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Abstract

Let M be a 2-torsion free prime �-ring satisfying the condition aαbβc = aβbαc,∀a, b, c ∈ M and α,β ∈ �, U be an
admissible Lie ideal of M and F = (fi)i∈N be a generalized higher (U,M)-derivation ofM with an associated higher
(U,M)-derivation D = (di)i∈N of M. Then for all n ∈ N we prove that fn(uαm) = ∑

i+j=n fi(u)αdj(m),∀u ∈ U,m ∈ M,
α ∈ �.
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Introduction
The notion of a �-ring has been developed by Nobusawa
(1964), as a generalization of a ring. Following Barnes
(1966) generalized the concept of Nobusawa’s �-ring as a
more general nature. Nowadays �-ring theory is a show-
piece of mathematical unification, bringing together sev-
eral branches of the subject. It is the best research area
for the Mathematicians and during 40 years, many classi-
cal ring theories have been generalized in�-rings bymany
authors. The notions of derivation and Jordan derivation
in �-rings have been introduced by Sapanci and Nakajima
(1997). Afterwards, in the light of some significant results
due to Jordan left derivation of a classical ring obtained
by Jun and Kim (1996), some extensive results of left
derivation and Jordan left derivation of a �-ring were
determined by Ceven (2002). In (Halder and Paul 2012),
Halder and Paul extended the results of (Ceven 2002) in
Lie ideals. LetM and � be additive abelian groups. If there
is a mapping M × � × M → M (sending (x, α, y) into
xαy) such that (i) (x + y)αz = xαz + yαz, x(α + β)y =
xαy+xβy, xα( y+z) = xαy+xαz, (ii) (xαy)βz = xα( yβz),
for all x, y, z ∈ M and α, β ∈ �, then M is called a �-
ring. This concept is more general than a ring and was
introduced by Barnes (1966). A �-ringM is called a prime
�-ring if ∀a, b ∈ M, a�M�b = 0 implies a = 0 or
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b = 0. A �-ring M is 2-torsion free if 2a = 0 implies
a = 0, ∀a ∈ M. For any x, y ∈ M and α ∈ �, we induce a
new product , the Lie product by [x, y]α = xαy − yαx. An
additive subgroup U ⊂ M is said to be a Lie ideal of M if
whenever u ∈ U,m ∈ M and α ∈ �, then [u,m]α ∈ U.
In the main results of this article we assume that the Lie
ideal U verifies uαu ∈ U, ∀u ∈ U. A Lie ideal of this
type is called a square closed Lie ideal. Furthermore, if
the Lie ideal U is square closed and U is not contained
in Z(M), where Z(M) denotes the center of M, then U is
called an admissible Lie ideal of M. In (Herstein 1957),
Herstein proved a well-known result in prime rings
that every Jordan derivation is a derivation. Afterwards
many Mathematicians studied extensively the deriva-
tions in prime rings. In (Awter 1984), Awtar extended
this result in Lie ideals. (U,R)-derivations in rings have
been introduced by Faraj et al. (2010), as a general-
ization of Jordan derivations on a Lie ideals of a ring.
The notion of a (U,R)-derivation extends the concept
given in (Awter 1984). In this paper (Faraj et al. 2010),
they proved that if R is a prime ring, char(R) �= 2,
U a square closed Lie ideal of R and d a (U,R)-
derivation of R, then d(ur) = d(u)r + ud(r), ∀, u ∈
U, r ∈ R. This result is a generalization of a result in
(Awter (1984), Theorem in section 3). In this article,
we introduce the concept of a (U,M)-derivation, gener-
alized (U,M)-derivation and generalized higher (U,M)-
derivation, whereU is a Lie ideal of a �-ringM. Examples
of a Lie ideal of a �-ring, (U,M)-derivation, generalized
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(U,M)-derivation, higher (U,M)-derivation and gener-
alized higher (U,M)-derivation are given here. A result
in (Halder and Paul (2012), Theorem 2.8) is generalized
in �-rings by the new concept of a (U,M)-derivation.
Throughout the article, we use the condition aαbβc =
aβbαc, ∀a, b, c ∈ M and α, β ∈ � and this is repre-
sented by (*). We make the basic commutator identities
[xαy, z]β = [x, z]β αy + x[α, β]z y + xα[ y, z]β , [x, yαz]β =
[x, y]β αz + y[α, β]x z + yα[x, z]β , ∀x, y, z ∈ M, ∀α, β ∈ �.
According to the condition (*), the above two identities
reduces to [xαy, z]β = [x, z]β αy + xα[ y, z]β , [x, yαz]β =
[x, y]β αz + yα[x, z]β , ∀x, y, z ∈ M, ∀α, β ∈ �.

Generalized (U,M)-derivation
In view of the concept of (U,R)-derivation of an ordinary
ring developed by Faraj et al. (2010), we have been deter-
mined some important results in Rahman and Paul (2013)
due to these concepts in case of certain �-rings after
introducing the notions of (U,M)-derivation of�-rings as
defined below.

Definition 1. (Rahman and Paul (2013), Definition 2.1)
Let M be a �-ring and U be a Lie ideal of M. An additive
mapping d : M → M is said to be a (U,M)-derivation of
M if d(uαm + sαu) = d(u)αm + uαd(m) + d(s)αu +
sαd(u), ∀u ∈ U,m, s ∈ M and α ∈ �.

Definition 2. (Rahman and Paul (2013), Definition 2.2)
Let M be a �-ring and U be a Lie ideal of M. An
additive mapping f : M → M is said to be a gener-
alized (U, M)- derivation of M if there exists a (U,M)-
derivation d of M such that f (uαm + sαu) = f (u)αm +
uαd(m) + f (s)αu + sαd(u), ∀u ∈ U,m, s ∈ M and
α ∈ �.
The existence of a Lie ideal of a �-ring, (U,M)-

derivation and a generalized (U,M)-derivation are con-
firmed by the following examples.

Example 1. Let R be an associative ring with 1 and
U a Lie ideal of R. Let M = M1,2(R) and � ={(

n.1
0

)
: n ∈ Z

}
, thenM is a �-ring.

If N = {(x, x) : x ∈ R} ⊆ M and U1 = {(u, u) : u ∈ U}
then N is a sub �-ring ofM and U1 is a Lie ideal of N. Let
f : R → R be a generalized (U,R)-derivation. Then there
exists a (U,R)-derivation d : R → R such that f (uαx +
sαu) = f (u)αx + uαd(x) + f (s)αu + sαd(u).
If we define a mapping D : N → N by D((x, x)) =

(d(x), d(x)), then we have D
(

(u, u)

(
n
0

)
(x, x) +

( y, y)
(
n
0

)
(u, u)

)
= D((unx, unx) + ( ynu, ynu)) =

D((unx + ynu, unx + ynu)) = (d(unx + ynu), d(unx +
ynu)).

After calculation we have D(u1αx1 + y1αu1) =
D(u1)αx1 + u1αD(x1) + D( y1)αu1 + y1αD(u1), where

u1 = (u, u), α =
(
n
0

)
, x1 = (x, x), y1 = ( y, y).

Hence D is a (U1,N)− derivation on N.
Let F : N → N be the additive mapping

defined by F((x, x)) = ( f (x), f (x)), then considering

u1 = (u, u) ∈ U1, α =
(
n
0

)
∈ �, x1 = (x, x), y1 =

( y, y) ∈ N , we have F(u1αx1 + y1αu1) = F(unx+
ynu, unx + ynu) = ( f (unx + ynu), f (unx + ynu)) =
( f (u)nx + und(x) + f ( y)nu + ynd(u), f (u)nx +
und(x) + f ( y)nu + ynd(u)) = ( f (u), f (u))

(
n
0

)
(x, x) +

( f ( y), f ( y))
(
n
0

)
(u, u)+ (u, u)

(
n
0

)
(d(x), d(x)) + ( y, y)(

n
0

)
(d(u), d(u)) = F((u, u))

(
n
0

)
(x, x)+ (u, u)

(
n
0

)
(
D((x, x)) + F(( y, y))

(
n
0

)
(u, u) + ( y, y) n0

)
D((u, u)) =

F(u1)αx1 + u1αD(x1) + F( y1)αu1 + y1αD(u1).

Hence F is a generalized (U1,N)−derivation on N.

Lemma 1. (Rahman and Paul (2013), Lemma 2.4) LetM
be a 2-torsion free �-ring satisfying the condition (*). U be
a Lie ideal of M and f be a generalized (U,M)-derivation
of M. Then

(i) f (uαmβu) = f (u)αmβu + uαd(m)βu + uαmβd(u),
∀u ∈ U,m ∈ M and α, β ∈ �.

(ii) f (uαmβv + vαmβu) = f (u)αmβv + uαd(m)βv +
uαmβd(v) + f (v)αmβu + vαd(m)βu + vαmβd(u),
∀u, v ∈ U,m ∈ M and α, β ∈ �.

Definition 3. (Rahman and Paul (2013), Definition 2.5)
Let d be a (U,M)-derivation of M, then we define
�α(u,m) = d(uαm)−d(u)αm−uαd(m), ∀u ∈ U,m ∈ M
and α ∈ �.

Now, we state some useful results that have already been
discussed in Rahman and Paul (2013).

Lemma 2. Let d be a (U,M)-derivation of M, then

(i) �α(u,m) = −�α(m, u), ∀u ∈ U,m ∈ M and α ∈ �.
(ii) �α(u + v,m) = �α(u,m) + �α(v,m), ∀u, v ∈ U,

m ∈ M and α ∈ �.
(iii) �α(u,m + n) = �α(u,m) + �α(u, n), ∀u ∈ U,m,

n ∈ M and α ∈ �.
(iv) �α+β(u,m) = �α(u,m) + �β(u,m), ∀u ∈ U,m ∈ M

and α, β ∈ �.

The proofs are obvious by using the Definition 3.
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Definition 4. (Rahman and Paul (2013), Definition 2.7)
If f is a generalized (U,M)-derivation of M and d is
a (U,M)-derivation of M, then we define �α(u,m) =
f (uαm) − f (u)αm − uαd(m), ∀u ∈ U,m ∈ M and
α ∈ �.

Also, we need the following important results that have
already been discussed in Rahman and Paul (2013).

Lemma3. Let f be a generalized (U,M)-derivation of M,
then

(i) �α(u,m) = −�α(m, u), ∀u ∈ U,m ∈ M and α ∈ �.
(ii) �α(u + v,m) = �α(u,m) + �α(v,m), ∀u, v ∈ U,

m ∈ M and α ∈ �.
(iii) �α(u,m + n) = �α(u,m) + �α(u, n), ∀u ∈ U,m,

n ∈ M and α ∈ �.
(iv) �α+β (u,m) = �α(u,m) +�β(u,m), ∀u ∈ U,m ∈ M

and α, β ∈ �.

The proofs are obvious by using the Definition 4.

Lemma 4. (Rahman and Paul (2013), Lemma 2.11) Let
U be a Lie ideal of a 2-torsion free prime �-ring M satis-
fying the condition (*) and U is not contained in Z(M). If
a, b ∈ M (resp.b ∈ U and a ∈ M) such that aαUβb =
0, ∀α, β ∈ �, then a = 0 or b = 0.

Theorem 1. (Rahman and Paul (2013), Theorem 2.13)
Let M be a 2-torsion free prime �-ring satisfying the con-
dition (*), U be an admissible Lie ideal of M and f be
a generalized (U,M)-derivation of M, then �α(u, v) =
0, ∀u, v ∈ U and α ∈ �.

Remark 1. If we replace U by a square closed Lie ideal in
the Theorem 1, then the theorem is also true.

Theorem 2. (Rahman and Paul (2013), Theorem 2.14)
Let M be a 2-torsion free prime �-ring satisfying the con-
dition (*), U a square closed Lie ideal of M and f be
a generalized (U,M)-derivation of M, then f (uαm) =
f (u)αm + uαd(m), ∀u ∈ U m ∈ M and α ∈ �.

Generalized higher (U,M)-derivation
In this section, we introduce generalized higher (U,M)-
derivations in �-rings.

Definition 5. Let M be a �-ring and U be a Lie ideal
of M and F = ( fi)i∈N0 be a family of additive mappings
of M into itself such that f0 = idM, where idM is an
identity mapping on M. Then F is said to be a gener-
alized higher (U,M)-derivation of M if there exists an
higher (U,M)-derivation D = (di)i∈N of M such that for

each n ∈ N, fn(uαm + sαu) = ∑
i+j=n fi(u)αdj(m) +

fi(s)αdj(u), ∀u ∈ U,m, s ∈ M and α, β ∈ �.

Example 2. Let N and U1 are as in Example 1. If fn: R →
R be a generalized higher (U,R)-derivation. Then there
exists a higher (U1,R) derivation dn : R → R such that
fn(uαx + yαu) = ∑

i+j=n fi(u)αdj(x) + fi( y)αdj(u).
If we define a mapping Dn : N → N by Dn((x, x)) =

(dn(x), dn(x)). Then Dn is a higher (U1,N)-derivation
on N.
Let Fn : N → N be the additive mapping defined by

Fn((x, x)) = ( fn(x), fn(x)). Then by the similar calculation
as in Example 1, we can show that, Fn is a generalized
higher (U1,N)-derivation on N.

Lemma 5. Let M be a 2-torsion free �-ring satisfying
the condition (*), U be a Lie ideal of M and F = ( fi)i∈N
be a generalized higher (U,M)-derivation of M. Then
fn(uαmβu) = ∑

i+j+k=n fi(u)αdj(m)βdk(u), ∀u ∈ U,m ∈
M and α, β ∈ �.

Proof. Let x = uα((2u)βm + mβ(2u)) + ((2u)βm +
mβ(2u))αu.
Replacing m and s by (2u)βm + mβ(2u) and

(2u)αm + mα(2u) respectively in fn(uαm + sαu) =∑
i+j=n fi(u)αdj(m) + fi(s)αdj(u) and using the condi-

tion (*), we have fn(x) = ∑
i+j=n fi(u)αdj((2u)βm +

mβ(2u)) + fi((2u)βm + mβ(2u))αdj(u) = 2
∑

i+j=n
fi(u)α

∑
l+t=j(dl(u)βdt(m) + dl(m)βdt(u)) + 2

∑
i+j=n∑

p+q=i( fp(u)βdq(m)+ fp(m)βdq(u))αdj(u)=2
∑

i+l+t=n
fi(u)α(dl(u)βdt(m) + fi(u)αdl(m)βdt(u)) + 2

∑
p+q+j=n

( fp(u)βdq(m)αdj(u) + fp(m)βdq(u)αdj(u)).
Thus we have

fn(x) = 2
∑

i+l+t=n fi(u)α(dl(u)βdt(m) + fi(u)αdl(m)βdt(u))

+ 2
∑

p+q+j=n
( fp(u)αdq(m)βdj(u) + fp(m)αdq(u)βdj(u)).

(1)

On the other hand by the definition of higher (U,M)-
derivation and using the condition (*) fn(x) = 2fn((uαu)

βm + mβ(uαu)) + 2fn(uαmβu) + 2fn(uβmαu) = 2fn
((uαu)βm + mβ(uαu)) + 2fn(uαmβu) + 2fn(uαmβu) =
2

∑
i+j=n( fi(uαu)βdj(m) + fi(m)βdj(uαu)) + 4fn(uαm

βu) = 2
∑

i+j=n
∑

r+s=i fr(u)αdsu)βdj(m) + 2
∑

i+j=n∑
e+k=j fi(m)αdeu)βdk(u) + 4fn(uαmβu).
Thus we have

fn(x) = 2
∑

r+s+j=n
fr(u)αdsuβdj(m)

+ 2
∑

i+e+k=n

fi(m)βdeu)αdk(u) + 4 fn(uαmβu).

(2)
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Now comparing (1) and (2) we get 4fn(uαmβu) =
4

∑
i+j+k=n fi(u)αdj(m)βdk(u), ∀u ∈ U,m ∈ M and

α, β ∈ �. Using 2-torsion freeness of M, we get the
desired result.

Lemma 6. Let M be a 2-torsion free �-ring satisfying
the condition (*), U be a Lie ideal of M and F = ( fi)i∈N
be a generalized higher (U,M)-derivation of M. Then
fn(uαmβv + vαmβu) = ∑

i+j+k=n fi(u)αdj(m)dk(v) +
fi(v)αdj(m)βdk(u), ∀u, v ∈ U,m ∈ M and α, β ∈ �.

Proof. Linearizing of fn(uαmβu) = ∑
i+j+k=n fi(u)αdj

(m)βdk(u) with respect to u gives us fn((u + v)
αmβ(u + v)) = ∑

i+j+k=n fi(u + v)αdj(m)βdk(u+ v) =∑
i+j+k=n( fi(u)αdj(m)βdk(u) + fi(u)αdj(m)βdk(v) +

fi(v)αdj(m)βdk(u) + fi(v)αdj(m)βdk(v)).
On the other hand fn((u + v)αmβ(u + v)) =

fn(uαmβu) + fn(uαmβv + vαmβu) + fn(vαmβv) =∑
i+j+k=n( fi(u)αdj(m)βdk(u) + fn(uαmβv + vαmβu) +∑
i+j+k=n( fi(v)αdj(m)βdk(v).
Now comparing above two expressions, we get

fn(uαmβv + vαmβu) = ∑
i+j+k=n fi(u)αdj(m)βdk(v) +

fi(v)αdj(m)βdk(u), ∀u, v ∈ U,m ∈ M and α, β ∈ �.

Definition 6. Let M be a 2-torsion free �-ring satis-
fying the condition (*) and U be a Lie ideal of M. Let
F = ( fi)i∈N be a generalized higher (U,M)-derivation
of M. For every fixed n ∈ N, we define ψα

n (u,m) =
fn(uαm) − ∑

i+j=n fi(u)αdj(m), ∀u ∈ U,m ∈ M, α ∈ �.
Also let D = (di)i∈N be a higher (U,M)-derivation of M.
For every fixed n ∈ N, we define φα

n (u,m) = dn(uαm) −∑
i+j=n di(u)αdj(m), ∀u ∈ U,m ∈ M, α ∈ �.

Remark 2. ψα
n (u,m) = 0, ∀u ∈ U,m ∈ M, α ∈ � and

n ∈ N if and only if fn(uαm) = ∑
i+j=n fi(u)αdj(m), ∀u ∈

U,m ∈ M, α ∈ � and n ∈ N. Also φα
n (u,m) = 0, ∀u ∈

U,m ∈ M, α ∈ � and n ∈ N if and only if dn(uαm) =∑
i+j=n di(u)αdj(m), ∀u ∈ U,m ∈ M, α ∈ � and n ∈ N.

Lemma 7. Let M be a 2-torsion free �-ring satisfying the
condition (*) and U be a Lie ideal of M. For every u ∈
U,m ∈ M, α ∈ � and n ∈ N, then ψα

n (u,m) + ψα
n (m, u) =

0 and φα
n (u,m) + φα

n (m, u) = 0.

The proofs are obvious by the Definition 6, higher
(U,M)-derivation of M and generalized higher (U,M)-
derivation ofM.

Lemma 8. Let M be a 2-torsion free prime �-ring sat-
isfying the condition (*), U be an admissible Lie ideal
of M and F = ( fi)i∈N be a generalized higher (U,M)-
derivation of M. Then ψα

n (u, v) = 0, ∀u, v ∈ U, α ∈ � and
n ∈ N.

Proof. We have ψα
0 (u, v) = 0, ∀u, v ∈ U, α ∈ � and by

Theorem 1, ψα
1 (u, v) = 0, ∀u, v ∈ U, α ∈ �.

Now we assume, by induction on n ∈ N, thatψα
m(u, v) =

0, ∀u, v ∈ U, α ∈ �,m ∈ N and m < n.
Let x = 4(uαvβwγ vαu + vαuβwγuαv).
Then by using Lemma 6, we have fn(x) = 4fn(uαv)

βwγ vαu + 4uαvβwγdn(vαu) + ∑i,k<n
i+j+k=n fi(uαv)βdj(w)

γdk(vαu) + 4fn(vαu)βwγuαv + 4vαuβwγdn(uαv) +∑i,k<n
i+j+k=n fi(vαu)βdj(w)γdk(uαv).
On the other hand, by Lemma 5 and D = (di)i∈N

is a higher (U,M)-derivation of M. fn(x) = 4uαvβwγ∑
s+k=n ds(v)αdk(u) + 4

∑
i+p=n fi(u)αdp(v)βwγ vαu +∑s+k,i+p<n

i+p+q+s+k=n fi(u)αdp(v)βdq(w)γds(v)αdk(u) + 4vαuβ

wγ
∑

r+k=n dr(u)αdk(v)+4
∑

i+l=n fi(v)αdl(u)βwγuαv+∑i+l,r+k<n
i+l+t+r+k=n fi(v)αdl(u)βdt(w)γdr(u)αdk(v).
Now comparing the two expressions of fn(x) and using

ψα
m(u, v) = 0, ∀u, v ∈ U, α ∈ �,m < n, we get

4ψα
n (u, v)βwγ vαu + 4ψα

n (v, u)βwγuαv + 4uαvβwγφα
n

(v, u) + 4vαuβwγφα
n (u, v) = 0.

Using Lemma 7 and 2-torsion freeness of M we get
ψα
n (u, v)βwγ [u, v]α + [u, v]α βwγφα

n (u, v) = 0.
Since D = (di)i∈N is a higher (U,M)-derivation of M,

thus we have φα
n (u, v) = 0. Now by Lemma 4 and since U

is noncentral, thus we get ψα
n (u, v) = 0, ∀u, v ∈ U, α ∈ �

and n ∈ N.
Now we prove the main result.

Theorem 3. Let M be a 2-torsion free prime �-ring sat-
isfying the condition (*), U be an admissible Lie ideal of M
and F = ( fi)i∈N be a generalized higher (U,M)-derivation
of M. Then fn(uαm) = ∑

i+j=n fi(u)αdj(m), ∀u ∈ U,m ∈
M, α ∈ � and n ∈ N.

Proof. We have ψα
0 (u,m) = 0, ∀u ∈ U,m ∈ M, α ∈ �

and by Theorem 1, ψα
1 (u,m) = 0, ∀u ∈ U,m ∈ M, α ∈ �.

Now we assume, by induction on n ∈ N, that
ψα
m(u,m) = 0, ∀u ∈ U,m ∈ M, α ∈ �,m ∈ N andm < n.
Now since F = ( fi)i∈N is a generalized higher (U,M)-

derivation of M, we have 0 = ψα
n (u, uβm − mβu) =

fn(uαuβm)− fn(uαmβu)−∑
i+j=n fi(u)αdj(uβm−mβu).

Since D = (di)i∈N is a higher (U,M)-derivation of M,
thus we have

fn(uαuβm) =
∑

i+l+t=n
( fi(u)αdl(u)βdt(m). (3)

Since F = ( fi)i∈N is a generalized higher (U,M)-
derivation of M, thus we have fn(uα(uβm) +
(uβm)αu) = ∑

i+j=n fi(u)αdj(uβm) + fi(uβm)αdj(u) =
fn(u)α(uβm) + uαdn(uβm) + ∑ i,j<n

i+j=n fi(u)αdj(uβm).
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+ fn(uβm)α(u) + (uβm)αdn(u)

+
i,j<n∑
i+j=n

fi(uβm)αdj(u).
(4)

Since ψα
m(u,m) = 0, ∀u ∈ U,m ∈ M, α ∈ �,m < n.

fn(uα(uβm) + (uβm)αu)

= fn(u)α(uβm) + uαdn(uβm) +
∑i,l+t<n

i+j=n
fi(u)αdl(u)βdt(m)

+ fn(uβm)α(u) + (uβm)αdn(u)

+
p+q,j<n∑
i+j=n

fp(u)βdq(m)αdj(u).

(5)

On the other hand, by using Equation (3) and
Lemma 5, we get fn(uα(uβm) + (uβm)αu) = fn
(uαuβm)+ fn(uβmαu) = ∑

i+l+t=n fi(u)αdl(u)βdt(m)+∑
i+j+k=n fi(u) βdj(m) αdk(u) = fn (u) α(uβm) + uα∑
l+t=n dl(u)βdt(m) + ∑i,l+t<n

i+l+t=n fi(u)αdl(u)βdt(m).

+ (uαm)βdn(u) +
∑
i+j=n

fi(u)αdj(m)βu

+
i+j,k<n∑
i+j+k=n

fi(u)αdj(m)βdk(u).
(6)

By comparing (5) and (6) and using the condition (*), we
get

ψα
n (u,m)βu = 0, ∀u ∈ U,m ∈ M, α, β ∈ �, n ∈ N. (7)

Linearizing of (7) with respect to u, gives us

ψα
n (u,m)βv+ψα

n (v,m)βu)=0,∀u, v∈U ,m∈M,α,β ∈�,n∈N.

(8)

Replacing v by vαv in (8) and since ψα
n (uαu,m) =

0, thus ψα
n (u,m)βvαv = 0. This implies that 0 =

ψα
n (u,m)β(u + v)α(u + v) = ψα

n (u,m)βvαu.
Hence by Lemma 4 and since U �= 0,ψα

n (u,m) = 0,
∀u ∈ U,m ∈ M, α ∈ � and n ∈ N.
Thus by the Remark 2, we have fn(uαm) =∑
i+j=n fi(u)αdj(m), ∀u ∈ U,m ∈ M, α ∈ � and n ∈

N.
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