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Abstract

In the year (1879–1884), George Cantor coined few problems and consequences in the field of set theory. One of them
was the Cantor ternary set as a classical example of fractals. In this paper, 5-adic Cantor one-fifth set as an example of
fractal string have been introduced. Moreover, the applications of 5-adic Cantor one-fifth set in string theory have also
been studied.
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Introduction
During the late eighteenth century, mathematicians de-
lighted in producing sets with ever more weird properties,
many of them now recognized to be fractal in nature (Crilly
et al.). George Cantor (1879–1884) wrote a series of papers
entitled “Uber unendliche lineare punktmannichfaltigkeiten”
(Cantor 1879; 1880; 1882; 1883a; 1883b; 1884) that con-
tained the first systematic treatment of the point set top-
ology of real line, in which he triggered some problems and
consequences in the field of set theory. One of these is the
classical Cantor set problem devised by Cantor in the foot-
note to a statement saying that perfect sets do not need to
be everywhere dense (Fleron 1994). In last two decades,
Devil’s and other researchers established the graphical repre-
sentation of Cantor sets in the form of staircases (Horiguchi
and Morita 1984a; 1984b; Rani and Prasad 2010).
Middle one-third, a classical Cantor set found a cele-

brated place in the mathematical analysis and in its applica-
tions (Hutchinson 1981; Mendes 1999; Shaver 2010). For a
fundamental work on Cantor set and its applications, one
may refer to (Peitgen et al. 2004), (Devaney 1992), (Beardon
1965), (Falconer 1985), (Lapidus and van Frankenhuijsen
2006), (Gutfraind et al. 1990) and (Lee 1998). In recent
years, p-adic analysis has been used in various areas of
mathematics as well as in aspects of quantum physics and
string theory (Lapidus and van Frankenhuijsen 2006). For a
detailed analysis of fractal string and p-adic integers, one
may refer to (Chistyakov 1996; Hung 2007; Koblitz 1984;
Robert 2000; Schikhof 1984; Vladimirov et al. 1994).
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Lapidus and van Frankenhuijsen (2000; 2006) intro-
duced the concept of fractal string and established the
geometric zeta function, zeros of zeta function, spectra
of fractal string and the complex dimension of the frac-
tal string. In 2008, (Lapidus 2008) suggested that fractal
string and their quantization may be related to aspects
of string theory. In last few decades, M. L. Lapidus,
jointly with other researchers generalized and introduced
the various properties of fractal string (see (Edgar 2008;
Lapidus 1992; Lapidus and Maier 1995; Lapidus and
Pearse 2006; 2008; Lapidus and Pomerance 1993)).
In 2008, (Lapidus and Hung 2008; 2009) provided a

framework for unifying the archimedean and p-adic (non-
archimedean) fractal string with their geometric zeta func-
tions and complex dimensions for 3-adic Cantor sets and
also the general case for p-adic Cantor sets respectively.
Recently, (Ashish, Mamta Rani and Renu Chugh, Variants
of Cantor Sets Using IFS, submitted and Ashish, Mamta
Rani and Renu Chugh, Study of Variants of Cantor sets.,
submitted) studied the variants of Cantor sets and estab-
lished their mathematical analysis using mathematical
feedback system and iterated function system respectively.
Our goal in this paper is to study the Cantor one-fifth

set as a new classical example of fractal string. Moreover,
the non-archimedean (5-adic) Cantor one-fifth set with
their applications in string theory has also been estab-
lished. In the third section, the main results of our study
have been presented, followed by the “Concluding
remarks” section.

Preliminaries
In this section, we recall some basic definitions pertaining
to the notion of (ordinary) fractal string and introduce
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:akrmsc@gmail.com
http://creativecommons.org/licenses/by/2.0


Kumar et al. SpringerPlus 2013, 2:654 Page 2 of 7
http://www.springerplus.com/content/2/1/654
several new ones such as the most important of which are
quinary expansion and Cantor one-fifth set:

Definition 2.1. Cantor one-fifth set
The Cantor one-fifth set for unequal intervals is defined
as the F = ∩ Fn+1, where Fn+1 is constructed by dividing
Fn in five unequal line segments and removing second
and fourth one-fifth line segment, F0 being the closed
interval 0 ≤ x ≤ 1 (Ashish, Mamta Rani and Renu
Chugh, Variants of Cantor Sets Using IFS, submitted).

Definition 2.2. Quinary expansion
The sequence 0.x1 x2 x3 x4 x5…, where each xi is either 0,
1, 2, 3, or 4 is called quinary expansion of x if x = x1/5 +
x2/5

2 + x3/5
3 + ....

For example, the sequence 0.04444… is the quinary
expansion of 1/5 since we have

0
5
þ 4

52
þ 4

53
þ 4

54
þ 4

55
þ 4

56
þ :::::: ¼ 4

52
X∞
i¼0

1

5i
¼ 1

5

Lapidus and van Frankenhuijsen (2000) and (2006),
introduced the concept of fractal strings as follows:

Definition 2.3. Fractal string
A fractal string Ω is a bounded open subset of the real
line R. The collection of lengths ℓj of the disjoint inter-
vals is denoted by L.
For example, the complement of the Cantor set in the

closed unit interval [0, 1] is a Cantor string. Moreover,
the topological boundary of Cantor string is the Cantor
set C itself.

Definition 2.4. Geometric zeta function
The geometric zeta function of a fractal string Ω with
lengths L is

ςL sð Þ ¼
X∞
k¼1

mkℓ
s
k

where ℓ1, ℓ2, …, ℓk are the lengths of open intervals and
mk be the corresponding multiplicity of open intervals
(Lapidus and van Frankenhuijsen 2000).
For example, Cantor string consists of intervals of lengths

ℓ1 = (l1 = 1/3), ℓ2 = (l2 = l3 = 1/9), ℓ3 = (l4 = l5 = l6 = l7 = 1/27),
and so on, that is, the lengths are the numbers 3−k−1 with
multiplicity m3−k−1 ¼ 2k for k = 0, 1, 2, 3, …. . So, the geo-
metric zeta function is:

ςL sð Þ ¼
X∞
k¼0

mkℓ
s
k ¼

X∞
k¼0

2k :3 −k−1ð Þs ¼ 3−s

1−2:3−s
for Re s > Dð Þ

where D = log2/log3 is the dimension of usual Cantor set.
Recently, (Ashish, Mamta Rani and Renu Chugh, Vari-

ants of Cantor Sets Using IFS, submitted), established
the self-similarity of the Cantor one-fifth set using the it-
eration function system as follows:

Theorem 2.1
Let f1, f2 and f3 be the similarity contraction mappings
on ℝ defined by

f 1 xð Þ ¼ x=5; f 2 xð Þ ¼ xþ 2ð Þ=5; f 3 xð Þ ¼ xþ 4ð Þ=5;
where all the mappings have the ratio 1/5. Then, the
Cantor one-fifth set F satisfies the self-referential equa-
tion

F ¼ f 1 F½ �∪f 2 F½ �∪f 3 F½ �
for the iterated function system (f1, f2, f3).

Main results
5-adic (nonarchimedean) Cantor one-fifth set
A sequence (si)i ∈ℕ of natural numbers between 0 and p-
1 (inclusive) is a p-adic integer. We write this conven-
tionally as .....si.....s2 s1 s0. If ‘n’ is any natural number, and

n ¼
sk−1 sk−2 :::: s1 s0

is its p-adic representation (in other words, n ¼
Xk−1

i¼0
sipi

with each si is a p-adic digit), then we identify ‘n’ with the
p-adic integer (si) with si = 0 if i ≥ k (Madore 2000). Fur-
ther, the set of p-adic integers, which we call ℤp with two
binary operations on it (addition and multiplication) is a
ring. The relation between the set (ring) ℤp of p-adic inte-
gers and the set (field) ℚp of p-adic numbers is the same
as between the set (ring) ℤ of integers and the set (field) ℚ
of rationals (Madore 2000). Since, ℤp is an important sub-
space of ℚp, it can be represented as follows:

ℤ p ¼ s0 þ s1p1 þ s2p2 þ…; si∈ 0; 1; 2;…; p−1ð Þ; forall i ≥ 0f g
For this p-adic expansion, we can also write

ℤ p ¼ ∪
p−1

c¼0
cþ pℤ p
� �

;

where c + pℤp = {y ∈ℚp : |y − c|p ≤ 1/p} (Lapidus and van
Frankenhuijsen 2006) It is also known that there are topo-
logical models of ℤp in the Euclidean space ℝd as fractal
spaces such as the Cantor set and the Sierpinsky gasket
(Robert 2000), where ℤp is homeomorphic to the ternary
Cantor set. Now, we consider the ring of 5-adic integers
ℤ5, that is, homeomorphic to Cantor one-fifth set.
Figure 1 below shows the representation of 5-adic Cantor

one-fifth set ‘N’. To start the construction, initiator N0 =ℤ5
is subdivided into five equal subintervals 0 + 5ℤ5, 1 +
5ℤ5, 2 + 5ℤ5, 3 + 5ℤ5 and 4 + 5ℤ5. Drop the subintervals
1 + 5ℤ5 and 3 + 5ℤ5 and repeat the same process for the
remaining subintervals. Further, repeating the same process



Figure 1 5-adic (nonarchimedean) Cantor one-fifth set.
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over and over again, by removing the open subintervals of
second and fourth position at each step from each closed
interval, we obtain a sequence Nk for k = 1, 2, . . . The 5-
adic Cantor one-fifth set (see Figure 1) Nk consists of 3k

disjoint closed intervals. Thus, the 5-adic Cantor one-fifth
set would be the limit ‘N’ of the sequence Nk of sets. So,
we define limit ‘N’ as the intersection of the sets Nk i.e.

N ¼ ∩
k∈ℕ

Nk :

Theorem 3.1
Let f1, f2 and f3 be the similarity contraction mappings
on 5-adic integer ℤ5 defined by

f 1 xð Þ ¼ 5x; f 2 xð Þ ¼ 5xþ 2; f 3 xð Þ ¼ 5xþ 4; ð1Þ

with scaling ratio 1/5. Then, the 5-adic Cantor one-fifth
set N satisfies the self-referential equation

N ¼ f 1 N½ �∪f 2 N½ �∪f 3 N½ �: ð2Þ

Proof: Using above construction of 5-adic Cantor one-
fifth set, we can say that
Figure 2 5-adic Cantor one-fifth set using IFS.
Nkþ1 ¼ f 1 Nk½ �∪f 2 Nk½ �∪f 3 Nk½ �
for all k ≥ 1. Since, the mapping fj for j = 1, 2, 3 is one-
to-one and N = ∩ Nk, then it implies that
fj[N] = fj[ ∩ Nk] = ∩ fj[Nk], for k = 1, 2, ….
so that, we can write f1[N] = ∩ f1[Nk], f2[N] = ∩ f2[Nk]

and f3[N] = ∩ f3[Nk],
therefore, f1[N] ∪ f2[N] ∪ f3[N] = ( ∩ f1[Nk]) ∪ ( ∩ f2[Nk]) ∪

( ∩ f3[Nk])

f 1 N½ �∪f 2 N½ �∪f 3 N½ � ¼ ∩ f 1 Nk½ �∪f 2 Nk½ �∪f 3 Nk½ �ð Þ
f 1 N½ �∪f 2 N½ �∪f 3 N½ � ¼ ∩Nkþ1 ¼ N

f 1 N½ �∪f 2 N½ �∪f 3 N½ � ¼ N

which gives the proof of the theorem.
Figure 2 shows the graphical representation of 5-adic

Cantor one-fifth set using iterated function system (f1,
f2, f3).

Quinary expansion of 5-adic Cantor one-fifth set
Theorem 3.2
The 5-adic Cantor one-fifth set is represented by the
quinary expansion of its elements in the form
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N ¼ x ∈ℤ 5 : x ¼ x0 þ 51x1 þ 52x2 þ…; xj∈ 0; 2; 4f g� �
ð3Þ

for all j = 0, 1, 2, .....
Proof: Let us define the inverse of similarity contrac-

tion mappings f1, f2 and f3, on ℤ5 as follows:

f −11 xð Þ ¼ x=5; f −12 xð Þ ¼ x−2ð Þ=5; f −13 xð Þ ¼ x−4ð Þ=5;
ð4Þ

Now, for xj ∊ {0, 1, 2, 3, 4}, for all j ≥ 0, either

x ¼ x0 þ 51x1 þ 52x2 þ…; ∈1þ 5ℤ 5 or 3þ 5ℤ 5;

ð5Þ
if and only if either x0 = 1 or x0 = 3, respectively. Let η,
μ ∈ℕ be the fixed subscript numbers such that xη = 1and
xμ = 3. Thus, xj = 0, 2 or 4, for all j > η and all j > μ. Since,
we have divided the real line into five equal line seg-
ments denoted by 0, 1, 2, 3, and 4 respectively. Thus, if
x0 = 0, then we use the function f1

−1 for all x ∊ N, if x0 =
2, then use the function f2

−1 for all x ∊ N and if x0 = 4, then
use the function f3

−1 for all x ∊ N. Thus, from these three
cases, we obtain

f −11 xð Þ ¼ f −12 xð Þ ¼ f −13 xð Þ ¼ x1 þ 51x2 þ…;þ5η−1xη þ 5ηxηþ1 þ…;

f −11 xð Þ ¼ f −12 xð Þ ¼ f −13 xð Þ ¼ x1 þ 51x2 þ…;þ5μ−1xμ þ 5μxμþ1 þ…

again repeating the process in this manner, we obtain
the general case

f −11 xð Þ ¼ f −12 xð Þ ¼ f −13 xð Þ ¼ xη þ 5xηþ1 þ…;

f −11 xð Þ ¼ f −12 xð Þ ¼ f −13 xð Þ ¼ xμ þ 5xμþ1 þ…

which lie in the intervals 1 + 5ℤ5 and 3 + 5ℤ5 respect-
ively. Thus, we found that

N∩ 1þ 5ℤ 5ð Þ ¼ ∅ and N∩ 3þ 5ℤ 5ð Þ ¼ ∅

Hence either x ∈ 1 + 5ℤ5 or x ∈ 3 + 5ℤ5 which deduce
that x ∉ N. Hence we proved that for xj ∊ {0, 2, 4}, x ∊ N.
Conversely, let all the variables x = x0 + 51x1 + 52x2 +…,

belong to ℤ5 for all xj ∊ {0, 2, 4}, and j = 0, 1, 2, …. Then,
from Eq. (3) and (5), we can say that neither x ∈ 1 + 5ℤ5

nor x ∈ 3 + 5ℤ5 which implies that x ∉ fj(1 + 5ℤ5) and also
x∉ fj(3 + 5ℤ5), for j ∊ Wl = {1, 2, 3}

l, l = 0, 1, 2, ..... Thus,
Figure 3 Cantor one-fifth set as fractal string.
x∉ ∪∞
l¼0
∪
j∈Wl

f j 1þ 5ℤ 5ð Þ
� �

∪ ∪∞
l¼0
∪
j∈Wl

f j 3þ 5ℤ 5ð Þ
� �� 	

¼ Y

Thus, N ∪ Y = ℤ5 and hence x ∊ N, which completes the
proof of the theorem.

Cantor one-fifth set as fractal string
It is well known from the definition of fractal string that
such a set consists of countably many disjoint open in-
tervals. The lengths of which form a sequence L = ℓ1, ℓ2,
ℓ3, …, called the lengths of the string. We can assume
without loss of generality that

ℓ1≥ℓ2≥ℓ3;…; > 0

where each length is counted according to its multiplicity.
An ordinary fractal string can be thought of as a one-
dimensional drum with fractal boundary. In the literature
of fractal geometry, we found a classical example of the
fractal string as Cantor string. It is the set, complement of
the interval [0, 1] of the usual ternary Cantor set. It is one
of the simplest and most important example in the re-
search of fractal string by (Lapidus and van Frankenhuijsen
2006). Information about the geometry of Cantor string
like Minkowski dimension and the Minkowski measurabil-
ity is obtained from its geometric zeta function. Motivated
by the research of Lapidus with other researcher’s (Lapidus
and Hung 2008) on the Cantor string, we introduce a new
Cantor one-fifth set as an example of fractal string.
The Cantor one-fifth string ℵ, is the complement of

[0, 1] of the usual Cantor one-fifth set F. The Figure 3
shows the geometrical representation of Cantor one-fifth
string.
Thus, we obtain

ℵ ¼ 1=5; 2=5ð Þ∪ 3=5; 4=5ð Þ∪ 1=25; 2=25ð Þ∪ 3=25; 4=25ð Þ∪
11=25; 12=25ð Þ∪ 1=25; 2=25ð Þ∪ 13=25; 14=25ð Þ∪
21=25; 22=25ð Þ∪ 23=25; 24=25ð Þ∪ p

where, ℓ1 = (l1 = l2 = 1/5), ℓ2 = (l3 = l4 = l5 = l6 = l7 = l8 = 1/25)
and so on. Continuing in this way, we find that the lengths



1l 2l 3l 4l 5l 6l 7l 8l 9l 10l 11l 12l 13l rl 1rl 2rl 3rl

. . . . 

. . . . . 

+ + +

Figure 4 Fractal harp of Cantor one-fifth string.
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of open intervals is consist of ℓk = 5−k−1 with multiplicity
m5−k−1 ¼ 2:3k for k = 0, 1, 2, ....
Thus, the geometric zeta function of the Cantor one-

fifth string is determined by the sequence ℵ:

ςℵ sð Þ ¼
X∞
k¼0

mkℓ sk ¼
X∞
k¼0

2:3k :5 −k−1ð Þs ¼ 2:5s−1

5s−3

for Re sð Þ > log3= log5

ð6Þ

The poles of the such function are the set of complex
numbers (see (Lapidus and Hung 2008), pp. 7) and
given by

DL ¼ Dþ inp : n∈ℤf g;¼ 0:6826þ in2π= log5 : n∈ℤf g;
ð7Þ

where D = log 3/log 5 = 0.6826 is the dimension of Can-
tor one-fifth set and p = 2π/log 5 oscillatory period of
Cantor one-fifth string ℵ, is called complex dimension
of Cantor one-fifth string.
Further, representation of Cantor one-fifth string may

be seen in Figure 4 using fractal harp.
Figure 5 5-adic Cantor one fifth string via IFS.
5-adic Cantor one-fifth set as fractal string
Since, the construction of 5-adic Cantor one-fifth string
(ξ) is analogue to the usual Cantor one-fifth set. We start,
by subdividing the interval ℤ5 into closed subintervals

f 1 ℤ 5ð Þ ¼ 0þ 5ℤ 5

f 2 ℤ 5ð Þ ¼ 2þ 5ℤ 5

f 3 ℤ 5ð Þ ¼ 4þ 5ℤ 5

since, fractal string is complement of the usual Cantor
one-fifth set in the closed interval [0, 1], the remaining
open subintervals after this step are given by

ℤ 5−∪
2

j¼1
f j ℤ 5ð Þ ¼ 1þ 5ℤ 5 ¼ G1;

ℤ 5−∪
3

j¼2
f j ℤ 5ð Þ ¼ 3þ 5ℤ 5 ¼ G2

then, the G1 ∪ G2 is the first sub-ring of self similar 5-adic
Cantor one-fifth string. The lengths of G1 and G2 are given
by using the Haar measure (Gupta and Jain 1986) as follows:

l1 ¼ l2 ¼ μH G1ð Þ ¼ μH G2ð Þ ¼ 1=5
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Again repeating the same process, by subdividing the
closed intervals of first step (see Figure 1), we get

f 11 ℤ 5½ � ¼ 0þ 25ℤ 5; f 21 ℤ 5½ � ¼ 10þ 25ℤ 5;
f 31 ℤ 5½ � ¼ 20þ 25ℤ 5; f 12 ℤ 5½ � ¼ 2þ 25ℤ 5;
f 22 ℤ 5½ � ¼ 12þ 25ℤ 5; f 32 ℤ 5½ � ¼ 22þ 25ℤ 5;
f 13 ℤ 5½ � ¼ 4þ 25ℤ 5; f 23 ℤ 5½ � ¼ 14þ 25ℤ 5;
f 33 ℤ 5½ � ¼ 24þ 25ℤ 5:

Thus, the remaining open subintervals are given by

ℤ 5−∪
2

j¼1
f j1 ℤ 5ð Þ ¼ 5þ 25ℤ 5 ¼ G3; ℤ 5−∪

3

j¼2
f j1 ℤ 5ð Þ ¼ 15þ 25ℤ 5 ¼ G4;

ℤ 5−∪
2

j¼1
f j2 ℤ 5ð Þ ¼ 7þ 25ℤ 5 ¼ G5; ℤ 5−∪

3

j¼2
f j2 ℤ 5ð Þ ¼ 17þ 25ℤ 5 ¼ G6;

ℤ 5−∪
2

j¼1
f j3 ℤ 5ð Þ ¼ 9þ 25ℤ 5 ¼ G7; ℤ 5−∪

3

j¼2
f j3 ℤ 5ð Þ ¼ 19þ 25ℤ 5 ¼ G8:

The subring G3 ∪ G4 ∪ G5 ∪ G6 ∪ G7 ∪ G8is the second
set of self-similar 5-adic Cantor one-fifth string. Thus,
the length is given by

l3 ¼ l4 ¼ l5 ¼ l6 ¼ l7 ¼ l8 ¼ μH G3ð Þ ¼ μH G4ð Þ
¼ μH G5ð Þ ¼ μH G6ð Þ ¼ μH G7ð Þ ¼ μH G8ð Þ ¼ 1=25:

Repeating the same process over and over again, we ob-
tain a sequence ℓ1 = ℓ2 = ℓ3 = ℓ4 = ℓ5 = ..... which consists of
lengths 5−k−1 with multiplicity 2.3k. Using Figure 5 the 5-
adic Cantor one-fifth string can also be written as follows:

ξ ¼ 1þ 5ℤ 5ð Þ∪ 3þ 5ℤ 5ð Þ∪ 5þ 25ℤ 5ð Þ∪ 15þ 25ℤ 5ð Þ∪
7þ 25ℤ 5ð Þ∪ 17þ 25ℤ 5ð Þ∪ 9þ 25ℤ 5ð Þ∪ 19þ 25ℤ 5ð Þ∪ ::::

From Definition 2.3 (Lapidus and Hung 2009), the
geometric zeta function of ξ is given by

ςξ ¼ μH 1þ 5ℤ 5ð Þð Þs þ μH 3þ 5ℤ 5ð Þð Þs þ μH 5þ 25ℤ 5ð Þð Þs þ…

¼
X∞
k¼1

mkℓ
s
k ¼

X∞
k¼1

2:3k :5 −k−1ð Þs ¼ 2:5s−1

5s−3

for Re sð Þ > log3= log5

ð8Þ

the poles of the such function are the set of complex
numbers

DL ¼ Dþ inp : n∈ℤf g ¼ log3
log5

þ in
2π
log5

; ð9Þ

where D = log 3/log 5 = 0.6826 is the dimension of
5-adic Cantor one-fifth string and p = 2π/log 5 oscillatory
period is the volume of the inner tubular neighborhood
of ξ.

Concluding remarks
Based on the results, our conclusions are following:

1. In Subsection “5-adic (nonarchimedean) Cantor
one-fifth set”, using 5-adic integer it has been
concluded that Cantor one-fifth set satisfies the
nonarchimedean properties of a set and also studied
that nonarchimedean Cantor one-fifth set satisfies
self-similarity property using self-referential equation.

2. Further, it has been concluded that quinary Cantor
one-fifth set is homeomorphic to 5-adic Cantor
one-fifth set N in subsection “Quinary expansion of
5-adic Cantor one-fifth set”.

3. In Subsection “Cantor one-fifth set as fractal string”
and “5-adic Cantor one-fifth set as fractal string”, it
has been analyzed that Cantor one-fifth set and 5-adic
Cantor one-fifth set both satisfy the properties of
fractal string. Moreover, we found that the geometric
zeta function and the complex dimension of both the
sets are perfectly same.
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