Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

® SpringerPlus

a SpringerOpen Journal

RESEARCH _____________ OpenAccess]
Vertex collocation profiles: theory, computation,

and results

Ryan N Lichtenwalter'”" and Nitesh V Chawla'?

Abstract

science, particularly link prediction.

We describe the vertex collocation profile (VCP) concept. VCPs provide rich information about the surrounding local
structure of embedded vertex pairs. VCP analysis offers a new tool for researchers and domain experts to understand
the underlying growth mechanisms in their networks and to analyze link formation mechanisms in the appropriate
sociological, biological, physical, or other context. The same resolution that gives the VCP method its analytical power
also enables it to perform well when used to accomplish link prediction. We first develop the theory, mathematics,
and algorithms underlying VCPs. We provide timing results to demonstrate that the algorithms scale well even for
large networks. Then we demonstrate VCP methods performing link prediction competitively with unsupervised and
supervised methods across different network families. Unlike many analytical tools, VCPs inherently generalize to
multirelational data, which provides them with unique power in complex modeling tasks. To demonstrate this, we
apply the VCP method to longitudinal networks by encoding temporally resolved information into different relations.
In this way, the transitions between VCP elements represent temporal evolutionary patterns in the longitudinal
network data. Results show that VCPs can use this additional data, typically challenging to employ, to improve
predictive model accuracies. We conclude with our perspectives on the VCP method and its future in network

Keywords: Link prediction; Network analysis; Graph theory; Isomorphism

Introduction

A vertex collocation profile (VCP) is a vector describ-
ing all isomorphically distinct collocations of two vertices
within all possible isomorphism classes of three or more
vertices. Just like ordinary isomorphism concepts, VCPs
generalize naturally to directed, multirelational struc-
tures. VCPs are superficially similar to both local triangle
counting (Becchetti et al. 2010; Davis et al. 2011) and motif
analysis (Milo et al. 2002), but the theory and methods
presented here are distinguished even at a superficial level
by non-trivial generalization to structures encompassing
direction, multiple relations, and any number of vertices.
In detailed study, VCPs are strikingly differentiated by
their incorporation of isomorphic equivalence and vertex
pair collocation.

*Correspondence: rlichten@nd.edu

1 Interdisciplinary Center for Network Science and Applications (iCeNSA), The

University of Notre Dame, 384 Nieuwland Hall, 46556, Notre Dame, USA
Department of Computer Science, The University of Notre Dame, 384

Fitzpatrick Hall, 46556, Notre Dame, USA

@ Springer

Among other tasks, VCPs are particularly suited to link
prediction, since links are described by two vertices of
interest. Link prediction is the task of inferring links in
a graph G4 based on the observation of a graph G;. It
may be that ¢t + 1 follows ¢ in time, or it may be that
t+1 represents some other modification of the graph such
as including additional links from expensive experiments
(Getoor and Diehl 2005). Link prediction stated in this
manner is a binary classification task in which the posi-
tive class comprises links that form and the negative class
comprises links that do not form. Many existing link pre-
diction models compress a selection of basic information
in theoretically or empirically guided ways. By contrast
VCPs restrictively represent the local topological informa-
tion describing the embedding of the source and target
vertices. VCPs also apply naturally to multirelational net-
works and can thereby encode a variety of additional
information. This includes even continuous quantities,
such as edge weights, via quantization. We demonstrate
the effectiveness of VCPs in link prediction with purely
structural information. Then we show how VCPs can

© 2014 Lichtenwalter and Chawla; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

incorporate temporal information, notoriously difficult to
model effectively, to achieve further remarkable increases
in performance.

Related work

The fundamental idea of counting structural forms in a
network to better understand its properties is not new.
Motif analysis (Milo et al. 2002) analyzes the prevalence
of structural forms in different types of networks to look
for statistical signatures that provide information, such
as taxonomic designations, about the network. Counting
graphlets, connected induced subgraphs, to which a node
is incident (Przulj 2007) has already been used for a vari-
ety of descriptive and analytical purposes in networks.
The method described in (Davis et al. 2011) counts par-
tially closed multirelational triads anywhere in a graph
and then computes the conditional transition probability
of the triad closing with the link type of interest. Unpub-
lished at the time of the original exposition of VCPs,
the triad transition matrix (TTM) approach Juszczyszyn
et al. (2011a, 2011b) is similar to (Davis et al. 2011) in
that triadic transition probabilities are used to construct
a score. VCPs are subtly but critically distinguished from
(Davis et al. 2011) and TTM in the same manner: they do
not employ transition probabilities either directly or indi-
rectly but rather describe the collocation of vertex pairs
within subgraph isomorphism classes embedded within
the network topology.

The vanilla task of link prediction as we have defined it
has a wealth of supporting literature, and it would be im-
possible to cover it all here. Liben-Nowell and Kleinberg
offered a seminal guide to the topic in (Liben-Nowell
and Kleinberg 2007). The work most directly related
uses structural forms to inform transition probabilities
Juszczyszyn et al. (2011a, 2011b). VCPs take advantage of
the supervised classification framework in (Lichtenwalter
et al. 2010), which involves undersampling, bootstrap
aggregation, and random forest or random subspace clas-
sification algorithms by substituting the simple feature
vector derived from topological analysis with the VCP.
There are several other supervised classification frame-
works (Al Hasan et al. 2006; Wang et al. 2007) for link
prediction that use basic topological characteristics, unsu-
pervised link predictors, node attributes, and other infor-
mation to construct their feature vectors.

Since we venture to incorporate temporal information
into our models, this research niche in link prediction
also merits some discussion. In several studies of link pre-
diction, authors have used longitudinal data, a series of
events with timestamps of varying resolution that
describes a network evolving through time (Liben-Nowell
and Kleinberg 2007; Lichtenwalter et al. 2010; Murata and
Moriyasu 2007; Scellato et al. 2011; Sharan and Neville
2008), to perform link prediction without actually using

Page 2 of 27

the temporal component in their models. One recent
work attempts to answer the question of when rather
than if a link will form in the future (Sun et al. 2012).
Also distinct are works that perform general modeling
based on temporal link analysis, which has a broader sup-
porting literature (Amitay et al. 2004; Hill et al. 2006).
It is much less common to actually consider the tempo-
ral dimension as a factor in constructing link prediction
models due to the difficulty of creating representations
and models that effectively incorporate time (Hill et al.
2006). (Liben-Nowell and Kleinberg 2007) briefly consid-
ers methods of treating temporally delineated periods.
The only publications of which we are aware that directly
address the problem of predicting links using tempo-
ral information are (Acar et al. 2009) and (Qiu et al.
2011). The authors of (Acar et al. 2009) achieve predic-
tions by applying factorizations to third-order tensors, in
which the complete link structure is contained in two
of the dimensions as it exists at discrete temporal inter-
vals indicated by the third dimension. Alternatively, they
describe a method of collapsing the temporal informa-
tion into a weighted two-dimensional link representation
on which they subsequently perform matrix factorizations
to achieve predictions. The authors of (Qiu et al. 2011)
extend the framework proposed in (Lichtenwalter et al.
2010) to incorporate two compressed features extracted
from the longitudinal data, which they term activeness
and recency. In (Juszczyszyn et al. 2011a) and (Juszczyszyn
et al. 2011b), the authors use the mean value of triad tran-
sition matrices from multiple time windows, and thus they
do not actually benefit from temporal changes in network
dynamics evident in the underlying longitudinal informa-
tion. To our knowledge, ours is the first work to use mul-
tirelational models to encode temporal information for
the purpose of performing data-driven predictions with
machine learning algorithms. We employ VCPs to accom-
plish this. By encoding temporal information as multiple
edge types in a multirelational graph representation, we
can take advantage of the power of VCPs as a sophisti-
cated multirelational modeling technique to incorporate
trends in network evolution directly into our models.

Contributions

This work offers several improved and expanded treat-
ments of vertex collocation profiles compared to our
work in (Lichtenwalter and Chawla 2012). In addition to
a significantly generalized and more formal theoretical
treatment, this work provides the following specific areas
of new coverage. It generalizes the formulation of vertex
collocation profiles to unify handling of undirected
multirelational and directed multirelational networks.
Simultaneously, it expands upon the original limited
treatment of directionality so that the theoretical cover-
age of directed structures is as complete and rigorous as

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

for undirected structures. We offer a formal definition of
graph isomorphism and use it to provide and elucidate
an equally formal definition of vertex collocation profiles.
Accompanying this theoretical generalization are new
source code offerings that allow users almost unrestricted
freedom in scaling their computations to large, highly
multirelational networks. We overcame some of the
complexities of combinatoric explosion faced in highly
multirelational networks by opting for memoized dyna-
mic computation of isomorphisms. This has allowed us
to apply vertex collocation profiles to networks with
hundreds of different relations. We briefly demonstrate
how statistical properties of structural presence make
this feasible in time and space for most large, sparse net-
works using a worst-case random graph model. Finally,
we select the incorporation of longitudinal information as
a challenging problem in which vertex collocation profiles
can offer new insights. We choose to view longitudinal
data from a multirelational perspective and show that
the incorporation of temporality in this way with vertex
collocation profiles offers striking benefits in predictive
efficacy.

All theory in the paper is distilled into clean, opti-
mized implementations of asymptotically optimal algo-
rithms in C++. The source code is freely and publicly
available at https://github.com/rlichtenwalter/vcp. We
have also incorporated VCP algorithms into the LPmade
(Lichtenwalter and Chawla 2011) link prediction software
freely and publicly available on MLOSS at http://mloss.
org/software/view/307/.

Organization

We first offer a new, more general formal definition of
vertex collocation profiles in Section “Vertex collocation
profiles”. We describe how graph isomorphism relates
to our work, and we provide the relevant mathemat-
ics and theory to take the reader from a definition
of graph isomorphism to a definition and mathemat-
ical implementation of vertex collocation profiles. In
Section “Algorithms”, we move to a description of two
simple and slow but general and easily understood algo-
rithms. Then, we provide faster, more sophisticated algo-
rithms and describe how and why they work. Having
laid the foundation for understanding and implement-
ing the techniques, we move to demonstrating that
they are highly predictive, and Section “Data” intro-
duces and describes the data sets employed to that
effect. In Section “The VCP method and link prediction”,
we demonstrate the impressive performance of VCP
vectors in supervised link prediction. Finally, Section
“VCPs and multirelational data” expands our empirical
coverage by showing how the inherent multirelational
nature of vertex collocation profiles is useful by success-
fully tackling the challenge of incorporating temporality in

Page 3 of 27

predictive models. We offer some concluding remarks in
Section “Conclusions”.

Vertex collocation profiles

Formally, a vertex collocation profile (VCP), written as
VCP;Y “is a vector describing the relationship between
two vertices, v; and v}, in terms of their common member-
ship in all possible subgraphs of n > 3 vertices over r > 1
relations, R, with d € {0 = undirected,1 = directed}
directionality. A VCP element, VCPZ}r’d(x) is defined as a
distinct embedding of v; and v; within a particular isomor-
phism class of n vertices and is represented by a uniquely
addressable cell in the VCP vector. Figure 1 illustrates the
first 16 elements of VCPi’tl’l. When referring to a VCP
vector generally and not with respect to specific vertices,
we can write VCP""4, excluding the subscript.

We can encode the connectivity in any multirelational
network of r relations and d directionality with 2@+Dr
different types of connections. Notably, we consider total
lack of connectivity as itself a type of connection. Undi-
rected unirelational networks exhibit two types of con-
nectivity: existent and nonexistent. Directed unirelational
networks exhibit four types of connectivity: nonexistent,
outward, inward, and bidirectional. We choose not to con-
sider self-loops in this treatment for clarity, but including
them is theoretically and practically trivial.

The cardinality of VCP""* depends upon the num-
ber of vertices, n, the number of types of relationship
between them, r = |R|, and whether or not direction-
ality is considered, d. The space grows exponentially in
the number of vertices with the base as the cardinal-
ity of the power set of undirected or directed relations.
To explore this growth, we define a subgraph universe as
the instantiation of G with a specific (1, r,d) tuple so
that the universe encompasses the collection of all pos-
sible subgraphs with # labeled vertices, r relations, and
d € {0 = undirected, 1 = directed} directionality. Impor-
tantly, G""¢ differs from VCP"" in that the former has
n labeled vertices and does not collapse isomorphically
equivalent structures, whereas the latter has 2 labeled ver-
tices and collapses isomorphisms on unlabeled vertices. It
always holds that |G| > |VCP""|.

Equation 1 describes the number of subgraphs in G4,
The base, 2(4+D", is the cardinality of the power set of
edge types. The exponent, “ ("2_ D describes the number
of vertex pairs across which edges may be present.

(n—1)
|Gn,r d (2(d+1)r) 2)

— 9an(=1(d+Dyr

1)

Table 1 illustrates the number of subgraphs respecting
vertex identity that compose a VCP given different values

https://github.com/rlichtenwalter/vcp
http://mloss.org/software/view/307/
http://mloss.org/software/view/307/

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 4 of 27

O O
® 0O 60—

g0 &
4,0 &
4,0 G

O O
O ONOSO

b0 &
b0 &
b0 G

Figure 1 Elements 0 through 15 of VCP;”,':”. Elements 16 through 63 are identical to their modulo 16 counterparts except for the presence of an

out-edge, in-edge, or bidirectional edge connecting v; to the free vertex.

of n and r with d = 0. This is a matrix of outputs from
Equation 1.

The number of subgraphs grows at a rate exponential in
n and r, and incorporating directionality exacerbates the
growth. The rate of growth of VCP vector cardinalities is
much slower due to superlinear increases in the isomor-
phisms with increasing #, but VCP cardinality nonetheless
grows quickly. Fortunately, the most important informa-
tion is typically located close to the source and target
vertices and is easily captured with small #, and many
networks have only a few types of relationships.

Isomorphisms

Isomorphic graphs are structurally equivalent graphs
that vary in appearance only based on the identities
of constituent vertices. More formally, we say that two
multirelational graphs G = (V,Ey,...,E;) and G =

Table 1 Number of subgraphs composing VCP for values
of nand rwithd =0

1 2 3 4
n
3 8 64 512 4096
4 64 4096 262144 17 x 107
5 1024 1048576 1.1 % 10° 1.1 x 10"
6 32768 1.1 x10° 35 % 1013 12x10'8

4 7
(V' EL,..
function

.,E,) are isomorphic if there exists a bijective

f:V— V' |Vkell,r],wv) € Ex < (f(w),f(v) EE;(
2)

and we can write G >~ G'.

Isomorphism classes are sets of differing size containing
all graphs within a given universe G that are isomor-
phic to a particular exemplar G € G™", We can view this
formally as

IC(G) = {G’ |G e G AG ~ G} 3)

VCP elements are closely related to isomorphism
classes. In Figure 2, it is impossible to distinguish sub-
graph 2 from subgraph 4. These subgraphs map to the
same VCP element, VCPf,’tI’O (2), and the count of that
element is the sum of the counts of the isomorphic sub-
graphs.

Isomorphisms that require a mapping between v, and vy,
for instance subgraph 2 and subgraph 16 in Figure 2, do
not share the same VCP element even though they reside
within the same isomorphism class. VCP elements ignore
isomorphisms that require mapping v; to v; because VCP
describes the local embedding of these two explicitly iden-
tified vertices. In undirected graphs, elements such as

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 5 of 27

: {0} 5: {7}
{1} 6: {8,16}
{24} 7:{9,17}
. {35) 8 {10,20}
{6} 0 {1121}

4,1,0

- W N = O

Figure 2 Subgraphs 0 through 31 from VCP

6.6 00 6,0 &0 &0 o Ho &s
020 oy b bo 6 oo B &
0,6 b b5 bbb o2 b &
b oxb 3 6 o o &b &

10: {12,18} 15: {25}
11: {13,19} 16: {26,28}
12: {14,22} 17: {27,29}
13: {15,23} 18: {30}
14: {24} 19: {31}

<t and the mapping of isomorphic subgraphs to VCP elements. Structures 32 through 63
include a connection between the two free vertices and create 20 additional elements.

VCPi’tl'0 (4) and VCPi’t1 ’0(14) together supply information
regarding symmetry or asymmetry in the density of the
embedding of v and v;. The distinction in directed graphs
is more obvious and relates to the potential significance
of the difference in the local topologies of the source of a
new link and its target. Figure 2 shows all the subgraphs
pertinent to VCP*1: and their corresponding mappings
to elements.

Thus we can say that VCPZ}r’d(x) CIC(G™"(x)), and we
can say that two multirelational graphs G=(V, E, ..., E;)
and G' = (V',E},...,E,) are VCP-isomorphic with res-
pect to s and ¢ if there exists a bijective function f; s

SV = V' IVke[L,r], (u,v) € Ex < (f(w),f(v) € Exn
V=_{st]UVAV =t} UV Af(s) =sAf(t) =t
(4)

Determining the cardinality of VCP™"* is related to the
complex problem of determining the number of isomor-
phism classes in a graph of n vertices. In VCP?>", each
enumerated subgraph maps uniquely to a VCP element.
vs and v; are not mappable, and there is only one permu-
tation of the remaining vertex. In VCP*", there are two
mappable vertices and two permutations of those vertices.
The number of mappable vertex permutations in VCP""%
is described as (n — 2)!, and the interaction of permuta-
tions with the appearance of isomorphisms is complex.
The derivation of a general formula for |VCP™" 4| for all
n, r, and d is extremely combinatorially involved. We have

instead provided software that computes VCP cardinal-
ities and subgraph-to-element mappings for n € [3, 00),
r €[1,00),and d € 0, 1. Table 2 shows the cardinality of all
undirected VCPs with fewer than a million elements, but
we shall demonstrate how it is possible in practice to per-
form analysis using VCP vectors with cardinalities many
orders of magnitude greater than this.

Addressing

We define a VCP addressing scheme similar to the iso-
morphism certificate addressing scheme in (Kreher and
Stinson 1999). The address space for the subgraphs from
which the elements are derived is constructed by assign-
ing r bits to each cell in the subgraph adjacency matrix
and defining a significance value for the cell. The value of
each edge in the matrix is defined as the index of the lexi-
cographically ordered power set, P(R), corresponding to

Table 2 Cardinality of VCP;'}"O forvaluesof nand r
resulting in fewer than one million elements

r

1 2 3 4 5
n
3 8 64 512 4096 32768
4 40 2176 133120
5 240 183040 -
6 1992 -
7 24416

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

the ordered set of R relations on that edge. Significance
is assigned in increasing lexicographical order above the
principal diagonal starting with e;» and ending with
en—1,- Figures 1 and 2 demonstrate the indexing scheme
for two different values of # and r. For any selection of ver-
tices Vs=1, V¢=2, V3, . . ., Vy, this addressing scheme will map
the resulting multirelational subgraph to an index that
exists within a set of indices of isomorphic structures. The
procedure is defined and described more formally below.

Assume a square matrix .4 of order n representing adja-
cency of the following form with subscripts {i,j € N : i <
l’l,j < n}

A= {a,;,» eN: ajj = 2r} (5)

in which cells indicate members of P (R). In particular a;;
corresponds to the binary-coded integral value of the bits
denoting membership in the lexicographical ordering of
R.

Define a square matrix V of order n to represent the
value of edges. This matrix will be used to provide a
unique address for A through the grand sum of the
Hadamard product of A and V. For undirected net-
works, we define a matrix symmetric across the principal
diagonal

(D=3 =D D ey
v eNv =10 ifi=j
2(=D=3G=DGHD+=2)r ;o

(6)

to represent edges valued in increasing lexicographical
order of their incident vertices. This matrix takes the fol-
lowing form, with each cell reserving r bits for the 2"
possible relations that may occur on the edge.

0 1 2 2% 201=2r 7

1 0 2(n71)r onr - 2(2;174)}”

or z(nfl)r 0 2(;173)}" . 2(3n77)r

V= 22r onr 2(n—3)r 0 . 2(4n—11)r
_2(n;2)r 2(2n‘—4)r 2(3n'—7)r 2(4n;11)r 0]
(7)

The symmetric property of V in the undirected case
allows for symmetry in subgraphs with vertex permu-
tations that cross the principal diagonal. For directed
graphs, this symmetry is broken in vertex permutations
and this must be reflected within the value matrix.

2(=D=3(=DEDH-2)r if § ¢
V={vjeNly;=10 if i=j
22(1G=D=3G=DGHDH=2)r+r if 5

(8)

Page 6 of 27

Each cell still reserves r bits to represent the 2" val-
ues in P(R), but an additional 2" bits are reserved across
the principal diagonal to represent P(R) in the opposite
direction giving the value matrix the following form.

— 0 1 22r 24r . 2(27174)}" -1
or 0 2(27172);" 22nr . 2(4n78)r
23r 2(2n71)r 0 2(4n76)r . 2(6n714)r

V= 957 9@n+lr o(n—5)r 0 . p(8n=22)r

_2(2;1.—3)}’ 2(471.—7);’ 2(6n;13)r 2(8n;21)r 0]

)

Given the matrix A for multirelational adjacencies and
the matrix V for edge values, we can compute the address
W (Gy) of any subgraph G, € G™" 4 as the grand sum of
their Hadamard product

V(Gy) = Z Z (vij - aij)

i=1 j=1

(10)

This provides a complete addressing scheme for any
number of subgraphs with any number of relations with or
without directionality. To construct isomorphism classes
within this addressing scheme, we start with a mapping
vector

K={meN:m=i} (11)

and execute all permutations of IC from i = 3toi = n,
which we define as the set K3 . The exclusion of i = 1
and i = 2 from permutation excludes isomorphisms that
result from mappings between v; and v;. Each permuta-
tion corresponds to an isomorphic subgraph within the
isomorphism class containing all of the permutations. To
determine addresses for the permutations, we compute

G = 33 (v)

i=1 j=1

(12)

We can define a canonical subgraph representative
within an isomorphism class as

n o n
X1 \I—’(Gx) = argmin Z Z (V,’J . algg’n(i)’;cg,n(j))

i=1 j=1
(13)

The set of canonical subgraph representatives as defined
by the application of K3, to A in G is precisely the
set of VCP""“ elements. The addresses for elements in
VCP*10 are provided in Figure 2. Because manual iden-
tification of isomorphism classes is error-prone and dif-
ficult especially as the number of subgraphs increases,
we have provided a program that outputs the mapping

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

from all subgraph indices to their corresponding element
addresses for all VCPs.

Directionality

Directed networks with r relations are theoretically and
practically distinct from undirected networks with 2r
relations. The subgraph-to-element mapping differs with
directed networks because .4 and V are no longer sym-
metric. This introduces more isomorphic equivalences
and decreases the cardinality of a directed VCP vector
by comparison to its undirected pseudoequivalent, a fact
demonstrated in Figure 3. For instance, VCP*LL contains
only 2112 elements whereas its undirected pseudoequiva-
lent, VCP*20, contains 2176 elements.

Dynamic vs. static computation
With matrices A and C and mapping vector X, we have
described the means by which one can generate the set
of elements in an isomorphism class and the canoni-
cal representative of that class. We can enumerate the
subgraph-to-element mapping by constructing the uni-
verse of A indexed in lexicographically increasing order,
computing the canonical isomorphism class representa-
tive for each 4, and mapping the index to a contiguous,
increasing value of VCP elements. This static computation
determines VCP elements and addresses so that when a
particular subgraph is identified, its VCP vector element
may be determined with a constant-time operation in a
precomputed vector.

As n and r increase, the number of subgraphs makes
this static precomputation infeasible. We know from

-5

1364 2388

%z

1364 2388

Figure 3 Subgraphs and their addresses from VCP*"! (top) and
VCP*290 (bottom). The directed subgraphs (1364 and 2388) both
map to VCP4!1(884), but the multirelational subgraphs (1364 and
2388) map to VCP#%0(792) and VCP#%0(1336) respectively.

Page 7 of 27

Equation 1 that enumerating members of G is an
O (2 n(n—1)(d+Dr
2

representative of an arbitrary subgraph is an O(n!) oper-
ation, because |K3 | = (1 — 2)!, but all subgraphs dis-
covered in the process no longer require the computation,

operation. Determining the canonical

n(n=1(d+Dr .
so O <2 2) necessarily bounds the total cost. Even

n(n=1)d+r
2

so, with a complexity of O (2 , higher values of

n and r make precomputation intractable. Even if compu-
tation were tractable, the size of the data structure may
exceed memory and the size of the mapping may even
exceed disk space.

Enumerating subgraphs and determining their isomor-
phism class is prohibitively expensive in many ways, but
it is also unnecessary. We can instead dynamically com-
pute the canonical representative of a given subgraph
in G""? when we first observe it. Since we have not
enumerated potential preceding VCP elements and since
subgraph addresses of the canonical representatives may
be extremely large as n and r grow, we cannot convert
this canonical representation into a contiguous, invert-
ible VCP element index and are thus forced to use an
associative data structure with O(log#) rather than O(1)
time lookup during counting. In losing this ability, how-
ever, we gain the ability to compute and represent VCP
output in main memory so long as the population of the
VCP vector is sufficiently sparse. In Section “Extension
to complex networks”, we show that this sparsity require-
ment will almost always hold regardless of the (u,7,d)
tuple.

Algorithms

We have just described methods whereby the elements in
a given VCP vector may be either enumerated or deter-
mined dynamically during counting. We now describe
how to count the number of times each (v, v;) pair
appears embedded in a certain isomorphism class. We
begin by introducing two algorithms that cover the sim-
plest case where n = 3. Then we cover algorithms for
the much more complicated case where n = 4. Several of
the algorithms assume undirected graphs as input to sim-
plify exposition, but all are easily generalizable to accept
directed graphs.

For purposes of complexity analysis, we assume an
underlying ordered compressed sparse row graph rep-
resentation. This enables O(|V]) iteration through ver-
tices and edge searches in O (log(IF(Vi)I)) time, where
I'(v;) represents an ordered set of the neighbors of
vi. The appearance of I' in algorithms presents prob-
lems for complexity analysis, because the expectation of
Zv,-er(v,-) IT'(vj)| is dependent on the kernel rather than
just the first moment of the degree distribution of the
graph (Jurgen and Carley 2012). Though the first moment

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

of the degree distribution must always be % in either

undirected or directed graphs, the distribution is often
Poisson, log-normal, power law, or double Pareto log-
normal (Reed and Jorgensen 2004), some of which pos-

2
sess expectations such that Zv,-el"(vl-) Tl > (%) .

The strict approach is to admit a worst-case distribu-
tion describing a star, correspondingly recognize that
Vv, € V Zvl,er(w)lr‘(vjﬂ = |V]|, and state |[T'(v;)| =
O(]V]). We shall make the relaxed assumption, for more
discriminative complexity analysis, that the distribution
possesses a uniform kernel with expected value 2||7E‘|, and
El\ . .
hence [T(v;)| = O(H) implying 3, cr, IT0)| =
2
0] <<2|E>) Then the approximation error in the case

Vi

of an adversarial kernel is readily quantified as | V| — %,

reaching its maximum in sparse graphs when |E| = |V]|
and its minimum in dense graphs when |E| = |V|%.

Throughout the algorithms, ®(P(R),e;;) refers to a
procedure to determine the index of the multirelational
edge e;; in P(R), the lexicographically ordered power set
of relations. This procedure can derive power set indices
efficiently by setting individual bits in the index according
to the presence of the relation corresponding to that bit
and indexing the bits by the natural order of the relations
themselves. It is possible to maintain integers representing
the power set index in the graph representation to allow
accomplishing this in O(1) time.

Algorithm complexities are stated in terms of the time
requirement for pairwise-independent VCP vector gen-
eration for a single pair of vertices. The edge search
operation is implicitly indicated in the algorithms when
e;j appears, and it refers to the query for an edge between
viand v;.

vcp3"d Algorithms

We begin by covering a member of the most naive class
of algorithms, represented by Algorithm 1. This algo-
rithm is worth studying for three reasons. First, this
algorithm is trivially generalized to any value of n by
introducing an additional loop for each additional ver-
tex and accumulating corresponding information about
the new vertex pairings that become possible. Second,
this algorithm most transparently describes the goal of
the computation and is thus instructive for understand-
ing the nature of VCP vectors. Third, for moderate values
of n, the clarity of these algorithms allows for the produc-
tion of test output with which to write more sophisticated
algorithms.

Though it offers conceptual advantages, this algorithm
is unacceptably slow. Since it must loop through the
set V to compute the vector, it requires O(|V]) edge
searches. We can easily generalize this complexity for

Page 8 of 27

Algorithm 1 VCP3>"! (Naive)

Input: graph G = (V,E),
relations R : r = |R|,
i:vieV,
jivieV

Output: VCPi}r’l

1 0 < ®(P(R),ei))

2 0 < CD(P(R), ej,j)

3 fork:vie VAk#ink #jdo
4: Oik < CD(P(R),e,;k)

ojx < ®(P(R), ejx)

oxi < P(P(R), ex)

Gk,j <~ q)(P(R)) ek,j)

A< 2% + 2Voyp + 2% 05 + 2% 0 + 2V 0y +
25r6k,j

9 VCPI''[A] « VCP' Al +1
10: end for

11: return VCP?;”1

® XN o

the entire class of naive algorithms for any #n. With each
incrementation of #, we add an additional loop through
the set V, yielding an Q(|V|"~2) time, but we must also
perform a number of operations in each inner loop related
to the number of containing loops. The number of opera-
tions in the directed case and the asymptotic reduction in
n and V applying also to the undirected case are written
as

24+) VP22 —1) =0 (n- V") (14)

x=3

where the subscript x expresses each successively nested
loop. The cost of the edge search operation has already
been described as O(log|I‘(vi)|), and substituting the

0] (log %) approximation yields a general complexity for

the naive class of algorithms of O (n V"2 . log %)

For Algorithm 1, the time complexity is O (| Vllog “Evll)

Fortunately it is possible to do much better. We can
recognize that, excluding the connection between v, and
v¢ from consideration, connected structures must include
members of I'(v;) or I'(v;). All structural counts are dic-
tated by the cardinalities of the sets resulting from taking
the differences and intersection of these. We can simul-
taneously account for unconnected structures by sub-
tracting their union from V, excluding vs and v; from
the result, and taking the cardinality of the remaining
set. Algorithm 2 formalizes the undirected variant of
the procedure.

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 9 of 27

Algorithm 2 VCP310 Algorithm 3 VCP*"0 (Naive)

Input: undirected graph G = (V, E), Input: undirected graph G = (V, E),
i:vieV, i:vieV,
j:VjGV j:VjEV,

Output: VCP?:}"O

—

Oij <~ 0
ifei,j € E then opj <1 end if
3 VCP}/0[2% 03 4 0] < [V — (T (i) UT (%) U {vi, v}) |

»

4 VCP?’}.”O[ZOVJL»J +1] < [T'(v) N T ()|
5: VCPfj}."O[zO’a,» i +2] < D) N T
6 vcpz}”o[2%0;; + 3] < [T(v) NT(vy)]
7. return VCPi}r’O

The analysis of this algorithm reduces to the analysis of
the union, difference, and intersection set operations, all
of which are easily implemented in O(|U| + |T'|), where U
and T are the respective sets. The algorithm also incurs

the O (log (“Evll)) cost of the search for e; j, but this is sub-
sumed when we substitute |I'(v;) + I'(v))| for |U] + |T|
and arrive at O (%) In efficient implementations, the

four set operations are collapsible into a single linear scan
through I"(v;) and I"(vj), and such implementations allow
the approach to handle any value of r through application
of ® to members of I'(v;) and I'(v;) with no change to
asymptotic complexity.

The usage of set operations reduces the time require-

V[2log L

ment of the algorithm by a factor of H‘%. We shall
next demonstrate that much greater savings are possi-
ble with VCP*"¢ using more clever set operations and

corrections for double-counting.

vcpP*rd Algorithms

The VCP3"? algorithms directly increment element
counts corresponding to the underlying subgraph struc-
ture index, because no isomorphic equivalences are
present with only one free vertex. In VCphrd algorithms,
the presence of two free vertices requires the determina-
tion of canonical isomorphism class representatives from
observed structures. We designate this operation in the
algorithms with €, and implement it in O(1) time with a
precomputed vector of mappings.

We first provide Algorithm 3 as an undirected exemplar
of the class of naive algorithms applicable in the case of
four vertices. It works by iterating through every pair of
free vertices in the graph and considering them in combi-
nation with vs and v; to count the resulting structures. As
demonstrated by the generalized complexity analysis pro-

vided above, its asymptotic complexity is O (| V|2 log %)

subgraph-element mapping €
Output: VCP;%}r 0

L 0jj < ®(P(R), ei,j)
2 fork:vie VAk#iNnk #jdo

3 ok < DP(R),)

4: Ojk < (D(P(R),e,,k)

5. forl:vie VAI#IiANLI#jAL>kdo

6: 0i1 < ®(P(R),eiy)

7: Gj,l < CD(P(R), e,‘,[)

8: ox1 < P(P(R), ex)

9: A<~ ZOVU,',]' + 21r0i,k + eroiyl + 23'"01‘,/(+ 24r0j’1 +
25ro_kl

0 VEPIO(e(n) « VCPEO(e() + 1

11: end for

12: end for

4,7,0

13: return VCP; ;

It is again possible to reduce the complexity by restrict-
ing consideration to neighbors, but the procedure is
more complex. The algorithm commences by consider-
ing the neighbor sets of v; and v; to compose struc-
tures of three vertices. These structures are extensible
either by the addition of another neighbor of either v
or v; or by the addition of a neighbor of their neigh-
bors. To calculate the counts of sparse structures, which
are too numerous to cheaply enumerate, the algorithm
maintains counts of the number of observed connected
pairs, the number of observed unconnected pairs, and
the number of vertices that are two hops from v; or
vj. They are written as o, f, and y respectively. These
quantities provide sufficient information to differentiate
unobserved structures in which the two free vertices are
isolates within the subgraph from those in which they
are isolated from vy and v; but connected to each other.
Algorithm 4 formalizes the procedure and provides more
details.

All set operations require O (%) time. Considering

the O (%) neighbors for the outer loop (line 4) requires

O(%) time. Inside the loop, the algorithm performs

edge searches requiring O <log %) time and performs
additional set operations requiring O(%) time. The
inner loops (line 19 and line 25) both involve O(%)

iterations, and incur O (log %) cost for edge searches.

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Algorithm 4 VCP*10

Input: undirected graph G = (V, E),

i:VL‘GV,

j:VjGV,

subgraph-element mapping €

Output: VCP?‘}LO

1:
2:
3:
4
5:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:

39:

40:

41:

6
7:
8
9

)\.0 «~0
ife;; € E then 1o < 1 end if
a<—Xrp,B<—1—Aypy <0
fork: v, € (F(vi) U F(vj)) ~ {vi, v} do
)\1 < A.O
ife;; € E then
AM <A1 +2
o <«—oa-+1
else
p<—pB+1
end if
ifej; € E then
A <A1 +8
o <«—oa—+1
else
B<—p+1
end if
y <y +I000 ~ (D) UT W) U v) |
for [:v; € I'(vi) ~ (F'(v) UT(v) U {v;,vj}) do
Ay < A1+ 32
o <—a—+1
B<—p+2
vcpjf/nl"’(e(xz)) « ch;f;l"’(e(xg)) +1
end for
forl:k<IAv e (F(V,‘) U F(vj)) ~ {vi, v} do
)»2 <)»1
ife;; € Ethen Ay <— Ay + 4 end if
if €l € E then Ay < Xy + 16 end if
ife;; € E then
Ay < Ag + 32
a0 <—a+1
else
B<—p+1
end if
vcpgf}l’o(e(xz)) -~ chjff")(e(m)) +1
end for
VCPMe()) < VCP () + [V —
(CE)UT @) UT (v U{vv}) |
end for
VCPi,]’-l’O(e(AO +32)) < |E| —«
VCPH"(e(20)) < 5IVI(IVI = 1) — [E| - B
~(IC@) UT W) ~ i)l - [V~ (T UT ()
Ulvivi}) | — v)
=2(IV~ (TO)UT W) Utvyv)) | =)
return VCP;L,]'-I’0

Page 10 of 27

We can express the critical components of the cost
mathematically as

E| E|
4] VI

| EI*, |E|
Z 1logm _O<<|V|> log|v|> (15)

i=1 \ j=

demonstrating that graph sparsity is an important factor
in the feasibility of the algorithm.

We call special attention to three lines in Algorithm 4
the purposes of which may not be obvious. Line 37 com-
putes the number of structures in which the v; under
consideration is a member and in which a fourth ver-
tex is isolated and thus unexplored through consideration
of neighbors. This is equivalently the number of vertices
in the network that are neither v; nor v; nor a neighbor
of v;, vj, or v, and it is given by the expression |V
(T UT) UT () U {vi,v}) .

Lines 39 and 40 consider structures in which v; and
v; are connected to neither v; nor v;. Such structures are
divided into two cases: one in which v; and v; are con-
nected to each other and one in which they are not.
Counting these structures directly is expensive, because
vk and v; are not explored as neighbors of v; and vj.
Fortunately careful curation of the number of previously
encountered connections and gaps facilitates the compu-
tation of these quantities. Line 39 computes the number
of structures where v; and v; are connected, which is
equivalent to the total number of edges in the network
excepting those encountered directly during counting.
Line 40, which computes the number of structures where
vk and v; are not connected to each other, is significantly
more complicated to derive. We start with the number of
gaps we know to exist in the network, %l\/l qgvi—-1-—
|E|. From this, we must subtract all of the gaps that we
encountered while counting, expressed as 8, but we must
also remember that 8 only describes the number of gaps
directly observed. We must additionally incorporate gaps
contributed by the structure count computed by line 37.

Recall that [V — (I'(v;) UT () UT (v) U {v;, v;}) | is the
number of such structures. Outside the loop, this number
may be expressed in aggregate by the product of the num-
ber of vertices that may serve as v, written as |(I"(v;) U
I'(vj)) \ {vi, v;}|, and the number of vertices that are never
Vi, Vjs Vk, OF v, written as [V (F(Vi) UL U{vi, vj}) |—y.
This expression gives the number of such structures, but
this only accounts for gaps not directly observed between
vk and v;. The sparse subgraphs also contribute unob-
served gaps involving v; and v;, and we can express these
with 2 (|V ~ (D) UT () U {v;,v;}) | — v). Subtracting
these two quantities from the number of possible gaps
minus the number of directly observed gaps provides
us with the count of the least connected isomorphism
class present in VCP;f]’.l’O. This explication also applies to

Lichtenwalter and Chawla SpringerPlus 2014, 3:116 Page 11 of 27
http://www.springerplus.com/content/3/1/116

Algorithm 5, which has identical computations at lines 36, We can further improve Algorithm 4 by recognizing
38, and 39. that the edge searches are redundant. Since the algorithm

Algorithm 5 VCP*10

Input: undirected graph G = (V, E),

i: Vi € V,
j : Vj € V,
subgraph-element mapping €

Output: VCP?J"LO

1:

2

3:

4:

5:

6:

7:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32
33:
34:
35:
36:
37:
38:

39:

40:

A.O <~ 0
ifei,j € E then Ao < 1 end if
a <o+)|+ T (vl
B < 1—=% +|C() T W]
y <0
fork:v, € (l"(vl') U F(V,’)) ~ {vi, v} do
)\1 <)\0
if vi € I'(v;) then
A oA+ 1
end if
if v € I'(v;) then
A <A+ 4
end if
a <o+ [T~ (CE)UTE) U{v,v}) |+ 31 ((CE) UT) N {vi,vj}) NT (w0l
B B+2-ITw)~ (TW)UTW)Uv,vi}) |+ 51 (TE) UTm)) N {vivi}) N T ()]
Yy < v+ I~ (D) UL) U{v,v}) |
vcpjff"’(e (M + 16)) < vcpjf}l’o(e(,\l +16)) + IT() ~ (TW) UT () U s,) |
forl:k <IAvieT(v;) \ (F(Vj) Uy u {vj}) do
vcp;f}.l’o(e(xl +2)) < VCP;f}LO(e(M +2)+1
end for
forl:k<IAv € (I‘(w) ~ (F(vj) U {vj})) N T (v) do
vcpjff’o(e(xl +2+16)) < vcpgf}l’o(e(xl +2416)) +1
end for
forl:k <IAnvel(v) N T) UL (v) U{v}) do
vcpjf}.l’o(e(xl +4)) < vcp;ff"’(e(xl +4)+1
end for
forl:k<IAnv e (F(Vj) ~Tu {v,'})) N T (v) do
vcpff’o(e(xl +4+16)) < vcpf}l’o(e(xl +4+16)+1
end for
forl:k <IAv e (D) NT(¥)) T do
vcpjff’o(e(xl +2+4) < vcp;f}l’o(e(xl +24+4)+1
end for
forl:k <IAnvie'(v) NI) NIy do
vcpf}l"’(e(xl +2+4+16)) « vcpjff’o(e(,\l +2+4+4+16) +1
end for
vcpjf;l'o(e (M) < chjf;l'o(e(xl)) +|V = (Co)UT @) UT) U {v,v}) |
end for
VCPZ’-LO(G()\O +32)) < |E| —«a
VCPi"(e(r0)) < 3IVI(IVI—1) — |E| - B
= (T @)UT)~ {vis vill- IV~ (T () UT (v) U{v;, vj}) | =)
=2V~ (T UL Uiy} —y)
return VCP;%]’.I’O

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

encounters all vertices connected to v; and v; during
the set operations, it can maintain knowledge of perti-
nent edges to record structures while performing those
operations. The procedure is described in Algorithm 5.
In fact, it is possible to implement the algorithm with
only two outer loops through I'(v;) U I'(vj) in which
one of those loops contains a simultaneous nested loop
through I'(v;) U I'(vj) and I"(vk) where vy is the current
neighbor considered by the outer loop. An efficient imple-
mentation consists almost entirely of additions, deref-
erences, and branches and imposes only a moderate
constant factor on the asymptotic complexity. By remov-

ing the O <log %) contributions of those searches from
the summations in Equation 15, we reduce the asymptotic

2
complexity of the algorithm to O ((ﬂ)) This com-

plexity applies also to directed and multirelational graphs
and is asymptotically optimal for VCP*"*# in the regime
of pairwise-independent computation. Compared to the
naive algorithm for four vertices, the time complexity is

V4 log %

reduced by a factor of | P

Theorem 1. Given a graph G = (V,E) with uni-
Sform degree distribution and vertices v; and vj, pairwise-

independent computation of VCP?’}.”d

2((#))

@+Dr_ [vepdne,
Proof 1. We observe thaty 2., 1VCP?}'"'d (x"

in G has complexity

2(d+1)r
describes the number of pairs comprising vertices that
are both unreachable from v; and v; within geodesic
distance (. Because the quantities are combinatorially
related, it also describes the number of vertices individ-
ually unreachable from v; and v; within (. Determining
this quantity requires at least as much work as deter-
mining the number of vertices unreachable only from v;
within £. Since VCP*" allows two free vertices, { = 2.
The fastest way to determine reachability in the worst
case is employing a breadth-first search rooted at v;

2
requiring T(v)) + Y, croy T) = © ((l'f,) > time.

Since VCP*"? computation determines the reachability
of vertices from v;, it must share the lower bound and is

2((#))

Corollary 1. Given a graph G = (V,E) with uni-

Jorm degree distribution and vertices v; and v, pairwise-
n,r,d

independent computation of VCP;

o((#)")

in G has complexity

Page 12 of 27

We summarize the algorithms and complexities cov-
ered in Table 3. The final row does not reflect a specific
provided algorithm but instead addresses the general the-
oretical bound on how well any pairwise-independent
VCP computation may perform.

Extension to complex networks

It is mostly trivial to extend VCP algorithms to more com-
plex networks, including any form of edge feature such
as directionality, weight, temporality, different relation
types, or any information describing edges or vertex pairs
that either exists categorically or can be quantized. One
amenable network representation associates an ordered
set of bits with each edge. Each bit corresponds to the
presence of a particular relation or some Boolean descrip-
tor for a pair of vertices. The determination of the exis-
tence of an edge for unirelational data instead becomes
an evaluation of the edge as the binary-coded integral
value of the ordered set of bits. This is one conceivable
implementation for ®(P(R), ex,) in Algorithm 1.

A complication emerges as r increases related to deter-
mining counts of multirelational edges in subgraphs with
disconnected substructures. VCP""¥ counts structures
including those in which none of 1 < k < n — 2 vertices
VisVitls- - > Vitk—1 € {V3,V4,...,V,} may be connected to
either v; or vy. It is impossible to take advantage of set
operations on sets of neighbors because v; is not in a
neighbor set. There are two alternative methods of count-
ing. The first, computationally infeasible even for small
networks, is to enumerate all (”]:l) sets of vertices. The
second approach, which works well for » = 4 and gener-
alizes for n > 4, is to associate with each existing member
of P(R) the count of its occurrence and decrement the
count each time a corresponding member is encountered
in computing a given vector VCPﬁ}r’d. Knowing how many
of the P(R) connectivities the graph contains and how
many are present in direct involvement with v; and v,
it is possible to determine the count of connectivities of

Table 3 VCP algorithms and their complexities

Algorithm Complexity Pairwise-independent
optimality

VP39 (Naive) 0 (IV\ log (ﬁ))

vCp3rd o(f) v

VP44 (Naive)

VCP4d (Improved) o) <(

veptrd 0 ((%)2) v
((ﬁ)H) N/A

vepnrd Q

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

vertices not in direct involvement. This admits a correct
count of VCP elements. While this method will outper-
form enumeration, it can still become problematic when
r is large because of the space and time involved in cre-
ating and maintaining the counts. Though we included
these structures in our counts, empirical results show that
surveying the connectivity of subgraphs with no direct
connectivity to v; and v; reveals much less information
than surveying connectivity within subgraphs connected
to v; and v;. Omitting this information from the VCP
vector offers an opportunity for increases in speed.

The feasibility of multirelational applications of VCP
analysis with » > 10 depends a lot upon the number of
VCP elements that are populated. Even before the num-
ber of enumerable subgraphs reaches values such as 260
for G*199, storing the complete VCP vector becomes
impossible. Fortunately, most graphs are friendly to VCP
analysis, and only an infinitesimal fraction of the total
number of possible isomorphism classes is present. Theo-
retical statements regarding expectations for the number
of VCP elements in various random graph models may be
possible, but we turn to strong empirical demonstrations
corresponding to worst-case scenarios. In the most diffi-
cult case, VCP analysis must describe all pairs of vertices
in a graph with moderate density and random linkage.
Coverage of all pairs guarantees that any existing struc-
tures must be observed. Moderate density is necessary to
create a large population of both sparsely and densely con-
nected subgraphs. Random linkage is necessary to ensure
that the sample exhibits a variety of isomorphism classes.

We simulate this adversarial environment with a spe-
cialized Erdos-Renyi random graph model with four
parameters: {|V|,|R|,P(e;j), P(r, € R)}. Since we will
perform VCP analysis on all pairs, | V| places the effective
upper bound on the number of different structures we can
observe, (T). The value |R] is the number of different
relations that can exist over an edge, and it controls the
cardinality of the set of isomorphism classes. The prob-
abilistic parameter P(e;;) is the traditional p parameter
from the G(n, p)-model Erd6s-Renyi random graph except
that it controls whether or not an edge is a candidate
for multirelational population. For edges whose assigned
uniform random value falls below P(e;;), the probabilis-
tic parameter P(r, € R) is used as a threshold against
which uniform random values are tested for each of the
r possible relations to determine the relations that will
apply on that edge. Figure 4 shows the number of VCP
elements observed in all-pairs analysis of 1,764 random
graphs constructed in this manner.

For densities below 30%, there are simply too few edges
to allow for the formation of dense isomorphism class
exemplars, and less than 50% of the possible VCP*"0
elements appear. The probability of observing relations
on edges is also influential. P(r, € R) must be neither

Page 13 of 27

extremely low, in which case all substructures are sparse,
nor extremely high, in which case all substructures are
fully populated with all relations. The lower the den-
sity, the more critical it is that the relational probabilistic
parameter be in a moderate zone. Extremely high density
alone is not sufficient to prevent the formation of most
isomorphism classes since P(e;;) = 1 does not necessarily
imply a link and because the random selection of elements
from P(R) will still allow for the construction of many
isomorphism class exemplars even when involving every
edge in the network.

The graphs with |V| = 250 offer (%°) = 158,882,750
selections of 4 vertices whereas the |V| = 100 offer
only (IZO) = 3,921,225 selections of 4 vertices. The heat
maps indicate that observed diversity is limited by ran-
dom chance of appearance when the number of subgraphs
increases or the number of possible selections of vertices
decreases. This manifests as a decrease in the size of the
region where many elements are observed in terms of the
two probabilistic parameters and introduces another help-
ful mechanism in maintaining manageable VCP element
presence.

In reality, the situation is much less adversarial and more
conducive to VCP analysis than this. First, as 7 increases
to extreme values and |VCP™" 4| increases as a result,
the exponential growth in the cardinality of the set of
isomorphism classes quickly outstrips (l‘;‘), which places
an effective upper bound on the number of possible ele-
ments. More significantly, densities are often fractional
percentages of their maximum values, so typical analytical
tasks operate in areas of the heat map even more favor-
able than those displayed. It is also rare for all relations
to be highly and equally common across the entire net-
work. Links usually form according to underlying guiding
motivations, which induce structural similarities through-
out the topology. Taken together, these greatly limit the
size of the observed subset of highly multirelational VCP
vectors to manageable output sizes. Further, as we shall
show in Section “Computational challenges”, these factors
also work to limit the entropy of the values within any
particular VCP element.

Data
We present results for several data sets in Table 4 to
demonstrate the performance of the techniques under
comparison for different families of networks. Though all
of these data sets contain information with which to gen-
erate edge weights, we are interested in providing purely
structural comparison here, so all quantitative results are
based on networks constructed without edge weights.
calls is a stream of 262 million cellular phone calls
from a major cellular phone service provider. We con-
struct directed networks from the calls by creating a node
v; for each caller and a directed link e;; from v; to v; if

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 14 of 27

120000
1ooooo§
& 80000 5
= w
T 60000
=
40000 @
a
20000
0
0 02 04 06 08 1
P(e)
(a) v =100,[R| =3
] =
1e+16
0.8 le+14 o
1e+12 é
z 06 1e+10 &
= w
T 04 1+08 5
1e+06 G
0.2 10000 O
100
0 1
0 02 04 06 08 1
P(e)
(C) |v|=100,[R| = 10
'R|=3(c)|V| =100,|R| = 10, (d)|V| = 250,|R| = 10.

Figure 4 All-pairs VCP element population for {|V|, | R, P(e;;), P(ry € R)}. Note the logarithmic heatmap scale on the bottom two |R| = 10
plots, which is necessary to prevent the plots from appearing solid black due to extreme element sparsity. (a) |V| = 100, |R| = 3, (b) |V| = 250,

120000

_
o
o
o
o
o

P(rile)
Distinct Elements

0 02 04 06 08 1
Pe)
(b) |v|=250,1R| =3

1e+16
le+14
1e+12
1e+10
1e+08
1e+06
10000
100

P(rile)
Distinct Elements

0 02 04 06 08 1

Pe)
(d)v| =250, 1R| =10

and only if v; calls v;. To reduce the noising effect of robot
callers and automated answering systems, we exclude a
few nodes that only call if they have an out-degree above
1000 or only receive calls if they have an in-degree above
1000. sms is a stream of 84 million text messages from

Table 4 Some basic properties of the data sets

Name Directed Vertices Edges Cc rq
calls v 7,786,471 33,292,508 0.127 0.212
condmat 17,216 110,544 0642 0177
dblp-cite v 15,963 344373 0.128 -0.046
dblp-collab 367,725 2,088,710 0617 0.254
disease-g 399 15634 0665 -0310
disease-p 437 81,158 0818 -0406
hepth-cite v 8,249 335028 0.352 0.097
hepth-collab 8,381 40,736 0466 0.237
huddle 4,243 997,008 0591 -0.211
patents-collab 1,162,227 5448168 0.531 0.141
sms v 5016746 11598843 0048 0.042

These figures are reported for networks constructed using all available
longitudinal data. C represents average clustering coefficient and r, represents
assortativity coefficient.

the same source as calls and constructed in the same
manner.

condmat (Newman 2001a) is a stream of 19,464 multi-
agent events representing condensed matter physics col-
laborations from 1995 to 2000. We construct undirected
networks from the collaborations by creating a node for
each author in the event and an undirected link connect-
ing each pair of authors. For all experiments involving
condmat, we use the years 1995 to 1999 for constructing
training data and the year 2000 for testing.

dblp-cite (Ley 2002) is a citation network based on
the DBLP computer science bibliography. Each researcher
is a node v; and directed networks are formed by viewing
a citation by researcher v; of work by researcher v; as a
directed link e;;. The dblp-collab network uses the
same raw data, but links are based on co-authorship col-
laborations. An undirected link exists between v; and v; if
both are authors on the same paper.

disease-g (Davis and Chawla 2011) is a network in
which nodes represent diseases and the links between
diseases represent the co-occurrence of particular geno-
typic characteristics. Links are undirected. This network
is not longitudinal, but finding unobserved links is an
important task, so we have no choice but to estimate

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

performance by randomly removing links to construct test
sets. The disease-p network is from the same source
as disease-g, but links in disease-p represent the
co-occurrence of phenotypic characteristics. Predictions
of common expressions between diseases are uninterest-
ing since expressions are either observed between diseases
or they are not. Because of this, practically speaking the
value of phenotypic predictions is negligible. Nonetheless,
holding out phenotypic links and subsequently predicting
their presence is equally instructive for the purposes of
predictor evaluation.

hepth-cite and hepth-collab (McGovern et al.
2003) are formed in exactly the same way as dblp-cite
and dblp-collab respectively. The raw data for these
networks is a set of publications in theoretical high-energy
physics.

The huddle data set from (Raeder et al. 2011) is trans-
action data gathered at a convenience store on the Uni-
versity of Notre Dame campus. The data was collected
from June 2004 to February 2007. Products are repre-
sented by nodes, and products purchased together in the
same transaction are represented by undirected links.

The patents-collab (Valverde et al. 2007) data set
is constructed from the data at the National Bureau of
Economic Research. Nodes represent authors of patents
and undirected links are formed between authors who
work together on the same patent.

Computational feasibility

To demonstrate computational feasibility, we computed
VCP vectors serially on one core with commodity desktop
hardware. Our machine included an Intel Core i5-2500K
running at 4.8 GHz with 6 MB of level 3 cache and 8
GB of 1600 MHz dual-channel memory. Table 5 shows
the results of computing the vectors for all £ = 2 pairs,
pairs spanning a geodesic distance of 2. Despite the posi-
tive serial feasibility, VCP algorithms are naturally parallel:
each vector computation is completely independent of the
others, so multi-core, grid, or cloud distribution allows for
perfect linear speedup. Despite the 8 GB of memory avail-
able on the machine, we note that, aside from the graph
representations themselves, actual processing of all algo-
rithms required less than 128 KB for all data sets and fit
into the 32 KB level 1 cache for most. Nevertheless, we
also developed and make available O(1) space algorithms
that are only slightly slower.

The VCP method and link prediction

Link prediction has been defined and framed in many
ways, but it is in essence the task of accepting a network
G = (V,E) and predicting whether there is or will be
an unobserved link e;; between a pair of nodes vs and v,
where v, v, € V and eg; ¢ E. In multirelational networks,
we simply accept that E is a vector, and we often also

Page 15 of 27

interested in predicting both the relational type and exis-
tence of a link. VCPs offer several advantages in tackling
link prediction. These include incorporating many differ-
ent hypotheses of underlying link formation mechanisms
through the identification of all vertex relationships in
subgraphs of size n and natively handling multirelational
data.

We compare the link prediction efficacy of VCPs
with that of a selection of other methods. We select
representatives from different predictor families estab-
lished as strong by prevailing literature (Liben-Nowell
and Kleinberg 2007). Unsupervised methods include the
Adamic/Adar predictor based on common neighbors
(Adamic and Adar 2001), the Katz path-based predic-
tor (Katz 1953), and the preferential attachment model
(Barabasi et al. 2002; Newman 2001b). We also compare
against the HPLP supervised link prediction framework
contributed by (Lichtenwalter et al. 2010), which com-
bines a variety of unsupervised predictors into a classifi-
cation model.

Experimental setup

To run our experiments, we integrated VCP with the
LPmade link prediction software (Lichtenwalter and
Chawla 2011). LPmade uses a GNU make architecture to
automate the steps necessary to perform supervised link
prediction. This integration ensured a fair and comparable
testing regime across predictors and allows those inter-
ested in VCP for link prediction and other purposes to test
it on their networks easily.

To perform supervised classification with a VCP vec-
tor, we use the unmodified VCP vector, VCPZJ’."d, as the
classification feature vector. The class label is then deter-
mined by the existence or nonexistence of the edge (v;, v;)
in a future form of the network. Non-longitudinal data is
handled in the same way as longitudinal data by randomly
assigning timestamps to edges, so for non-longitudinal
data the future form of the network corresponds to
a random hold-out of edges. Classification data is not
divided from a single data set generated from a single
underlying network but is instead constructed from dif-
ferent underlying network data. Training data uses older
forms of the network than testing data, and training
labels always come from data strictly preceding the test-
ing label period to prevent data leakage. Experiments
are fully reproducible through the use of the LPmade
framework.

When performing classification using VCPs, we
opted for the bagged (Breiman 1996) random subspaces
(Ho 1998) implementation from WEKA (Witten and
Frank 2005). This classification scheme offers lower
peak memory requirements than random forests while
simultaneously providing the potential to handle feature
redundancy (Ho 1998). We considered presenting results

Lichtenwalter and Chawla SpringerPlus 2014, 3:116 Page 16 of 27
http://www.springerplus.com/content/3/1/116

Table 5 Network statistics (a), wall clock running times (b), and throughput (c) pertinent to scalability of VCP algorithms

(a) Network statistics

Name Vertices Edges Density £ = 2 Pairs
calls 7,786,471 33,292,508 549 x 1077 246 x 108
condmat 17,216 110,544 746 x 1074 3.80 x 10°
dblp-cite 15,963 344,373 135 % 1073 197 x 107
dblp-collab 367,725 2,088,710 3.09 x 107° 107 x 107
disease-g 399 15,634 197 x 107! 587 x 10*
disease-p 437 81,158 852 x 107! 546 x 10%
hepth-cite 8,249 335,028 492 x 1073 123 x 107
hepth-collab 8,381 40,736 116 x 1073 145 x 10°
huddle 4,243 997,008 111 x 107! 7.29 x 100
patents-collab 1,162,227 5,448,168 807 x 107° 2.50 x 107
sms 5,016,746 11,598,843 461 x 107/ 474 x 107

(b) Wall clock running times (in seconds)

Name vcp310 vcp3 i vcpAlo vepH T
calls 85.0 5312 2660.0 3763.0
condmat 0.1 - 26 -
dblp-cite 239 1208 11561.7 19686.6
dblp-collab 2.7 - 149.3 -
disease-g 0.1 - 23 -
disease-p 0.1 - 13.9 -
hepth-cite 250 1254 12830.1 24818.7
hepth-collab 0.1 - 0.8 -
huddle 174 - 14360.3 -
patents-collab 7.7 - 462.3 -
sms 10.7 66.1 177.6 2425

(c) Throughput (pairs per second)

Name vcp3 10 vcp3 11 vcp10 vep411
calls 29 x 100 46 x10° 93 x 10% 6.5 x 10%
condmat 50 x 100 - 14 x 10° -
dblp-cite 82 % 10° 16 x10° 17 x10° 1.0 x 103
dblp-collab 39 x 10° - 7.1 x 10 -
disease-g 20 x 10° - 26 % 10% -
disease-p 6.7 x 10° - 39 %103 -
hepth-cite 49 x 10° 99 x 10 96 x 102 50 x 102
hepth-collab 48 x 10° - 18 x 10° -
huddle 42 x10° - 5.1 x 10 -
patents-collab 33 % 10° - 53 x 10% -

sms 44 x10° 72 x10° 26 x 10° 19 x10°
Density is reported as % in undirected networks and M(I‘V% in directed networks. Stated running times and throughputs are the arithmetic mean of 10 runs, but
variances are negligible.

with HPLP also using random subspaces, but we deter- We used the default values from HPLP of 10 bags of

mined that random subspaces produced decreased or 10 random forest trees, 10 bags of 10 random subspaces
comparable performance to the original reference imple- for VCP classifiers, and training set undersampling to
mentation, so we present HPLP results unmodified using 25% positive class prevalence. We did not change the
random forests (Breiman 2001). size or distribution of the testing data. For undirected

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

networks, we resolve f(vs,v¢) # f(v4,), by computing
the arithmetic mean to serve as the final prediction out-
put. By default, LPmade includes features that consider
edge weights such as the sum of incoming and outgo-
ing link weights. We are interested in the comparative
prediction performance of the link structure alone, so
we ran all predictors on the networks disregarding edge
weights. There are many different ways to assign edge
weights to all the networks here, and the particular choice
of edge weight and the precise decision about how to
incorporate it into the VCPs would distract from the
study.

Computing and evaluating predictions using any pre-
diction method for all possible links on large, sparse
networks is infeasible for multiple computational reasons
including time and storage capacity. Link sparsity is
likewise challenging for statistical modeling because of
extremely low prior probability of link formation (Getoor
2003; Lichtenwalter et al. 2010; O’Madadhain et al. 2005;
Rattigan and Jensen 2005). Link prediction within a two-
hop geodesic distance provides much greater baseline
precision in many networks (Lichtenwalter et al. 2010;
Scellato et al. 2011), so effectively predicting links within
this set offers a strong indicator of reasonable deploy-
ment performance. For all compared prediction methods,
we restricted the prediction task by distance and only
considered performance comparisons for potential links
spanning two hops within the training data due to their
higher prior probability of formation and computational
feasibility.

Prediction performance

The area under the receiver operating characteristic curve
(AUROC) can be deceptive in scenarios with extreme
imbalance (Hand 2009), and area under the precision-
recall curve (AUPR) exhibits higher sensitivity in the same
scenarios (Davis and Goadrich 2006). We will provide
results for those interested in traditional AUROC, but we
will also present AUPR results and will mainly restrict our
analysis to those results. Table 6 shows the comparative
AUROC and AUPR performance of Adamic/Adar, Katz,
preferential attachment, HPLP, and VCPs in link predic-
tion for potential links spanning a geodesic distance of two
hops.

In general, we expect the information content of VCPs
to increase in the left-to-right order presented in Table 6,
though depending on the significance of directedness
in the network, the expectation of comparative perfor-
mance of VCP>!"! and VCP*!'0 may change. We point
the reader to calls, dblp-cite, dblp-collab,
disease-g, disease-p, hepth-cite, huddle,
patents-collab, and sms as conformant exam-
ples. We suspect that the exceptions indicate cases
in which the classification ensemble failed to create a

Page 17 of 27

sufficiently optimized model in the high-dimensional
space.

In 7 of the 11 networks, VCP classification offers supe-
rior AUPR performance. In a slightly different selection
of 7 networks, it offers superior AUROC performance. In
some of the cases in which VCP offers the best perfor-
mance, the differences are quite wide. In the sms network
it offers an AUPR that is 2.3 times as high as the best
competitor. In the condmat network, it offers AUPR
1.53 times the nearest competitor. In two of the net-
works in which VCP classification does not provide the
best performance, HPLP does. As an interesting side note,
when weights are removed as they were to obtain these
results, HPLP does not always outperform the unsuper-
vised predictors.

Figure 5 shows a closer look at the performance dif-
ferences. The black dashed line represents the baseline
performance of a random predictor. Across all the
selected networks, VCP maintains high precision longer
at increasing values of recall. This is especially important
in link prediction where high precisions are so difficult to
achieve.

Despite the competitive performance that the VCP
method exhibits, it is not our intent to present the
most effective possible classification scheme. There is
great potential for improvement through feature selection,
dimensionality, and alternative classification algorithms.
Increasing the number of trees in the forest is also likely
to improve performance in the complex feature space. Yet
another option for potential improvement is to concate-
nate VCP3"? and VCP*"“ into a single feature vector.
VCP vectors contain a wealth of information, and the task
is simply to determine how best to employ it to achieve
whatever goals are desired.

VCPs and multirelational data

In VCP algorithms, any procedures that consider a par-
ticular edge for unirelational data can instead determine
the value of the edge as the binary-coded integral value
of the ordered set of bits for multirelational data. Except-
ing the cost of allocating storage necessary to maintain
counts for multirelational structural elements, the compu-
tational complexity of the multirelational extension is no
greater than for unirelational networks. Figure 6 shows the
first 16 elements of VCP320,

We can capture the power of longitudinal data by encod-
ing the snapshot in which an event occurs as its relation
type. Consistent with the approach proposed by (Sharan
and Neville 2008) and subsequently used by (Acar et al.
2009), we also divide our data into a set of discrete, non-
overlapping snapshots. Suppose a continuous stream of
event records arrives with arbitrarily fine temporal gran-
ularity. We divide the stream into ¢ + 1 chunks sy to s;
sized, electively equally, according to selected criteria. In

Lichtenwalter and Chawla SpringerPlus 2014, 3:116

http://www.springerplus.com/content/3/1/116

Page 18 of 27

Table 6 Comparative AUROC (top) and AUPR (bottom) performance for Adamic/Adar (AA), Katz, preferential attachment

(PA), HPLP, and VCP
(a) AUROC

AA Katz PA HPLP vcp31o vep3i vcpHo vep4ia
calls 0.698 0641 0424 0782 0.802 0814 0.834 0.849
condmat 0.663 0630 0585 0588 0637 - 0582 -
dblp-cite 0.794 0.791 0773 0.841 0.830 0.847 0.843 0.868
dblp-collab 0.697 0623 0523 0691 0.640 - 0695 -
disease-g 0.930 0.907 0.820 0.970 0923 - 0.964 -
disease-p 0.898 0920 0932 0922 0.939 - 0.951 -
hepth-cite 0.826 0.794 0.766 0838 0.836 0.846 0.845 0.851
hepth-collab 0.606 0619 0547 0592 0598 - 0.622 -
huddle 0.879 0.875 0.875 0877 0.881 - 0.888 -
patents-collab 0.793 0671 0532 0.800 0.680 - 0.816 -
sms 0.642 0581 0472 0.714 0735 0730 0.791 0.802

(b) AUPR

AA Katz PA HPLP vcp310 vcp3 1t vcp#10 vcpHtt
calls 0.000505 0.011465 0.000092 0.018005 0.031655 0.033091 0.033533 0.035127
condmat 0.000195 0.000183 0.000177 0.007763 0.011917 - 0.008589 -
dblp-cite 0.000314 0.000246 0.000234 0.016030 0.009207 0.015265 0011427 0.018137
dblp-collab 0.008777 0.006723 0.003251 0.007772 0.007152 - 0.009410 -
disease-g 0221299 0.193863 0.061694 0.466716 0.155165 - 0444153 -
disease-p 0629516 0.676419 0.673601 0.390074 0.552765 - 0633316 -
hepth-cite 0.003967 0003784 0.003225 0.054846 0.046140 0.059245 0.056244 0.063387
hepth-collab 0.008563 0.009328 0.005060 0.006123 0.007197 - 0.007156 -
huddle 0.000790 0.000746 0.000745 0039914 0.039394 - 0.046803 -
patents-collab 0.006962 0.005678 0.001684 0.006735 0.005564 - 0.007709 -
sms 0.009410 0009164 0.002986 0011594 0.025206 0.026063 0.027073 0.028201

Bold font indicates the maximum value in the row.

True Positive Rate
True Positive Rate

Adamic/Adar

VCP4Undirected -

1

0.8

06

04

True Positive Rate

02

Adamic/Adar ——

Adamic/Adar

0 VCP4Undirected - 0 VCP4Undirected -

0 02 04 06 08 1
False Positive Rate

True Positive Rate

Adamic/Adar
VCP4Undirected -

0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate

(a) ROC Curves

Adamic/Adar
HPLP
VCP4Undirected - x

Precision
Precision

Adamic/Adar ——— Adamic/Adar

HPLP HPLP
VCP4Undirected - x VCP4Undirected - x

0.01 . 0.01

Precision

0 02 04 06 08 1
Recall

(i) calls

(iii) huddle, (iv) sms.

0.001 0.001
0 02 04 06 08 1 0

(ii) hepth-cite (iii) huddle
(b) PR Curves

02 04 06 08 1

Precision

0 02 04 06

False Positive Rate

08 1

Adamic/Adar

0.1

HPLP
VCP4Undirected - x

0.001 ‘

0 02 04 06
Recall

(iv) sms

08 1

Figure 5 ROC (top) and precision-recall (bottom) curves for selected networks. (a) ROC Curves, (b) PR Curves: (i) calls, (i) hepth-cite,

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 19 of 27

O O
o 0O

©®,0 6,0
O O

’
’

@'?@ @ _________ ®

9

@/i@

O O
©;0 ;0
o 0
90 6,0
O O

GO OO

O é@

Snapshot 1

"""" Snapshot 2

Both

Figure 6 Elements 0 through 15 of VCP32, Elements 16 through 63 are identical to their modulo 16 counterparts except for the presence of
various relations between v; and the free vertex in one or more of the time periods.

some cases, data is generated by a non-stationary pro-
cess with periodicity, and so encapsulating the periodicity
consistently might be an important criterion. From the
chunks, we can create corresponding graph snapshots Gy
to G; such that all events involving entities i or j in arbi-
trary chunk s, appear as links e;; between vertices v; and
vj in G,. When we want a graph snapshot to be more
temporally expansive than a single chunk, say including
SarSatls---»Sq+p With 1 < b < t — a, we can either
compute the minimum common supergraph of multi-
ple consecutive graph snapshots or equivalently compute
a new graph snapshot containing the events within the
desired bounds.

When performing supervised learning on longitudinal
data, conceptual and practical complexities arise that are
absent from standard supervised learning tasks. These
complexities are covered in great detail in the expan-
sive literature on data stream mining (Gaber et al. 2005),
and many of the topics endemic to all mining tasks on
longitudinal data apply here. Figure 7 demonstrates the
specific methodology employed within our experiments.
As with non-longitudinal classification problems, there
exists a model construction step using training data and
a performance evaluation or deployment prediction step
using testing data. The basic application of supervised

learning to link prediction on longitudinal data is depicted
in Figure 7a as a reference. Each color in each of the train-
ing and testing time lines represents a separate network
snapshot.

In the basic application in Figure 7a, there are four snap-
shots: the two blue snapshots are used for constructing
a feature vector. In the training time line, the red snap-
shot provides labels for model induction. In the testing
time line, the red snapshot is the newly observed data on
which we test our model. The red testing snapshot must
always have the same boundaries for fair model compari-
son regardless of changes to any other snapshots. We also
choose to maintain the boundaries on the red snapshot in
training, since varying the snapshot may cause changes in
the observed prior and conditional probabilities of the link
formation labels. We likewise make an effort to reflect the
duration of the red snapshot in testing with the duration
of the red snapshot in training to give the model the best
chance at facing the same distribution on which it was
trained.

Figures 7b and ¢ demonstrate supervised learning with
two temporal relations, and this requires six distinct
snapshots total for training and testing. Figures 7d and
e demonstrate supervised learning with three temporal
relations, and this requires eight distinct snapshots. In

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 20 of 27

£
= I T [I
Gie G Gt Gy
o O I I
Gte Gti Gi Gy
(a) standard
c c
3 I I [() e I I N O S
Gie Gp1 G Guy Gie G G Gy
o S S I I N 2 N I I I I
Gis Gui G Gy Gis G G Gy
(b) 2-period (C) 2-period exponential granularity
c —— c
© ©
13 I I N N O N - (N I I I O S
Gis Gy G Gy Gis Gry Gt Guy
. I I I S I 2 I I I O S
Gro Gy G Gu Gro Gy G G
(d) 3-period (e) 3-period exponential granularity

Figure 7 Supervised classification approaches involving different temporal snapshot distributions. Supervised classification approaches
involving different temporal snapshot distributions. Different colors within the training data or testing data represent distinct snapshots. (a)
standard, (b) 2-period, (c) 2-period exponential granularity, (d) 3-period, (e) 3-period exponential granularity.

our temporal models, we handle data granularity in two
different ways. In the first, snapshot granularity remains
consistent throughout the data to model. In the sec-
ond, we decrease snapshot granularity exponentially with
each snapshot and emphasize the most recent events by
making the most recent snapshot relatively short. The
depictions in Figures 7b and d are of evenly divided snap-
shots. Those in Figures 7c and e are of exponentially
divided snapshots. In Figure 7d, we suppose that G;_g is
derived from the oldest available data in the stream, so
we cannot extend the oldest snapshot to its full length.
In such cases, it may also be wise to limit the length of
the oldest testing snapshot to present the closest possible
testing data to the model.

Smaller snapshots effectively place greater emphasis
on individual events in the multirelational VCP method.
Links from short periods and links from long periods
both receive their own relations, so short periods with few
events afford the contained events greater discriminative
potential. Links occurring within the same snapshot are
also guaranteed to occur closer together in time, which
may decrease noise and increase the clarity of tempo-
rally proximate evolutionary trends. In Figures 7b and d,
events that recently occurred are given the same weight as
those that occurred in the more distant past. In Figures 7c
and e, recent events are effectively given more weight by
placing fewer, more proximate events in the same rela-
tion. In all of the depictions in Figure 7, the number of
snapshots excluding the red testing snapshot is equal to

the number of relations that will appear in multirelational
isomorphism classes of three or four vertices like those in
Figure 7.

Longitudinal data
We draw our conclusions from a selection of four of the
network data sets above. Table 7 presents some basic
information about the data in a temporal context. The
table also indicates the chunks into which we divided the
events. For instance, we divide the longitudinal condmat
data into 6 chunks, and each chunk spans 12 months. The
division of data into chunks is arbitrary but represents our
attempt to balance data sufficiency in each chunk with
the production of sufficient chunks to allow for experi-
ments involving variation in the number and granularity
of snapshots.

Figure 8 provides the domain and distribution of longi-
tudinal events for each of the networks. The collaboration
networks exhibit a general increase in the rate of growth.

Table 7 Defined characteristics of selected longitudinal
networks

Network Nodes Edges Chunks x Duration
condmat 17,000 110,538 6 x 12 months
dblp-collab 367,725 2,088,710 13 x 24 months
hepth-collab 8,381 40,736 6 x 24 months
huddle 4,243 993,288 11 x 3 months

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 21 of 27

55000
50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

Number of Events

o o
© ©
© ©
N o
Task

(a) condmat

5661
9661
6661
000¢

20000

18000

16000

14000

Number of Events

12000

10000

8000

N
o
o
o
Period Date Start

(C) hepth-collab

2661
661
9661
8661
200z

1200000

1000000

T
1

800000 - q

600000

T
1

Number of Events

400000 q

T
1

200000

0

Period Date Start
(b) avip-cor1ap

800000
750000 1
700000 1

%’ 650000 | B

o 600000 - 1

S 550000 - :

fE:’ 500000 [.

3 450000 1
400000 |- 1
350000 - 1
300000

NNDNDNDDNDNDNDNDNDNDN
[eNoNoNoNolNolNoloNoNeoNe]
OO0 O0O0000 000
AR OOOOOOOOD
SoELLLo LN
D ONWOOEONWOOEON

Period Date Start

(d) nuaare

Figure 8 Distribution of events by chunk. (a) condmat, (b) dblp-collab, (c) hepth-collab, (d) huddle.

The growth in the dblp-collab network is consistent
with (Ley 2002), but we note that the anomaly in 1994-
1996 is inconsistent, and upon further examination of the
data, we can report no explanation. The hepth-collab
network data reduces in volume for 2002 due to incom-
plete information for that year. The huddle product
copurchasing network shows a cyclical reduction during
summer months, and we attribute this to the presence
of fewer students on campus. There is a lesser cyclical
reduction during the winter break.

Experiments

To explore the many possibilities of encoding temporal
information into multirelational representations, we per-
form several experiments designed to confirm or deny
certain hypotheses. Areas we explore include how to
divide data, whether event recency is significant, whether
our method appropriately captures temporal trends or
whether it is simply a surrogate for weight, and to what
extent our approach scales. Performance is again deter-
mined based on predictions within £ = 2 of all training
data.

Precluding surrogacy for weight

Defining relations in terms of successive exclusive net-
work snapshots allows the relations to offer a rudimen-
tary encoding of weight. An alternate explanation for any
performance disparities between temporally aware and
unaware predictors is that the temporally aware predictors
merely offer an indication of edge weight. To preclude this
alternate explanation, we compute performance before
and after randomly reordering events. If dividing data
into snapshots and specifying multiple relations is only
serving as a surrogate for weight, we expect to see approx-
imately the same performance. If the order of the events
is significant, we expect to see higher performance from
temporally ordered data.

The results in Table 8 demonstrate the benefits of the
temporal ordering. There is no case in which the model
performs as well with randomly reordered data, and in
some cases multiple relations using randomly reordered
data performs worse than the unirelational baseline. This
strongly refutes the hypothesis that encoding temporal
information in VCPs is boosting performance merely
through edge weight surrogacy.

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Table 8 Contrasting performance for randomly reordered data

Page 22 of 27

(a) AUROC
Network vcp3 10 vcp320 vCp320 Reordered vcp#10 vcp20 VCP*20 Reordered
condmat 0637 0.670 0632 0582 0646 0.589
dblp-collab 0640 0.749 0682 0695 0.789 0707
hepth-collab 0598 0.738 0.599 0622 0.732 0.596
huddle 0.881 0.929 0.886 0.888 0.926 0.888

(b) AUPR
Network vcp3o vCp3:20 VCP3%0 Reordered vcph1o vcp420 VCP*20 Reordered
condmat 0011917 0010643 0011001 0008588 0010103 0009829
dblp-collab 0007152 0.009161 0008131 0009410 0.012389 0008881
hepth-collab 0007197 0.010280 0.006494 0007157 0.009375 0006622
huddle 0039394 0.065830 0.044412 0.046803 0.071811 0046162

Columns showing performance with reordered data represent the mean performance over 10 random orderings of training data. Bold values indicate temporally

ordered data outperforming randomly ordered data with statistical significance at 99.9% confidence.

Analyzing split points
Separating fine-grained longitudinal data into discrete,
bounded units for constructing network snapshots elic-
its questions such as how many snapshots to use, at what
temporal locations data should be divided, and whether to
maintain a consistent snapshot size. We conduct a simple
experiment to determine an appropriate temporal loca-
tion at which to divide these data sets in the case of two
snapshots. This experiment also tests the hypothesis that
greater focus on recent events is beneficial, and the results
lead to cogent theories about how to parameterize more
snapshots.

Figure 9 shows the performance achievable at all pos-
sible splits for two snapshots given the predetermined
chunk boundaries. Take s; as a value in the domains of the

Figure 9 sub-figures and s;;1 as the final chunk in the data
stream as indicated in Table 7. Then in training the first
snapshot includes chunks [s, s;), and the second snapshot
includes [s;,s¢—1]. The penultimate chunk, s;, is reserved
for training labels. For this experiment, to ensure that
training and testing feature data volumes are constant, the
first testing snapshot entirely subsumes the first training
snapshot. In testing, the first snapshot includes chunks
[s1,si+1), and the second snapshot includes [s;1,5s¢]. The
final chunk, s¢11, is reserved for testing labels. The hori-
zontal lines correspond to baselines in which supervised
models are built using VCP™L0, which represents no tem-
poral discrimination.

The time-resolved multirelational VCPs almost always
outperform their non-longitudinal unirelational counter-

068 085

0.66 08
064
062

AUROC
AUROC

06
058
0.56 - — 06

054 055
2

2 3 4 5 6 7 8 9 1011

Period Split Period Split

0013 0018
0016
0014
0012
001
0.008
0.006
0.004
0.002

0012
0011
001

AUPR
AUPR

0.009
0.008

0.007 . —

e

0.008
2

2 3 45 6 7 8 9 1011
Period Split

(ii) dblp-collab

Period Split

(i) condmat

(iv) huddle.

vep3? —— vep®! —— vep??

(a) AUROC

(b) AUPR
Figure 9 Performance over varying temporal split locations. (a) AUROC, (b) AUPR: (i) condmat, (ii)Jdblp-collab, (i) hepth-collab,

vep!

078 096
076 0.94
074
072
07

068
066
064
062 084

06 082

058 08
2 3 4

Period Split

AUROC
AUROC
2

2 3 4 5 6 7 8 9
Period Split

0013 01
0012 0.09
0011 0.08
001 0.07
0.009 0.06
0.008 005
0.007 0.04
0.006 0.03 }—

0.005 002
2 3 4

Period Split

(iii) hepth-collab

AUPR
AUPR

2 3 4 5 6 7 8 9
Period Split

(iv) huddle

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

parts for some split value. The only counterexample
is condmat for which VCP310 outperforms VCP320,
We additionally observe that while VCP*"? outperforms
VCP30 in all cases except condmat and nearly ties
for hepth-collab AUPR and huddle AUROC, the
addition of temporal discrimination into the models
appears to allow VCP*"? significantly greater explanatory
power across all networks. Consistent with our hypoth-
esis regarding the significance of recency, performance
increases as the second period encompasses fewer, more
temporally proximate events. This confirmation is par-
ticularly stark, because excepting condmat the highest-
performing split places only s;—; in the second snapshot,
and yet this outperforms models constructed without
splitting the data.

Effectiveness of temporal data

Having demonstrated the importance of splitting periods
and recency, we provide the comparative performance of
the temporally non-resolved baseline with that of evenly
and exponentially spaced snapshots in Table 9. We are
interested in how much the addition of temporal infor-
mation can improve the results. Gray cells indicate data

Table 9 Performance for longitudinal VCP predictions
(a) AUROC - VCP3"

Network 1 2 3 3 (Exp.)
condmat 0.637 0.670 0.671 -
dblp-collab 0.640 0.749 0.770 0.779
hepth-collab 0.598 0.738 0.729 -
huddle 0.881 0.933 0.929 0.936
(b) AUROC - VCP*"
Network 1 2 3 3 (Exp.)
condmat 0.582 0.646 0.653 -
dblp-collab 0.695 0.789 0.807 0817
hepth-collab 0.622 0.732 0.720 -
huddle 0.888 0.926 0929 0.941
(c) AUPR - VCP3"
Network 1 2 3 3exp
condmat 0.011917 0.010643 0.010352 -
dblp-collab 0.007152 0.009161 0.009931 0.009973
hepth-collab 0.007197 0.010280 0011131 -
huddle 0.039394 0.065830 0.067993 0.080036
(d) AUPR - VCP*"
Network 1 2 3 3exp
condmat 0.008588 0.010103 0.009433 -
dblp-collab 0.009410 0.012389 0.014008 0.015229
hepth-collab 0.007157 0.009375 0.009024 -
huddle 0.046803 0.071811 0.073406 0.092726

Page 23 of 27

sets for which there are insufficient chunks to meaning-
fully differentiate equal and exponential snapshot sizes
with three snapshots. We consider it critical to compare
the different variations using the same volume and quality
of data, so we deviate slightly from the method displayed
in Figure 7 in two minor ways. First, to prevent expla-
nations of differences in performance due to variations
in data, all methods use the entire quantity of histori-
cally available data for training regardless of how that data
is divided into periods. In both equal and exponentially
growing snapshot sizes, when there are too few or too
many chunks for assignment, we select the oldest snap-
shot to deviate from its ideal size. This decision is based on
the premise substantiated by Figure 9 that this is the snap-
shot of least significance to model performance. Second,
to help account for potential periodic biases, especially
in the huddle data set, the most recent snapshot in
the exponential results starts with two rather than one
underlying chunk.

These results show that temporally aware predictors
universally outperform the most directly comparable non-
temporal baselines. Gains are consistently large when
moving from no temporal awareness to division of time
into two snapshots with VCP"2?, They are less consistent
moving from VCP"2? to three snapshots with VCP"30,
Particularly, we note that condmat and hepth-collab
do not offer significant gains or even suffer losses when
moving to three snapshots. We point out the small rel-
ative volume of data in these cases and cite the curse
of dimensionality. As the number of distinct temporal-
structural elements increases, the amount of information
contained within any one element is reduced as the data
falls into increasingly many fine-grained buckets. With
the voluminous dblp-collab and huddle data sets,
there is still sufficient data to lend statistical credence to
the greater number of features, and this is reflected by
large performance gains when moving from VCP*20 to
VCPpH30,

Computational challenges

The first computational challenge in highly multirela-
tional environments relates to the time and space required
to compute and store the translational subgraph-to-
element vector. In our coverage of VCP theory, we
described static and dynamic subgraph-to-element iso-
morphism class computations. Several considerations
motivate the use of one or the other. Static computation
gives contiguous, invertible indices for consecutive VCP
elements and offers the fastest possible subgraph-to-
element translations. Memoized dynamic computation,
though potentially slower, also potentially decreases the
amount of memory necessary to create non-contiguous
but unique indices for VCP elements by only identify-
ing and storing elements that are observed. For static

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

computation, the space required to represent the trans-
lation from subgraphs in G4 to elements in VCP""¢
increases in direct proportion to |G™"4|. If the VCP
vector is large, then constructing the full translational
vector has high cost in time and space. Dynamic com-
putation using arbitrary scale integer indices overcomes
this challenge and makes it possible to handle VCP
vectors with extremely large cardinalities. For instance,
we have effectively applied VCP analysis to seman-
tic graphs in which the vector contained 7.66 x 103
elements. The ontological consistency in the seman-
tic graphs placed tight constraints on VCP population,
and fewer than 1000 elements were actually present.
Dynamic translation incurs only the cost of these
elements.

The second challenge is related to allocation costs,
output volume, and limitations of disk storage. Output
volume grows with the size of the VCP vector. Since large
networks may contain billions of edges and link prediction
target pair sets may be even larger, the space necessary to
represent the output of highly multirelational VCP anal-
ysis is problematic. As we showed with Figure 4, even in
worst-case networks, the number of non-zero elements in
the vector may be small even when its cardinality is large.
Even before the value of r grows so that subgraph com-
putation and space for translation vectors is constrained,
the cost of repeatedly allocating and deallocating the space
for large VCP vectors becomes troublesome. The solution
is to maintain an associative data structure of vector ele-
ments that exist for a given vertex pair, which will often
be a small fraction even of the subset of elements exist-
ing in the graph. Rather than outputting the full vector, we
output a list of (index,count) pairs, precluding the neces-
sity of prohibitively allocating space for every element
and substantially reducing the cost of printing and storing
the output. From a classification perspective, this offers
zero-cost filtering of VCP elements for which there is no
representative membership in the training set, sacrificing
no information.

These solutions make VCP analysis feasible for nearly
all combinations of #, r, and d likely to appear in real-
world data. We next turn to computational challenges
involved in performing classification with VCP output.
The dblp-collab network has 1.07 x 107 potential
¢ = 2 links that populate 12,436 VCP*20 elements with
non-zero values. The huddle network has 7.29 x 10°
potential £ = 2 links that populate 16,635 VCP*20
elements. Assuming 8-byte feature representations for
10 million training instances, typical of £ = 2 link
prediction in moderately sized social networks, the in-
memory data set footprint for fully populated VCP*30
is 5.2 TB.

This is strictly an engineering problem, and many solu-
tions are readily available. Information density in VCP

Page 24 of 27

elements varies widely, so dimensionality reduction and
feature selection are well-suited to reducing data volume.
These methods must be exercised strategically, however.
We cannot load 5.2 TB of data into memory to run such
procedures. Processing the training data file one feature at
a time requires reading more than 100 PB of 1/O. Read-
ing the file once and using process substitution requires
thousands of simultaneous active processes and com-
pletely overwhelms the scheduler. We can first reduce
data volumes to arbitrary levels by undersampling, which
also reduces the number of pairs for which VCP vectors
must be computed. In dblp-collab, when the nega-
tive class is reduced to a 3:1 ratio, only 88,744 instances
remain. This ratio, which was practicable enough to
obtain our results, makes many dimensionality reduction
and feature selection schemes feasible, and even ineffi-
cient implementations of classification algorithms such
as naive Bayesian classifiers and decision forests can
process such volumes of data in tractable time. Com-
pression methods that are lossless with respect to class
entropy, such as binary quantization of VCP elements
for which all non-zero values correspond to only a single
class, can also make data set storage and processing more
efficient.

An even more scalable solution results from a conse-
quence of the curse of dimensionality. We observe that
as the number of VCP elements increases for a given
graph, the number of distinct non-zero values decreases
within each element due to increasing information spar-
sity. Figure 10 shows the cumulative distribution of dis-
tinct values across VCP*>? and VCP*39, In all cases,
though there are more than 60 times as many features
with four relations, the sum of the cardinalities of the
sets of distinct values across the features is less than
doubled. We use this fact to implement a single-pass
ordered map representation of each feature in the data
set that associates values with their frequency of occur-
rence. The representation is highly compact: the huddle
data set, which requires more than 80 GB of memory
in matrix representation, requires only 1.4 GB in the
map. This method effectively implements a fast, non-
contiguous counting sort that allows for nearly instan-
taneous computation of feature selection methods such
as information gain. Information gain is fast, but the
well-known limitation of all filtering methods of feature
selection is that they fail to consider feature subsets and
thus cannot consider feature orthogonality, correlation,
and dependencies. Nonetheless, when we constructed
models using only the 1000 strongest VCP elements, we
were able to reduce classifier training times by a fac-
tor of 100, reduce memory requirements by a factor of
50, and achieve AUROC and AUPR performance within
2% of that achieved by models bestowed with all VCP
elements.

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Page 25 of 27

140000 ————— -
VCP*?
» 120000 [VCP*? memm
El
S 100000
3
£ 80000
]
o
2 60000
ko
3
2 40000
3
© 20000
0
1 10 100 1000 10000
VCP Element
(a) condmat
100000 —r———rr— -
VCP™* mwmm
. 90000 v/ <04 3
8 80000
S 70000
€ 60000
3
& 50000
2 40000
S 30000
§ 20000
10000
0
1 10 100 1000 10000
VCP Element
(C) hepth-collab

1200000

» 1000000
[}
3
©
2> 800000
o
£
2]
& 600000
o
=
T 400000
3
E
=1
G 200000

0

1 10 100 1000 10000
VCP Element
(b) dbip-collab
30000000 ———— 17—
VCP:’i —

g 25000000 [VCP' FEE
=]
©
220000000
£
B
& 15000000
o
=
& 10000000
3
E
=1
G 5000000

0

1 10 100 1000 10000
VCP Element
(d) huddie

Figure 10 Scaling trends in distinct values of VCP elements. (a) condmat, (b) dblp-collab, (c) hepth-collab, (d) huddle.

Conclusions

VCP is a new method for link analysis with solid theo-
retical roots. We presented evidence of its utility in some
applications here, but there are many possible applica-
tions. It is useful for post hoc analysis of classification
output and comparative analysis of network link structure,
and it competes effectively with existing link prediction
methods, often outperforming them by wide margins. In
well-established networks with past observational data,
VCP can serve as a sensitive change detection mecha-
nism for tracking the evolving link formation process.
In addition to link prediction and link analysis for the
purpose of network growth modeling, VCP can be used
for link or vertex pair clustering. Its ability to handle
multiple relations naturally extends its utility into many
domains and offers an alternative to the practice of com-
bining or discarding edge types or edge directionality. We
showed how VCP analysis can be useful in incorporating
temporality into link prediction with a multirelational
encoding, and this offered improvements another factor
greater than what we already obtained with unirelational
VCP predictions.

Optimized implementations of VCP3? and
VCP*" algorithms are available at https://github.
com/rlichtenwalter/vcp. The repository includes
subgraph-to-element mapping software, which generates

static subgraph-to-element mappings for 3 < n < 8,1 <
r < 8,d € {0,1} and dynamic subgraph-to-element map-
pings for any values of u, 7, and d. Algorithms for VCP>14
and VCP*M are also integrated into the LPmade link
prediction framework and are available at http://mloss.
org/software/view/307/. Most of the data sets are publicly
available elsewhere, but we have also published all public
data sets at http://nd.edu/~dial/vcp/.

Appendix A

In the original exposition of VCP analysis in (Lichtenwalter
and Chawla 2012), we provided the equation for the num-
ber of subgraphs in universes G""* given by the tuples
(n,r) and deliberately excluded a target prediction rela-
tion between vs and vy, from consideration. The equation
appeared thus:

nn—1r
> 1

1G] =2 (16)

The edge e;; received special treatment for two reasons.
First, particular analytical domains offer additional knowl-
edge about this edge. For instance, in link prediction we
will usually be interested in analyzing only vertex pairs
(vs, v¢) for which e;; ¢ E. In link clustering, we are likely
interested in e5; € E. Second, for a given (vs, 1), only 27"
of all elements will be non-zero if the edge does not receive

https://github.com/rlichtenwalter/vcp
https://github.com/rlichtenwalter/vcp
http://mloss.org/software/view/307/
http://mloss.org/software/view/307/
http://nd.edu/~dial/vcp/

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

special treatment, because e, takes a constant form in all
embeddings. The information about the nature of e is
thus more succinctly described, when it is desired at all,
as a single integer taking values [0,2(@+D" — 1], which is
sufficient to fully define the edge.

The treatment in Section “Vertex collocation profiles”
gains greatly in theoretical consistency and mathematical
coherence by not considering e, in a special way. Addi-
tionally, goals such as tensor analysis of VCP vectors may
gain from the verbose representation. The provided VCP
code implementations are fully aligned with the presen-
tation in Section “Vertex collocation profiles”. When one
is using VCP for link prediction specifically, it may be
convenient to alter this scheme by effectively shifting the
lexicographical ordering of the edges so that e, is the
edge of highest value, as presented in (Lichtenwalter and
Chawla 2012). By placing that edge in the most signifi-
cant position, in the common link prediction case where
no edge exists between v, and v;, unpopulated elements
are grouped in the second half of the vector. It is triv-
ial to modify our code to achieve this by adjusting the
value of enum constants and using a modified subgraph-
to-element mapping. Then one may truncate the vector
either prior to outputting it in code or afterward with, for
instance, the Unix cut command.

Appendix B
An anonymous reviewer has suggested presenting a more
intuitive explanation of subgraph addressing. We main-
tain our primary explanation in the main body for its
rigor, its ties to spectral graph theory, and its mathemat-
ical clarity in the permutation approach to identifying
isomorphisms. We recognize, however, that the following
explanation is more intuitive for many. We note that this
only covers subgraph addressing and not VCP address-
ing. We thank the anonymous reviewer for providing the
following explanation, which we have adjusted somewhat.
Our goal is to map a subgraph to an index in the sub-
graph universe G™"?, which has cardinality |G""¢| =
231(=D@+Dr et the vertices of the subgraph be labeled
Vi = Vs, Vo ., Vu. Assume the graph is undi-
rected, so d = 0. Then there are p = (g) possible edges.
Without loss of generality, we assume that these edges
are lexicographically ordered and that the lower index is
always first so that edge 1 is (v5,vy), edge 2 is (vs,v3),
and edge p is (v,—1,Vy). The index into the VCP vector is
represented in binary with most significant bits first as:

= Vg V3.

|Edge p| Edge p — 1| - -|Edge 1]

Each edge is an r-bit value representing which rela-
tionships are present. For example, if there are r = 3
possible edge types, then the presence of the first and

Page 26 of 27

second is represented as 011, and the presence of none is
represented as 000.

If the network is directed, so d = 1, then the num-
ber of possible edges doubles since we separately consider
(vi»vp) and (v}, v;). We maintain the same lexicographical
ordering on edges, but we admit both directions. So, the
representation is:

|Edge 2p| Edge2p —1 | ----- |Edge 1|

Clearly the number of bits is Zd(g)r. Since 29 = d + 1
for d € {0, 1}, we can see that this is the correct number of
indices.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

RNL contributed original ideas, code implementations, research work, and the
manuscript text. NVC contributed guidance and funding. Both authors read
and approved the final manuscript.

Acknowledgements

Research was sponsored in part by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053, in
part by the National Science Foundation (NSF) under grant BCS-0826958, in
part by the United States Air Force Office of Scientific Research (AFOSR) and
the Defense Advanced Research Projects Agency (DARPA) under grant
FA9550-12-1-0405, and in part by the National Global Security Business
internal research and development program at Battelle Memorial Institute. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

The Proximity DBLP database is based on data from the DBLP Computer
Science Bibliography with additional preparation performed by the
Knowledge Discovery Laboratory, University of Massachusetts Amherst. The
Proximity HEP-Th database is based on data from the arXiv archive and the
Stanford Linear Accelerator Center SPIRES-HEP database provided for the 2003
KDD Cup competition with additional preparation performed by the
Knowledge Discovery Laboratory, University of Massachusetts Amherst.

Received: 13 September 2013 Accepted: 3 February 2014
Published: 28 February 2014

References

Acar E, Dunlavy DM, Kolda TG (2009) Link prediction on evolving data using
matrix and tensor factorizations. In: Proceedings of the IEEE International
Conference on Data Mining Workshops (ICDMW). IEEE, pp 262-269.
doi:10.1007/978-3-642-28320-8_9

Adamic L, Adar E (2001) Friends and neighbors on the web. Soc Netw 25:
211-230

Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised
learning. In: Proceedings of the workshop on link discovery: issues,
approaches and applications. ACM, New York

Amitay E, Carmel D, Herscovici M, Lempel R, Soffer A (2004) Trend detection
through temporal link analysis. J Am Soc Inform Sci Technol 55(14):
1270-1281.doi:10.1002/asi.20082

Barabasi A-L, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution
of the social network of scientific collaboration. Physica A 311(3-4):
590-614. doi:10.1016/50378-4371(02)00736-7

Becchetti L, Boldi P, Castillo C, Gionis A (2010) Efficient algorithms for
large-scale local triangle-counting. ACM Trans Knowl Discov Data 4(3).
doi:10.1145/1839490.1839494

Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
doi:10.1023/A:1018054314350

Lichtenwalter and Chawla SpringerPlus 2014, 3:116
http://www.springerplus.com/content/3/1/116

Breiman, L (2001) Random forests. Mach Learn 45(1): 5-32.
doi:10.1023/A:1018054314350

Davis J, Goadrich M (2006) The relationship between precision-recall and ROC
curves In: Proceedings of the 23rd International Conference on Machine
Learning (ICML). ACM, New York, pp 233-240.
doi:10.1023/A:1010933404324

Davis DA, Chawla NV (2011) Exploring and exploiting disease interactions from
multi-relational gene and phenotype networks. PLoS ONE 6(7).
doi:10.1145/1143844.1143874

Davis D, Lichtenwalter RN, Chawla NV (2011) Multi-relational link prediction in
heterogeneous information networks. In: Proceedings of the International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM). Kaohsiung, Taiwan, pp 281-288.
doi:10.1371/journal.pone.0022670

Gaber MM, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review.
ACM Sigmod Record 34(2): 18-26. doi:10.1145/1083784.1083789

Getoor L (2003) Link mining: a new data mining challenge. ACM SIGKDD
Explorations Newsl| 5(1): 84-89. doi:10.1145/959242.959253

Getoor L, Diehl CP (2005) Link mining: a survey. SIGKDD Explor News! 7(2):
3-12.doi:10.1145/1117454.1117456

Hand DJ (2009) Measuring classifier performance: a coherent alternative to the
area under the ROC curve. Mach Learn 77(1): 103-123.
doi:10.1007/510994-009-5119-5

Hill S, Agarwal DK, Bell R, Volinsky C (2006) Building an effective representation
for dynamic networks. J Comput Graph Stat 15(3): 584-608.
doi:10.1198/106186006X139162

Ho TK (1998) The random s ubspace method for constructing decision
forests. IEEE Trans Pattern Anal Mach Intell 20(8): 832-844.
doi:10.1109/34.709601

Juszczyszyn K, Budka M, Musial K (2011a) The dynamic structural patterns of
social networks based on triad transitions. In: Proceedings of the 2011
international conference on Advances in Social Networks Analysis and
Mining (ASONAM). doi:10.1109/ASONAM.2011.50

Juszczyszyn K, Musial K, Budka M (2011b) Link prediction based on subgraph
evolution in dynamic social networks. In: Proceedings of the IEEE 3rd
international conference on Social Computing (SocialCom) and on Privacy,
Security, Risk and Trust (PASSAT). IEEE, pp 27-34.
doi:10.1109/PASSAT/SocialCom.2011.15

Jirgen P, Carley KM (2012) k-centralities: local approximations of global
measures based on shortest paths. In: Proceedings of the 2012
international conference companion on world wide web. ACM, New York,
pp 1043-1050. doi:10.1145/2187980.2188239

Katz L (1953) A new status index derived from sociometric analysis.
Psychometrika 18(1): 39-43. doi:10.1007/BF02289026

Kreher DL, Stinson DR (1999) Combinatorial algorithms: generation,
enumeration, and search. 1st edn. CRC Press, Boca Raton

Ley M (2002) The DBLP computer science bibliography: evolution, research
issues, perspectives. In: String processing and information retrieval.
Springer, pp 481-486. doi:10.1007/3-540-45735-6_1

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social
networks. J Am Soc Inform Sci Technol 58(7): 1019-1031.
doi:10.1002/asi.20591

Lichtenwalter RN, Chawla NV (2011) LPmade: Link prediction made easy. J
Mach Learn Res 12: 2489-2492

Lichtenwalter, RN, Chawla NV (2012) Vertex collocation profiles: subgraph
counting for link analysis and prediction. In: Proceedings of the 21st
international WWW conference on computer networks. ACM, New York,
pp 1019-1028. doi:10.1145/2187836.2187973

Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods
in link prediction. In: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge Discovery and Data Mining (KDD). ACM, New
York, pp 243-252. doi:10.1145/1835804.1835837

McGovern A, Friedland L, Hay M, Gallagher B, Fast A, Neville J, Jensen D (2003)
Exploiting relational structure to understand publication patterns in
high-energy physics. ACM SIGKDD Explor Newsl 5(2): 165-172.
doi:10.1145/980972.980999

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network
motifs: simple building blocks of complex networks. Science 298(5594):
824.doi:10.1126/science.298.5594.824

Murata T, Moriyasu S (2007) Link prediction of social networks based on
weighted proximity measures. In: Proceedings of the IEEE/WIC/ACM

Page 27 of 27

international conference on web intelligence. IEEE Computer Society,
pp 85-88. doi:10.1109/W1.2007.52

Newman MEJ (2001a) The structure of scientific collaboration networks. Proc
Nat Acad Sci 98: 404-409. doi:10.1073/pnas.98.2.404

Newman, MEJ (2001b) Clustering and preferential attachment in growing
networks. Phys Rev Lett E 64(2). doi:10.1103/PhysRevE.64.025102

O'Madadhain J, Hutchins J, Smyth P (2005) Prediction and ranking algorithms
for event-based network data. ACM SIGKDD Explorations News| 7(2):
23-30.doi:10.1103/PhysReVvE.64.025102

Przulj N (2007) Biological network comparison using graphlet degree
distribution. Bioinformatics 23(2): 177-183.
doi:10.1093/bioinformatics/btI301

Qiu B, He Q, Yen J (2011) Evolution of node behavior in link prediction. In: Proc.
of the 25th AAAI conf. on artificial intelligence. AAAI Press, Palo Alto

Rattigan MJ, Jensen D (2005) The case for anomalous link discovery. SIGKDD
Explor Newsl 7(2): 41-47. doi:10.1145/1117454.1117460

Raeder T, Lizardo O, Hachen D, Chawla NV (2011) Predictors of short-term
decay of cell phone contacts in a large-scale communication network. Soc
Netw 33(4): 245-257. doi:10.1016/j.socnet.2011.07.002

Reed WJ, Jorgensen M (2004) The double Pareto-lognormal distribution-a
new parametric model for size distributions. Commun Stat-Theory
Methods 33(8): 1733-1753. doi:10.1081/STA-120037438

Scellato S, Noulas A, Mascolo C (2011) Exploiting place features in link
prediction on location-based social networks. In: Proceedings of the ACM
SIGKDD international conference on Knowledge Discovery and Data
Mining (KDD). doi:10.1145/2020408.2020575

Sharan U, Neville J (2008) Temporal-relational classifiers for prediction in
evolving domains. In: Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM). IEEE, pp 540-549. doi:10.1109/ICDM.2008.125

Sun'Y, Han J, Aggarwal CC, Chawla NV (2012) When will it happen?
Relationship prediction in heterogeneous information networks. In:
Proceedings of the 2012 ACM international conference on Web Search
and Data Mining (WSDM). doi:10.1145/2124295.2124373

Valverde S, Solé RV, Bedau MA, Packard N (2007) Topology and evolution of
technology innovation networks. Phys Rev E 76(5).
doi:10.1103/PhysReVvE.76.056118

Wang C, Satuluri V, Parthasarathy S (2007) Local probabilistic models for link
prediction. In: Proceedings of the 7th IEEE International Conference on
Data Mining (ICDM). IEEE Computer Society, Washington, D.C, pp 322-331.
doi:10.1109/ICDM.2007.108

Witten IH, Frank E (2005) Data mining: practical machine learning tools and
techniques. 2nd edn. Morgan Kaufmann, San Francisco

doi:10.1186/2193-1801-3-116
Cite this article as: Lichtenwalter and Chawla: Vertex collocation profiles:
theory, computation, and results. SpringerPlus 2014 3:116.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Related work
	Contributions
	Organization

	Vertex collocation profiles
	Isomorphisms
	Addressing
	Directionality
	Dynamic vs. static computation

	Algorithms
	VCP3,r,d Algorithms
	VCP4,r,d Algorithms
	Extension to complex networks

	Data
	Computational feasibility
	The VCP method and link prediction
	Experimental setup
	Prediction performance

	VCPs and multirelational data
	Longitudinal data
	Experiments
	Precluding surrogacy for weight
	Analyzing split points
	Effectiveness of temporal data

	Computational challenges

	Conclusions
	Appendix A
	Appendix B
	Competing interests
	Authors' contributions
	Acknowledgements
	References

