

j sj). Here, the diagonal elements of the
inverse matrix are reciprocal of each variance,

{
�−1}

ii =
1/σ 2

i . However, to estimate the variance components, we
have to explicitly model the variance heterogeneity. It
is known that the normalised squared residual follows
the chi-squared distribution with 1 degree of freedom,

a b

Figure 6 Monthly variation of the environment factors for the study period 1989–1998. a) the maximum temperature of the test day; b) the
daylight length (hour) of the test day.
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ε2it/σ
2
i ∼ χ2

1 . As the the chi-squared random variable is
twice a gamma variable with 1/2 degree of freedom, we fit
a simple generalised linear model (GLM; McCullagh and
Nelder 1989) with the gamma distribution, �(1/2, 2), as

log
(
E

[
ε2it

]) = log(σ 2
i ) = τi. (9)

The estimate of variance is then given as σ̂ 2
i = exp(τ̂i).

The estimation algorithm employed is summarised as
follows.

1. Apply Equation (8) with σ 2
i = 1;

2. Repeat steps 3 to 4 until the estimates stop
changing;

3. Estimate τi by Equation (9);
4. Apply Equation (8) with weight

σ 2
i = σ̂ 2

i = exp(τ̂i).

We have conducted the analysis and modelling tasks by a
statistical computing language R (R Core Team 2013).

Model diagnostics
Our models (2) and (4) assume a linear relationship
between the maximum temperature and each of the milk
production and the milk fat as a simple approximation.
We inspect whether the assumption made is reasonably
appropriate by plotting partial residuals which are defined
as

ε̂wit = log(yit) −
∑
j
ŝj(xjt) = α̂i + âiwt + ε̂it ,

ξ̂wit = log(zit) −
∑
j
t̂j(xjt) = β̂i + b̂iwt + ξ̂it .

Additional files 1 and 2 respectively show the partial resid-
ual plots of the milk production, ε̂wit , and of the milk fat,
ξ̂wit , for each cow. We have interpreted these plots as that
the majority of the cows, although there are of course
some exceptions, appear to have a linear relationship with
the maximum temperature rather than non-linear of a
particular form.
To assess the goodness of fit of our models, we plot the

fitted values of the milk production (Additional file 3) and
of the milk fat (Additional file 4) in the natural log scale
for each cow, along with the observations. The superposed
red line in each panel represents the fitted values. Based
on this visual assessment, we regard that while our model
is not perfect, it reasonably represents the data observed.
Although there are some observations lying slightly away
from the fitted value, we for now leave them for further
investigations in the future.

Additional files

Additional file 1: The partial residual plots of the milk production,
ε̂
w
it , for each cow.

Additional file 2: The partial residual plots of the milk fat, ξ̂
w
it , for

each cow.

Additional file 3: The fitted values of themilk production in the
natural log scale for each cow, along with the observations. The
superposed red line in each panel represents the fitted values.

Additional file 4: The fitted values of themilk fat in the natural log
scale for each cow, along with the observations. The superposed red
line in each panel represents the fitted values.
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