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Abstract

Fault prediction is a pre-eminent area of empirical software engineering which has witnessed a huge surge over the last
couple of decades. In the development of a fault prediction model, combination of metrics results in better explanatory
power of the model. Since the metrics used in combination are often correlated, and do not have an additive effect,
the impact of a metric on another i.e. interaction should be taken into account. The effect of interaction in developing
regression based fault prediction models is uncommon in software engineering; however two terms and three term
interactions are analyzed in detail in social and behavioral sciences. Beyond three terms interactions are scarce, because
interaction effects at such a high level are difficult to interpret. From our earlier findings (Softw Qual Prof 15(3):15-23)
we statistically establish the pertinence of considering the interaction between metrics resulting in a considerable
improvement in the explanatory power of the corresponding predictive model. However, in the aforesaid approach,
the number of variables involved in fault prediction also shows a simultaneous increment with interaction. Furthermore,
the interacting variables do not contribute equally to the prediction capability of the model.
This study contributes towards the development of an efficient predictive model involving interaction among
predictive variables with a reduced set of influential terms, obtained by applying stepwise regression.
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Background
Fault prediction models based on different modelling tech-
niques have been widely used to improve software quality
for the last three decades. Out of the many modelling tech-
niques used by researchers, regression and its variants are
still drawing a major portion of the attention of research
communities (Basili et al. 1996; Denaro et al. 2003; Yu
2012; Bibi et al. 2008; Thwin and Quah 2005; Briand et al.
2000; Khoshgoftaar et al. 2002; Gyimothy et al. 2005). Com-
parison of regression with other evolutionary algorithm
based techniques has also been appraised as well (Raj Kiran
and Ravi 2008; Radjenovic et al. 2013).
The application of regression analysis focuses on identify-

ing potential complexity metrics and building relationship
models that are capable of identifying faults-prone software
modules.
No single set of metrics exists which can be applied to
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and their correlation into account within a project, the
capability to design an improved prediction model can be
achieved by combining metrics (Nagappan et al. 2006).
In the recent literature, the benefits and comparative ad-

vantages of using a combination of source code metrics to
predict bugs, has been illustrated by (D’Ambros et al.
2012) and (Okutan and Yildiz 2012). However, combining
metrics may lead to interactions among metrics which has
not yet been properly dealt within software engineering
literature, though it has been reported in other areas of
the sciences and engineering.
This issue has been highlighted in our previous study

(Goyal et al. 2013) in which we developed eight different
models by considering two types of metrics i.e. Chidamber
and Kemerer (CK) and other object oriented (OO) metrics
(Chidamber and Kemerer 1994). These models describe
different possibilities of two-term interaction in which the
first four models take combinations of CK and OO into
consideration. The four remaining models consider CK,
OO and their combination separately with or without
quadratic terms.
open access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:rinkajgoyal@gmail.com
http://creativecommons.org/licenses/by/2.0


Goyal et al. SpringerPlus 2013, 2:627 Page 2 of 8
http://www.springerplus.com/content/2/1/627
Through our earlier findings, we statistically established
that the full-interaction model in which, linear two-term
interaction with self-interacting terms outperforms other
models.
Though the models developed in the previous study

were statistically effective, the large number of predict-
ive variables arising from interaction may lead to the
over-fitting of data, thereby giving rise to prediction
errors.
In this study our goal is to select the most influential

metrics, derived through the interaction, since all candi-
date complexity metrics may not have equally resolute
predictive powers. In order to reduce the dimensionality
of data a feature selection technique needs to be uti-
lized. For the purpose of this paper, we have used step-
wise regression.
Through applying stepwise regression a subset of pre-

dictors that optimally models the measured responses
has been computed, which yields the most influential
combination of predictive variables.
Data and mathematical methods used
The following methodology has been implemented in
order to select those suitable variables, from amongst
the chosen predicting variable set, taken into account in
this study.
Table 1 Description of class level source metrics

CK Metric (Chidamber and Kemerer 1994) Interpretation

Coupling between bbject classes (CBO) Investigates the coupling betw
of one class with other classes

Depth of the inheritance tree (DIT) Investigates the complexity of

Lack of cohesion metric (LCOM) Investigates cohesion with a c

Response for the classes (RFC) Investigates the coupling betw
sum of the number of local m

Weighted methods per class (WMC) Investigates the complexity of

Number of children (NOC) Investigates complexity of inher

OO (Object oriented) Interpretation

NOA Number of attributes.

FanIn Number of other classes that

FanOut Number of other classes refere

NOAI Number of attributes inherited

NLOC Number of lines of code.

NOM Number of methods.

NOMI Number of methods inherited

NOPRA Number of private attributes.

NOPRM Number of private methods.

NOPA Number of public attributes.

NOPM Number of public methods.
Selection and structure of the dataset
For the purpose of validating the method and mechanism
proposed in this paper we have taken a publicly available
bug prediction dataset (D’Ambros et al. 2010) available at
(http://bug.inf.usi.ch). Amongst other statistical data avail-
able in this dataset, we have taken into consideration 6 CK
(Chidamber and Kemerer) metrics and 11 OO (Object
Oriented) metrics, for five software systems i.e. Eclipse,
Mylyn, Equinox, PDE and Lucene. Within the purview of
this paper, however, we use single version approaches of
bug prediction, assuming that the current design and
behaviour of the program influences the presence of fu-
ture defects, and thereby does not require the history of
the system (D’Ambros et al. 2010). Table 1, below de-
scribes the metrics of the dataset used in this study.

Multiple linear regression (MLR)
Models the relationship between two or more independ-
ent variables (x1, x2, …, xk) with the dependent variable
(y) (Eq. 1), and can be expressed as Data = Fit + Residual
(Pedhazur 1997; Cohen et al. 2003).

Y ¼ αοþα1x1þα2x2þ…:þαkxkþ∈ ð1Þ

where α0 = intercept term, α1, α2: coefficients for the in-
dependent variables and ϵ is a random error component.
een classes by taking the dependency
into consideration.

inheritance hierarchy by counting ancestor levels in the inheritance tree.

lass by measuring the dissimilarity of methods.

een classes by calculating the
ethods and the methods that can be called remotely.

class by summing up the complexity of methods.

itance hierarchy by counting the number of immediate subclasses of a class.

reference the class.

nced by the class.

.

.

http://bug.inf.usi.ch
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MLR with interaction
In MLR, Y is a linear function of all k input variables.
However to bring an additional level of regression (Eq. 2),
the interaction between variables ought to be considered.
This in turn provides a synergistic effect of combined pre-
dictors. Like with two interacting variables x1 and x2 the
model would be as follows:

Y ¼ αοþα1x1þα2x2þα12x1x2þ∈ ð2Þ

where α0 = intercept term, α1, α2: coefficients for the inde-
pendent variables and α12: coefficient for the interaction
term; x1, x2: values taken by the independent variables.

Formation of a set of linearly interacting terms

Step 1: Consider n variables i.e. x1 to xn.
Step 2: For a variable x1, consider pairwise interaction
with remaining n-1 variables.
Step 3: Repeat step 2 for all other remaining variables
as well.

The systematic execution of steps 1–3 result in [n (n-1)/
2] + n number of variables arranged as a triangular matrix
with the diagonal values as zero, since the self-interaction
between variables resulting in quadratic terms are not be-
ing considered here. For example for 17 variables, the set
would comprise of [(17 *16) /2] +17 = 153 linearly inter-
acting terms.

Triangular Matrix representing interacting terms

U ¼

0 u1;2 u1;3 ⋯ u1;n
0 u2;3 ⋯ u2;n

⋱ ⋱ ⋮
⋱ un−1;n

0 0

2
66664

3
77775

The total number of terms, including linear interaction
of different kinds of metrics considered (i.e. CK, OO and
their combinations) is as follows:

(i) For CK metric analysis: 21
(ii) For OO metric analysis: 66
(iii)For CK +OO analysis: 153

Experimental design and statistical measures used
In our experiment, we do cross validation with 50 fold
90%-10% splits of the training and validation sets, which
further validates the values of statistical measures re-
ported by D’Ambros et al. (2010) for CK and OO metrics
in isolation. These have been implemented and simu-
lated in the Matlab 7.9.0 (R2009b) environment. Table 2,
below highlights the empirical aspect of the dataset pro-
vided for a single version CK-OO metrics.
To compare the performance of the models developed,
we present R2, Adjusted R2 values as statistical measures.
The R2 measures the percentage of explained variation in
the dependent variable of a predictive model by taking
every independent variable into consideration. Its value
lies in between 0 and 1, with a value closer to one indicat-
ing the strong predictive capability of the model devel-
oped. However, value of R2 can be increased by including
more independent variables which may not be having suf-
ficient explanatory power. Thus, the value of R2 needs to
be adjusted for the degree of freedom. The adjusted R2 is a
preferred statistical measure to ascertain the fitness of the
model; it quantifies the percentage of variance explained
by only those independent variables which actually touch
on the dependent variable (Runkler 2012). A value of Adj.
R2 approaching to 1 indicates better performance of pre-
dictive models.
R2 and Adj. R2 can be computed as follows (Refer

Eq. 3 & 4):

R2 ¼ 1‐
SSE
SST

¼ 1‐

X
yi‐ŷ ið Þ2X
yi‐�yið Þ2 ð3Þ

Adj:R2 ¼ 1−
SSE= n−pð Þ
SST= n−1ð Þ

¼ 1− 1−R2
� �� n−1ð Þ= n−pð Þ ð4Þ

where SSE = Sum of squared error of the dependent
variable
SST = Sum of squared derivation of the dependent

variable
n = Sample size
p = Number of predictors (independent variables)

Step-wise regression (SWR)
In regression analysis with a long list of independent vari-
ables, some of which may not be useful predictors, the
purpose is to find the best subset of independent variables.
Trying out all subsets would result in too large a number
of possibilities. For example, in our experiment the num-
ber of possibilities would be 2153 -1, which is too a large
number to compute within the scope of this model,
thereby making the problem computationally intractable.
The stepwise model–building technique (Draper and

Smith 1981) could be one potential solution to this prob-
lem. Within this technique the predictor variables are
included one at a time, depending upon whether the in-
cluded variable increases the adjusted R2 or not. Initially,
the R2 value of each variable is considered independently,
following which stepwise regression is implemented, start-
ing with that variable that has the highest value of R2 and
moving on to the next variable with next highest R2 value.
This process continues until the adjusted R2 starts decreas-
ing. The adjusted R2 is used as a “stepping” criterion here.



Table 2 Empirical aspect of the dataset

Dataset Release No. of records No. of classes No. of attributes No. of defects Percentage of defect

Mylyn 3.1 1862 2196 17 340 18.26

PDE 3.4.1 1497 1562 17 341 22.78

Eclipse 3.4 997 997 17 374 37.51

Equinox 3.4 324 439 17 244 75.31

Lucene 2.4.0 691 691 17 97 14.04
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Results and discussion
The repercussion of considering interaction amongst
metrics in the development of a predictive model
To appropriately highlight the importance of interaction,
the statistics generated from all five modules of the data-
set considered, along with number of corresponding var-
iables are shown in Table 3. CK (WOI) refers to CK
metrics without interaction and CK (WI) considers CK
metrics with interaction. We have used similar terminology
with the other metrics considered as well. The data in
Table 3 adequately reflect that after considering the inter-
action with CK metrics, there is a significant improvement
in the adjusted R2 value for all software modules, while
correspondingly, also resulting in an undesired increase in
the number of variables i.e. from 6 to 21. Similarly for OO
metrics, an improvement in adjusted R2 results in an un-
desired increase in the number of variables from 11 to 66.
Taking a combination of CK and OO metrics returns an
even greater value of adjusted R2 across all five software
modules, but this improved predictive power is achieved at
the cost of the variables increasing from 17 to 153.
In Table 3, Mylyn exhibits lower values of Adj. R2 when

compared to other software modules for CK and OO both
(with and without interaction). This may be due to the fact
that the procedural code complexity of the methods of a
class has not been taken into account and this study fo-
cuses only on object oriented metrics.

Obtaining a reduced set of influential terms
In order to find the best subset of interacting variables,
which provides an enhanced explanatory and predictive
power, stepwise regression (SWR) was performed up to
10% of the threshold of the improved Adj. R2. The
Table 3 Statistical measures with (WI) and without (WOI) inte

Metrics Mylyn PDE Ec

R2 Adj R2 R2 Adj R2 R2

CK (WOI) 0.1186 0.1157 0.0614 0.0576 0.3856

CK (WI) 0.1877 0.1784 0.0976 0.0848 0.5318

OO (WOI) 0.1757 0.1708 0.6271 0.6243 0.4129

OO (WI) 0.3516 0.3277 0.7049 0.6912 0.6210

CK + OO (WOI) 0.2024 0.1950 0.6439 0.6398 0.4280

CK + OO (WI) 0.4784 0.4316 0.7683 0.7419 0.7933
following Tables 4, 5 and 6 (for five software modules)
show a reduced number of interacting metrics. Initially,
SWR was performed for the combination of CK and OO
metrics up to a threshold level of 10% of corresponding
adjusted R2 value of each software module. For Mylyn 36
metrics are sufficient to be considered out of 153 total
possibilities. Similarly, for other software modules also, we
observe a significant reduction in the number of metrics
to be considered relevant, as is evident from Table 4.
SWR was then conducted for CK and OO metrics in

isolation. The total number of possibilities is 21 in the
case of CK and 66 for OO. Again, we can observe a sig-
nificant reduction in the number of relevant interacting
metrics as is evident from Tables 5 and 6.

Superset of interacting terms for all software modules
The superset of a reduced number of metrics is obtained
with the intent to construct a cross-project and robust
fault prediction model, which adequately acts upon all five
different software modules (Peters et al. 2013). It is ob-
tained by computing the union of the set of the reduced
number of metrics, for all five software modules. The
superset of interacting metrics for CK, OO and their com-
bination is depicted in Table 7.
The influential metrics thus identified have increased

information content as fault predictors, encompassing
different aspects of the measurement of software charac-
teristics. Brief description of metrics discussed in results
is given in Table 1.
Referring to Table 7, while first considering CK metrics

with interaction [CK (WI)]; coupling between objects
(CBO), lack of cohesion of methods (LCOM), and re-
sponse for class (RFC) metrics are influential in isolation,
raction of metrics

lipse Equinox Lucene No of
variablesAdj R2 R2 Adj R2 R2 Adj R2

0.3818 0.5652 0.5570 0.3838 0.3784 6

0.5217 0.6826 0.6605 0.4202 0.4020 21

0.4064 0.6320 0.6191 0.2457 0.2335 11

0.5941 0.8349 0.7925 0.5774 0.4996 66

0.4190 0.6906 0.6730 0.4049 0.3899 17

0.7558 0.9384 0.8830 0.6847 0.5948 153



Table 4 List of reduced set of metrics for the combination of CK and OO metrics

Total number of interacting metrics = 153

Software module Reduced set of metrics No. of
reduced metrics

Mylyn CBO, RFC, NOA, FanIn, FanOut, CBO +DIT, CBO+ RFC, CBO+NLOC, CBO +NOM, LCOM+NOA, LCOM+ FanOut, LCOM+NOPRA, LCOM+NOPRM, RFC +NOM, RFC +
NOPRM, WMC+NOC, WMC+NOPRM, WMC+NOPM, NOC+NOPRM, NOA+ FanOut, FanIn + FanOut, FanIn + NOMI, FanIn +NOPRM, FanIn +NOPA, FanIn +NOPM,
FanOut + NLOC, FanOut + NOPM, NLOC +NOPRM, NOPRA+NOPA, NOPRA +NOPM, NOPRM+NOPM, NOPA+NOPM, DIT +WMC, NOC+ FanOut, FanOut + NOPRM,
FanOut + NOMI

36

PDE RFC, NOA, NOPRM, CBO + LCOM, DIT + LCOM, DIT +WMC, NOA + NOPRA, NOA + NOPA, FanIn + FanOut, FanOut + NLOC 10

Lucene LCOM, NOPRA, LCOM +WMC, LCOM + NOPA, RFC + NOC, RFC + FanOut, RFC + NOPM, WMC + NOPM, NOC + NOMI, NOC + NOPA, FanOut + NLOC,
NOMI + NOPRA, NOMI + NOPRM, NOMI + NOPM, NOPRA + NOPA, NOPRM + NOPM

16

Equinox CBO, WMC, NOMI, NOPRA, NOPRM, CBO + DIT, DIT + FanOut, LCOM + NOC, LCOM + NOAI, RFC + FanIn, WMC + FanOut, NOC + FanOut,
NOA + NOAI, FanIn + FanOut, FanIn + NOPRA, FanIn + NOPRM, FanIn + NOPA, NLOC + NOMI, NOM + NOPRM

19

Eclipse CBO, RFC, NOPM, CBO+ FanOut, DIT +WMC, DIT + NLOC, DIT + NOM, LCOM+NOAI, RFC +NOC, RFC +NOAI, RFC +NOPRA, RFC +NOPRM, RFC +NOPA,
WMC+ FanIn, WMC+NOAI, WMC+NLOC, WMC+NOM, WMC+NOPRM, WMC+NOPM, NOC+ FanIn, NOC+ FanOut, NOC +NLOC, NOA+NOPM,
FanIn +NOPA, FanOut + NOAI, FanOut + NOM, FanOut + NOPM, NOAI + NLOC, NOAI + NOMI, NOAI + NOPRM, NLOC+NOPRA, NLOC+NOPRM,
NLOC +NOPA, NOM+NOPRM, NOM+NOPA, NOMI +NOPA

36
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Table 5 List of the reduced set of metrics considering CK
metrics only

Total number of interacting metrics = 21

Software
module

Reduced set of metrics No. of
reduced variables

Mylyn CBO, RFC, RFC +WMC, RFC + NOC,
WMC + NOC

5

PDE RFC, DIT +WMC 2

Lucene LCOM, CBO + RFC 2

Equinox CBO, CBO + LCOM, LCOM + NOC 3

Eclipse CBO, RFC, CBO + RFC, DIT + LCOM,
DIT + WMC, RFC +WMC, RFC + NOC

7
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hence appearing individually and affirming the results re-
ported by (Gyimothy et al. 2005). In furtherance of this,
other influential metrics derived in CK (WI) as shown in
Table 7 are appearing as interacting terms.
The individual characteristics of LCOM measure the

level of relatedness among the methods of a class, and
those of CBO measure the dependence of this class to
other classes. The interrelatedness of these individual met-
rics, i.e. CBO and LCOM, can be justified by the fact that
they both share class attributes, member functions and
the use of the attributes by these methods, consequently
appearing as CBO+ LCOM.
Weighted method per class (WMC) is the weighted sum

of the complexity of the methods and both CBO and RFC
are based on the invocation of a method from another
class, thereby making them related to one another (RFC +
WMC, CBO+RFC). Further, the interdependence of CBO
and depth of inheritance tree (DIT) can be explained on
account of the fact that the coupling between classes, aris-
ing from inheritance, will be higher for the classes which
have high values of DIT (Subramanyam and Krishnan
2003). CK metrics, in general, refer to the different aspects
of a class design; that is identification, semantics and
Table 6 List of the reduced set of metrics considering OO me

Total number of inter

Software module Reduced set of metrics

Mylyn NOA, FanOut, NOPRM, NOA + FanOut, FanIn
FanOut + NOPRM, FanOut + NOPM, NLOC +
NOPRA +NOPRM, NOPRA + NOPM, NOPRM

PDE NOA, FanOut, NLOC, NOA + NOPRA, FanOu

Lucene NOM, NOA + FanIn, FanIn + NOPRA, FanIn
FanOut + NOPA, NOMI + NOPRA, NOMI + N

Equinox FanIn, FanOut, FanIn + NLOC, FanIn + NOP

Eclipse NOA, FanIn, FanOut, NOAI, NLOC, NOPA, NO
FanIn + FanOut, FanIn + NLOC, FanIn + NOP
FanOut + NOAI, NOAI + NLOC, NOAI + NOPA
NOMI + NOPA, NOPRA + NOPA, NOPRM+N
relationship with other classes and are often interrelated
(Chidamber et al. 1998).
Regarding the predictive capability of inheritance metrics

i.e. DIT and number of children (NOC), contradictory re-
sults have been reported in literature (Okutan and Yildiz
2012; Yu 2012; Basili et al. 1996; Gyimothy et al. 2005; Sub-
ramanyam and Krishnan 2003). Nevertheless, our results
indicate that their combination (interaction) with other
metrics like WMC, LCOM and RFC becomes a determin-
ing factor in the accuracy of the fault prediction model.
Other OO metrics used in this paper have the additional

advantage of simplicity in the measurement of software
characteristics; that is complexity, reusability, encapsula-
tion and modularity. As is evident from Table 3, these
metrics exhibit predictive power equivalent to CK metrics,
if not better.
Similar to the argument presented for CK (WI), within

OO (WI) in Table 7 dominant OO metrics in isolation
are number of attributes (NOA), FanIn, FanOut, num-
ber of attributes inherited (NOAI), NLOC, number of
methods (NOM), number of private methods (NOPRM)
and number of public attributes (NOPA). Whereas Fan-
Out, FanIn, NLOC, number of private attributes (NOPRA)
and NOPRM metrics are more frequently used in interact-
ing terms.
The majority (42 out of 83) of influential metrics consid-

ered under CK +OO (WI) is derived from the combination
(with interaction) of CK and OO metrics. Subsequently, it
has been observed that the metric FanOut appears in com-
bination with all CK metrics, which further validates the
applicability of inter-class metrics when used in combin-
ation. Out of 30 interacting OO metrics from within CK +
OO (WI), metrics like NOPRA, NOPA, NOPRM, number
of public methods (NOPM) and number of methods inher-
ited (NOMI) frequently appear in combination. These
primitive OO metrics quantify the basic building blocks of
a typical object oriented software module and contribute
trics only

acting metrics = 66

No. of reduced
variables

+ NOPA, FanOut + NOM, FanOut + NOMI,
NOPRM, NOM+NOPRA, NOM+NOPRM,
+ NOPM, NOMI + NOPRA, NOMI + NOPRM

17

t + NOMI, NOMI + NOPRM 6

+ NOPA, FanOut + NOM,
OPA

8

RA, NLOC + NOMI 5

A + FanIn, NOA + FanOut, NOA +NLOC,
RM, FanOut + NOM, FanOut + NOPRA,
, NLOC +NOPA, NLOC +NOPM,
OPM

22



Table 7 Superset of all metrics included in all five software modules

Metrics Superset of reduced and influential metrics No. of reduced
metrics

CK (WI) CBO, LCOM, RFC, CBO+ LCOM, CBO + RFC, DIT + LCOM, DIT +WMC,
LCOM+NOC, RFC +WMC, RFC + NOC, WMC+NOC

11

OO (WI) NOA, FanIn, FanOut, NOAI, NLOC, NOM, NOPRM, NOPA, NOA+ FanIn, NOA+ FanOut, NOA+NLOC, NOA+NOPRA,
FanIn + FanOut, FanIn + NLOC, FanIn +NOPRA, FanIn +NOPRM, FanIn +NOPA, FanOut + NOM, FanOut + NOMI,
FanOut + NOPRA, FanOut + NOPRM, FanOut + NOPA, FanOut + NOPM, NOAI + NLOC, NOAI + NOPA, NLOC +NOMI,
NLOC+NOPRM, NLOC +NOPA, NLOC +NOPM, NOM+NOPRA, NOM+NOPRM, NOMI +NOPRA, NOMI + NOPRM,
NOMI +NOPA, NOPRA+NOPRM, NOPRA+NOPA, NOPRA+NOPM, NOPRM+NOPM

38

CK + OO (WI) CBO, LCOM, RFC, WMC, NOA, FanIn, FanOut, NOMI, NOPRA, NOPRM, NOPM, CBO + DIT, CBO+ LCOM, CBO + RFC,
CBO+ FanOut, CBO+NLOC, CBO + NOM, DIT + LCOM, DIT +WMC, DIT + FanOut, DIT + NLOC, DIT + NOM, LCOM+
WMC, LCOM+NOC, LCOM+NOA, LCOM+ FanOut, LCOM+NOAI, LCOM+NOPRA, LCOM+NOPRM, LCOM+NOPA,
RFC + NOC, RFC + FanIn, RFC + FanOut, RFC + NOAI, RFC + NOM, RFC + NOPRA, RFC + NOPRM, RFC + NOPA, RFC +
NOPM, WMC+NOC, WMC + FanIn, WMC + FanOut, WMC +NOAI, WMC +NLOC, WMC+NOM, WMC+NOPRM, WMC+
NOPM, NOC + FanIn, NOC + FanOut, NOC + NLOC, NOC +NOMI, NOC +NOPRM, NOC + NOPA, NOA + FanOut, NOA +
NOAI, NOA +NOPRA, NOA + NOPA, NOA +NOPM, FanIn + FanOut, FanIn + NOMI, FanIn + NOPRA, FanIn + NOPRM,
FanIn + NOPA, FanIn + NOPM, FanOut + NOAI, FanOut + NLOC, FanOut + NOM, FanOut + NOMI, FanOut + NOPRM,
FanOut + NOPM, NOAI + NLOC, NOAI + NOMI, NOAI + NOPRM, NLOC +NOMI, NLOC +NOPRA, NLOC + NOPRM,
NLOC +NOPA, NOM+NOPRM, NOM+NOPA, NOMI + NOPRA, NOMI + NOPRM, NOMI + NOPA, NOMI + NOPM

83

Table 8 Statistical measures for superset of CK,
OO metrics and their combination

CK metrics

Software modules With superset of 11
interacting terms

With total 21
interacting terms

Mylyn 0.1709 0.1660 0.1877 0.1784

PDE 0.0909 0.0842 0.0976 0.0848

Lucene 0.4010 0.3913 0.4202 0.4020

Equiox 0.6490 0.6366 0.6826 0.6605

Eclipse 0.5071 0.5016 0.5318 0.5217

OO metrics

Software modules With superset of 38
interacting terms

With total 66
interacting terms

R2 Adj R2 R2 Adj R2

Mylyn 0.3134 0.2991 0.3516 0.3277

PDE 0.6709 0.6623 0.7049 0.6912

Lucene 0.4918 0.4622 0.5774 0.4996

Equiox 0.7887 0.7605 0.8349 0.7925

Eclipse 0.5527 0.5349 0.6210 0.5941

Combination of CK and OO metrics

Software modules With superset of 83
interacting terms

With total 153
interacting terms

R2 Adj R2 R2 Adj R2

Mylyn 0.4156 0.3883 0.4784 0.4316

PDE 0.7204 0.7040 0.7683 0.7419

Lucene 0.5934 0.5378 0.6847 0.5948

Equiox 0.8580 0.8089 0.9384 0.8830

Eclipse 0.7217 0.6964 0.7933 0.7558
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significantly to the development of a fault prediction
model.
The number of metrics within the superset of all inter-

acting terms indicates a significant reduction in the total
number of metrics to be considered in the design of a pre-
dictive model, which also maintains an adequate level of
accuracy for all five software modules. Table 8 shows the
statistics generated by only including those variables found
in the superset for CK metrics, OO metrics and their com-
bination. The value of statistical measure i.e. Adj. R2 is sig-
nificantly consistent and acceptable (almost 90%) in
comparison to the values obtained through total possible
interacting terms for CK , OO and their combined metrics
respectively. This elaborates and establishes the signifi-
cance of the reduction in number of interacting metrics.

Threats to validity
Certain issues that could have an effect on the results of
the study and may have subsequently limited our inter-
pretations were identified;
The scope of this paper is restricted to two-term inter-

action effects in the context of linear regression. Non-
linear regression has other well developed heuristic based
approaches of feature selection, which are beyond the
scope of this paper.
In SWR a unique optimal subset of variables is pre-

sumed, however the presence of multiple optimal solu-
tions cannot be denied. Thus, the process presented
herein may be augmented by an additional step to iden-
tify the "best" of all the possible subsets, obtained after
the slaying of a cycle of SWR.
Five different Java based software modules, each with a

reasonable number of records, were considered in this
study. In order to further support the derived results,
software modules implemented in other programming
languages may also be considered.
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Conclusion
The objective of this study was to find the set of influen-
tial interacting predictive variables in dealing with inter-
action based predictive modelling. A total of 17 metrics
derived from the dataset taken were used in isolation, as
well as in combination. Statistics generated reveal that
the impact of interaction results in a fairly increased
value of Adjusted R2, and this claim is further supported
by calculations made for all five software modules in the
given dataset. However, not all interactions are equally
contributing. To find the most influential subset of inter-
acting terms, SWR was conducted up to a 10% threshold
of Adjusted R2 (up to 90% of its value) and the resulting
[reduced] set of metrics which contribute the most to-
wards prediction was thereby obtained. This reduced set
of metrics derived, was further computed for all software
modules in the dataset.
Adherence to the guidelines and methodology suggested

in this article should assist readers in understanding inter-
action effects in fault prediction and finding an influential
subset. A regression model containing interactive relation-
ships has an edge over simple additive models, if not for
the fact that it leads to the further requirement of deriving
a reduced set of variables from the increased set obtained.
The scope of this paper is, however, limited to interaction
effects in the context of linear regression.

Web sites
Bug Prediction Dataset: [online] http://bug.inf.usi.ch
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