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Abstract

Background: Named Entity (NE) extraction is one of the most fundamental and important tasks in biomedical
information extraction. It involves identification of certain entities from text and their classification into some
predefined categories. In the biomedical community, there is yet no general consensus regarding named entity (NE)
annotation; thus, it is very difficult to compare the existing systems due to corpus incompatibilities. Due to this
problem we can not also exploit the advantages of using different corpora together. In our present work we address
the issues of corpus compatibilities, and use a single objective optimization (SOO) based classifier ensemble
technique that uses the search capability of genetic algorithm (GA) for NE extraction in biomedicine. We hypothesize
that the reliability of predictions of each classifier differs among the various output classes. We use Conditional
Random Field (CRF) and Support Vector Machine (SVM) frameworks to build a number of models depending upon
the various representations of the set of features and/or feature templates. It is to be noted that we tried to extract the
features without using any deep domain knowledge and/or resources.

Results: In order to assess the challenges of corpus compatibilities, we experiment with the different benchmark
datasets and their various combinations. Comparison results with the existing approaches prove the efficacy of the
used technique. GA based ensemble achieves around 2% performance improvements over the individual classifiers.
Degradation in performance on the integrated corpus clearly shows the difficulties of the task.

Conclusions: In summary, our used ensemble based approach attains the state-of-the-art performance levels for
entity extraction in three different kinds of biomedical datasets. The possible reasons behind the better performance
in our used approach are the (i). use of variety and rich features as described in Subsection “Features for named entity
extraction”; (ii) use of GA based classifier ensemble technique to combine the outputs of multiple classifiers.

Background
Named Entity (NE) extraction is one of the most fun-
damental and important tasks in biomedical information
extraction. This involves two different stages, i.e. identi-
fication of certain kinds of entities and classification of
them into some predefined categories. This overall task
is termed as Named Entity Recognition and Classifica-
tion (NERC). Biomedical named entities (NEs) include
mentions of proteins, genes, DNA, RNA etc. which, in
general, have complex structures and so difficult to recog-
nize. The supervised approaches (Finkel et al. 2004;
GuoDong and Jian 2004; Kim et al. 2005; Settles 2004;
Wang et al. 2008) have been widely used for NERC in
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biomedical texts. The release of tagged GENIA corpus
(Ohta et al. 2002) provides a way of comparing the exist-
ing biomedical NERC systems. However, most of these
state-of-the-art approaches suggest that individual system
may not cover entity representations with arbitrary set
of features and cannot achieve best performance. There
exists other two benchmark datasets, namely AIMED1

and GENETAG2.
The existing corpora do not have an uniform rule of

annotation, and so they are not compatible to each other.
Thus it is not possible to use all the available corpora
together for building any supervised NE extraction sys-
tem. This reduces to two different problems, viz. (i). it is
hard to compare systems which are created using different
corpora and (ii). there is hardly any existing state-of-the-
art NE extraction system which can perform equally well
for many domains.
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Classifier ensemble (Ekbal and Saha 2010a; 2010b;
2011a; 2012) is an important research topic in machine
learning in recent years. It is an effective method to
increase the generalization accuracy by combining the
outputs of different classifiers. In the present work, we
use a single objective optimization (SOO) based clas-
sifier ensemble technique proposed in (Ekbal and Saha
2011b). In SOO, we optimize a single classification quality
measure (i.e. objective function) such as recall, precision
or F-measure at a time. Here, we optimize F-measure
which is the harmonic mean of recall and precision both.
This optimization technique is based on genetic algorithm
(GA) (Goldberg 1989) which is a randomized search and
optimization technique guided by the principles of evo-
lution and genetics, having a large amount of implicit
parallelism.
In the present work we assess the challenges of corpus

incompatibilities using three existing benchmark datasets,
namely JNLPBA 2004 shared task (Jin-Dong et al. 2004),
AIMed3 and GENETAG4, (Saha and Ekbal 2011). At first
we experiment with the original datasets. Thereafter, we
consider different experimental settings by considering
the various combinations of these datasets. This work
is inspired from the work of cross corpus utilization
reported in (Wang et al. 2009). However, it is to be noted
that our approach significantly differ from (Wang et al.
2009) in terms of proposed technique and experimental
settings. Conditional Random Field (CRF) and Support
Vector Machine (SVM) are used as the base classifiers.
Various models of these two classifiers are constructed
by varying the available features and/or feature templates.
We identify a very rich and effective feature set that
includes variety of features based on orthography, local
contextual information and global contexts. One most
important characteristic of our system is that the identi-
fication and selection of features are mostly done without
using any deep domain knowledge and/or resources. Our
main focus is to investigate the appropriate weights for
voting rather than searching for the best performing indi-
vidual models. Degradation in performance on the inte-
grated corpus clearly indicates the challenges in building
an ideal system that could perform almost at the same
levels across many domains.
The present work also differs from the previous works

reported in (Ekbal and Saha 2010a; 2010b; 2011a; 2011b;
2012; Saha and Ekbal 2011). In (Ekbal and Saha 2010a),
a GA based classifier ensemble selection technique was
developed. This approach determines only a subset of
classifiers that can form the final classifier ensemble, and
the proper weights of votes for all the classes were not
determined. In (Ekbal and Saha 2010b; 2011b) a GA based
technique was developed for weighted vote based clas-
sifier ensemble selection. The extended version of this
work is reported in (Ekbal and Saha 2011b), where the

present methodology is more elaborately discussed, eval-
uated on multiple languages and compared against the
existing popular methods. In addition a GA based feature
selection technique was also introduced. In (Ekbal and
Saha 2012) a multiobjective optimization based technique
is developed for classifier ensemble. Along with feature
selection technique exhaustive evaluation was carried out.
In (Ekbal and Saha 2011a) a multiobjective (MOO) tech-
nique is developed for weighted voted classifier ensemble
selection. Here the search capability of a newly developed
simulated annealing based MOO technique, AMOSA
(Bandyopadhyay et al. 2008) is used as the underlying
optimization technique. Several different versions of the
objective functions are exploited. In (Saha and Ekbal
2011), a SVM based gene mention detection technique
is developed. Based on the different feature representa-
tions many classifiers were generated. At the end these
were combined using simple majority and weighted vot-
ing approaches. The technique was evaluated only for the
GENTAG data set.
We highlight the differences from the previous works

reported in (Ekbal and Saha 2010a; 2010b; 2011a; 2011b;
2012; Saha and Ekbal 2011) as below:

1. The work reported in this paper deals with the
problems of information extraction, especially NE
extraction in biomedical domain, which is more
difficult and challenging. The inherent structures of
the biomedical entities pose a big challenge for their
identification. Moreover, they hardly follow any
standard nomenclature.

2. Compared to (Saha and Ekbal 2011), many new
features are introduced and implemented. In this
paper our main aim was to come up with a system
that could perform satisfactorily on different kinds of
datasets. Compared to the previously published work
we present more systematic evaluations on different
combinations of the datasets.

3. The present work discusses the crucial issue of
corpus incompatibilities. It is often the fact that any
system developed targeting any domain or language
does not perform well for other domains or
languages. Therefore, there is a great demand of
designing some systems that could achieve good
accuracies on many corpora that were annotated
following different guidelines.

4. As an evidence that our present approach is not
biased to any particular domain, firstly we present
detailed evaluation results on three benchmark
datasets separately; and secondly we evaluate on the
different combinations of these datasets. Our current
approach attains encouraging performance in all the
settings.
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Results and discussion
In this section, we present the descriptions of perfor-
mance metrics, datasets, experimental setup, and report
the detailed evaluation results of our approach.

Performance measures
All the classifiers are evaluated in terms of recall, precision
and F-measure. We use the same strict matching criterion
that was followed in the JNLPBA 2004 shared task evalu-
ation and used their script5. The full credit is given if and
only if both the left and right boundaries match. Precision
is the ratio of the number of correctly found NE chunks
(i.e., more than one token) to the number of found NE
chunks, and recall is the ratio of the number of correctly
found NE chunks to the number of true NE chunks.

Datasets and experimental setup
We evaluate our approach with three benchmark datasets,
namely JNLPBA 2004 shared task6, AIMed and GENE-
TAG. The JNLPBA datasets were extracted from the
GENIA Version 3.02 corpus of the GENIA project. This
was constructed by a controlled search on Medline using
MeSH terms such as human, blood cells and transcription
factors. From this search, 2000 abstracts of about 500K
wordforms were selected and manually annotated accord-
ing to a small taxonomy of 48 classes based on a chemical
classification. Out of these classes, 36 classes were used
to annotate the GENIA corpus. In the shared task, the
data sets were further simplified to be annotated with only
five NE classes, namely Protein, DNA, RNA, Cell_line and
Cell_type (Jin-Dong et al. 2004). The test set was relatively
new collection of Medline abstracts from the GENIA
project. The test set contains 404 abstracts of around 100K
words. One half of the test data was from the same domain
as that of the training data and the rest half was from
the super domain of blood cells and transcription factors.
For simplification, embedded structures were removed
leaving only the outermost structures (i.e. the longest tag
sequence). Consequently, a group of coordinated entities
involving ellipsis were annotated as one structure like in
the following example: · · · in [lymphocytes] and [T− and
B− lymphocyte] count in · · ·
In the example, ‘T- and B-lymphocyte’ was anno-

tated as one structure but involves two entity names,
‘T-lymphocyte’ and ‘B-lymphocyte’, whereas ‘lympho-
cytes’ was annotated as one and involves as many entity
names. In order to properly denote the boundaries of
NEs, five classes are further divided using the BIO for-
mat, where ‘B-XXX’ refers to the beginning of a multi-
word/single-word NE of type ‘XXX’, ‘I-XXX’ refers to the
rest of the words of the NE and ‘O’ refers to the entities
outside the NE. For each of these B- and I- type classes we
calculate the appropriate weight using GA and construct
the ensemble.

Like GENIA7, AIMed also focuses on the human
domain, and exhaustively collect sentences from the
abstracts of PubMed. But, it selects the different text spans
for protein annotation. In GENIA, almost always the word
‘protein’ is included as part of protein annotation. But,
in most cases, this word is not included as part of the
protein name in AIMed. This ambiguous annotation of
boundary is a crucial factor and affects the average length
of protein mentions, and this could be a major source
of performance degradation when combined with other
corpus.
The protein annotations in GENIA corpus is based on

the definitions of GENIA ontology (Ohta et al. 2002). In
GENIA, other than protein classes (for e.g., DNA, RNA
etc.), the subclasses of protein are also included. Unlike
GENIA, protein families are not annotated in AIMed.
In AIMed, tagging is done for only those specific names
which could ultimately be traced back to specific genes
in the human genome (Buescu et al. 2005). For exam-
ple,“tumor necrosis factor” was not tagged while “tumor
necrosis factor alpha” was annotated. Some gene names
without differentiating them from proteins are included
in the annotations in AIMed. In GENIA, ‘protein’ tags
were associated only to proteins, while genes were asso-
ciated in the scope of DNA annotations. The AIMed
corpus consists of 225 abstracts that contain 1,987 sen-
tences with 4,075 protein mentions. Here 1.3 tokens are
there in the protein mentions in an average. In order to
properly denote the boundaries of proteins, we use the
same BIO notations that were followed in GENIA. Unlike
GENIA and AIMed, GENETAG covers a more general
domain of PubMed. It contains both true and false gene
or protein names in a variety of contexts. In GENETAG,
not all the sentences of abstracts were included, rather
more NE informative sentences were considered. In terms
of text selection, GENIA and GENETAG are closer to
each other, compared to AIMed. GENIA and GENETAG
selected longer text fragments as entity reference. Like
GENIA, GENETAG also includes the semantic category
word ‘protein’ for protein annotation.
We evaluate our approach with the GENETAG training

and test datasets, available at the site8. Gene mentions in
both the training and test datasets were annotated with
the ‘NEWGENE’ tag and the overlapping gene mentions
were distinguished by another tag ‘NEWGENE1’. How-
ever, in this work, we use the standard BIO notations
(as in GENIA corpus) to properly denote the bound-
aries of gene names, and we replace all the ‘NEW-
GENE1’ tags by ‘NEWGENE’ for training and testing.
The training dataset contains 7,500 sentences with 8,881
gene mentions. The average length per protein mention
is 2.1 tokens. The test dataset consists of 2,500 sen-
tences with 2,986 gene mentions. The system is evalu-
ated using the evaluation script that was provided by the
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BioCreative-II9 evaluation challenge for the gene mention
detection task.
The individual models based on CRF and SVM are gen-

erated using CRF++ package10 and YamCha11 toolkit,
respectively. For CRF training, we use CRF++ 0.54 ver-
sion and set the following parameter values, regulariza-
tion parameter (a): default setting, i.e. L2; soft-margin
parameter (c): trades the balance between overfitting and
underfitting (default value); and cut-off threshold for the
features (f ): uses the features that occurs no less than its
value in the given training data (set to 1, i.e. all the features
that appear at least once in the training dataset is consid-
ered). We develop our system using SVM (Joachims 1999;
Vapnik 1995) which performs classification by construct-
ing an N-dimensional hyperplane that optimally separates
data into two categories. We have used YamCha12 toolkit,
an SVM based tool for detecting classes in documents
and formulating the NE extraction task as a sequential
labeling problem. Here, the pairwise multi-class decision
method and the polynomial kernel function are used. We
use TinySVM-0.0713 classifier for classification.We set the
following parameter values for GA: population size=100,
number of generations=50, probability of mutation and
crossover are determined adaptively.

Results on the original corpus
In this section, we report the evaluation results with
the original datasets of GENIA, GENTAG and AIMed
(Saha et al. 2013). We build many CRF and SVM based
classifiers by varying the various available features.
We report the evaluation results of the approach along

with the best individual classifiers in Table 1. For GENIA
corpus the best individual classifier produces the best
recall, precision and F-measure values of 73.10%, 76.78%
and 74.90%, respectively. This corresponds to a CRF based
classifier with the following feature template: the contexts
of previous and next two tokens and their all possible n-
gram (n ≤ 2) combinations from left to right, prefixes
and suffixes of length up to 3 characters of only the cur-
rent word, feature vector consisting of length, infrequent
word, normalization, chunk, orthographic constructs,

Table 1 Overall evaluation results (we report percentages)
on the original corpus (Saha et al. 2013)

Corpus Model Recall Precision F-measure

GENIA Best individual classifier 73.10 76.78 74.90

SOO based ensemble 74.17 77.87 75.97

AIMeD Best individual classifier 94.56 92.66 93.60

SOO based ensemble 95.65 94.23 94.93

GENETAG Best individual classifier 95.35 95.31 95.33

SOO based ensemble 95.99 95.81 95.90

Part-of-Speech (PoS), trigger word, semantic informa-
tion, unknown word, head noun, word class, effective NE
information of only the current token, and bigram fea-
ture combinations. For AIMed corpus the best individual
model corresponds to a SVM classifier and it shows the
average recall, precision and F-measure values of 94.56%,
92.66% and 93.60%, respectively. The feature combina-
tions are the contexts of previous and next three tokens
and their all possible n-gram (n ≤ 2) combinations from
left to right, prefixes and suffixes of length up to 4
characters of only the current word, feature vector con-
sisting of length, infrequent word, normalization, chunk,
orthographic constructs, trigger word, semantic informa-
tion, unknown word, head noun, word class, effective NE
information of only the current token, and dynamic NE
information of previous three tokens. For GENETAG, the
highest performance corresponds to a CRF based classi-
fier that yields the overall recall, precision and F-measure
values of 95.35%, 95.31% and 95.33%, respectively. The fol-
lowing feature template is used to generate it: contexts
of previous and next one token and their all possible n-
gram (n ≤ 1) combinations from left to right, prefixes
and suffixes of length upto 4 characters of only the cur-
rent word, feature vector consisting of length, infrequent
word, normalization, chunk, orthographic constructs, PoS
of current word, previous two words and next two words,
unknown word, head noun, word class, effective NE infor-
mation of only the current token, and bigram feature
combinations. Please note that for AIMed and GENETAG
datasets we used our in-house NE extractor for getting the
class label information of the test data for computing the
“content words in surrounding contexts” feature.
Finally the SOO based ensemble selection technique

(Ekbal and Saha 2011b) is used to combine the out-
puts of all these individual classifiers. Results of these
SOO based approaches are also shown in Table 1. We
achieve the Increments of 1.07%, 1.33% and 0.57% over the
individual classifiers for GENIA, AIMed and GENETAG,
respectively.
We compare the performance of our developed sys-

tem with some other biomedical entity extraction systems
that made use of the same datasets, i.e. GENTAG. We
compare with the systems reported in the BioCreative-2
challenges as well as with those that were developed at
the later stages but made use of the same datasets. Almost
all the features were automatically extracted from the
training dataset. In our experiment, we use only PoS,
chunk (or, phrase) and an external NE extractor as the
domain dependent knowledge sources. We present the
comparative evaluation results in Table 2 not only with the
domain-independent systems but also with the systems
that incorporate deep domain knowledge and/or exter-
nal resources. Our current approach attains an improve-
ment of more than 14% over the existing state-of-the-art



Ekbal et al. SpringerPlus 2013, 2:601 Page 5 of 12
http://www.springerplus.com/content/2/1/601

Table 2 Comparison with the existing approaches for GENETAG data set

System Approach used Domain knowledge/resources F-measure

Our system GA based ensemble PoS, phrase 94.70

(CRF and SVM)

Song et al. (2005) (Song et al. 2004a) SVM - 66.7

Bickel et al. (2004) (Bickel et al. 2004) SVM a dictionary 72.1

Kinoshita et al. (2005) (Kinoshita et al. 2005) TnT (Brants 2000), the Trigrams ’n’ Tags dictionary based postprocessing 80.9

HMM-based part-of-speech tagger

Mitsumoriet al. (2005) (Mitsumori et al. 2005) SVM gene/protein name dictionary 78.09

Finkel et al. (2004) (Finkel et al. 2005) ME+ post processing 82.2

McDonald and Pereira (2005) (McDonald and
Pereira 2005)

CRF 82.4

GuoDong et al. (2005) (Zhou and Su 2002) HMM, SVM, Ensemble technique Post processing 82.58

approaches. We systematically analyze the contribution of
each feature, and it reveals the fact that huge performance
gain is achieved with the PoS information which was pro-
vided with the dataset. After observing this remarkable
performance gain we analyzed each step of our implemen-
tation thoroughly. It seems that one possible explanation
behind this radical improvement could be as follows. It
is to be noted that in the GENETAG training and test
datasets, PoS information were provided only for the non-
gene proteins. We preprocessed this data and assigned
the PoS class, NNP, i.e. proper noun to each of these
gene tokens. This PoS information actually plays a crucial
role in the overall system performance. Another reason
is that we used our in-house NE extractor for getting the
class label information of the test data for computing the
“content words in surrounding contexts” feature.

Next, we compare the performance of our current sys-
tem with other biomedical entity extraction systems that
made use of the same GENIA dataset. We compare with
the systems, developed with same datasets. Our system
does not make use of any deep domain knowledge and/or
external resources. In our experiment, we use only PoS
and chunk (or, phrase) information as the domain depen-
dent knowledge. So, it will not be fair to compare the per-
formance of ensemble based system with all the available
systems. However, we present the comparative evaluation
results in Table 3 not only with the domain-independent
systems but also with the systems that incorporate deep
domain knowledge and/or external resources.
Zhou and Su (GuoDong and Jian 2004) developed

the best system in the JNLPBA 2004 shared task. This
system provides the highest F-measure value of 72.55

Table 3 Comparison with the existing approaches for GENIA data set

System Used approach Domain knowledge/resources FM

Our system Classifier ensemble POS, phrase 76.52

(CRF and SVM)

Zhou & Su (2004) (GuoDong and Jian 2004) Final HMM, SVM Name alias, cascaded NEs dictionary, POS, phrase 72.55

Zhou & Su (2004) (GuoDong and Jian 2004) HMM, SVM POS, phrase 64.1

Kim et al. (2005) (Kim et al. 2005) Two-phase model POS, phrase, 71.19

with ME and CRF rule-based component

Finkel et. al (2004) (Finkel et al. 2004) CRF Gazetteers, web-querying, surrounding abstracts, 70.06

abbreviation handling, BNC corpus, POS

Settles (2004) (Settles 2004) ME POS, semantic knowledge sources of 17 lexicons 70.00

Saha et al. (2009) (Saha et al. 2009) ME POS, phrase 67.41

Park et. al (2004) (Park et al. 2004) ME POS, phrase, domain-salient words using WSJ, 66.91

morphological patterns, collocations from Medline

Song et al. (2004) (Song et al. 2004b) Final SVM, CRF POS, phrase, Virtual sample 66.28

Song et al. (2004) (Song et al. 2004b) Base SVM POS, phrase 63.85

Ponomareva et al. (2007) (Ponomareva et al. 2007) HMM POS 65.7
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with several deep domain knowledge sources. But when
the system used only PoS and chunk information as
the domain knowledge, the F-measure value drops to
64.1%. Song et al. (Song et al. 2004b) used CRF and
SVM both, and obtained the F-measure of 66.28% with
virtual samples. The HMM-based system reported by
Ponomareva et al. (Ponomareva et al. 2007) achieved
a F-measure value of 65.7% with PoS and phrase-level
domain dependent knowledge. A ME-based system was
reported in (Park et al. 2004) where recognition of terms
and their classification were performed in two steps.
They achieved a F-measure value of 66.91% with sev-
eral lexical knowledge sources such as salient words
obtained through corpus comparison between domain-
specific and WSJ corpora, morphological patterns and
collocations extracted from the Medline corpus. As far
our knowledge is concerned, one of the very recent works
proposed in (Saha et al. 2009) obtained the F-measure
value of 67.41% with PoS and phrase information as the
only domain knowledge. This is the highest performance
achieved by any system that did not use any deep domain
knowledge.
A CRF-based NE extraction system has been reported

in (Settles 2004) that obtained the F-measure value of
70% with orthographic features, semantic knowledge
in the form of 17 lexicons generated from the public
databases and Google sets. Finkel et al. (Finkel et al. 2004)
reported a CRF-based system that showed the F-measure
value of 70.06% with the use of a number of external
resources, including gazetteers, web-querying, surround-
ing abstracts, abbreviation handling method, and fre-
quency counts from the BNC corpus. A two-phase model
based on ME and CRF was proposed by Kim et al. (Kim
et al. 2005) that achieved a F-measure value of 71.19% by
postprocessing the outputs of machine learning models
with a rule-based component. We also compare the per-
formance of our developed ensemble based approach with
BANNER (Leaman and Gonzalez 2008) that was imple-
mented using CRFs. BANNER exploits a range of ortho-
graphic, morphological and shallow syntax features, such
as part-of-speech tags, capitalisation, letter/digit combi-
nations, prefixes, suffixes and Greek letters. Comparisons
between the several existing NE extraction systems are
provided in (Kabiljo et al. 2009). For BANNER, Kabiljo
et al. (Kabiljo et al. 2009) reported the F-measure values of
77.50% and 61.00% under the sloppy matching and strict
matching criterion, respectively with the JNLPBA shared
task datasets.
In summary, our developed ensemble based approach

(Ekbal and Saha 2011b) attains the state-of-the-art per-
formance levels for entity extraction in three different
kinds of biomedical datasets. The possible reasons are the
effient use of a diverse set of featuers and the utilization of
the GA based ensmeble technique (Ekbal and Saha 2011b).

Results on cross corpus
In this section we investigate the effects of corpus incom-
patibility on the NE extraction problem. In order to check
whether our system performs reasonably well across vari-
ous domains, we perform a series of experiments with the
various combinations of the available corpora. Depending
upon the nature of the datasets, we replace the corre-
sponding annotations in the GENIA (i.e., JNLPBA) cor-
pus. We describe below the different experimental setups.

1. Experiment-1: In the first experiment, we replace all
other tags except ‘Protein’ by ‘O’ (other-than-NE)
tags in the GENIA corpus, and added to the AIMed
corpus. Three-fold cross validation experiments are
carried out to report the evaluation results.

2. Experiment-II: In the second experiment, we keep
only ‘Protein’ and ‘DNA’ annotations in GENIA
corpus, and replace all the other annotations by ‘O’.
This corpus is integrated with the AIMed corpus,
and 3-fold cross validation experiments are done to
report the evaluation results.

3. Experiment-III: In the third experiment, all other
annotations except ‘Protein’ are replaced by ‘O’ tags
in the GENIA corpus. This is integrated with the
GENETAG training corpus. Evaluation results are
reported on the GENETAG test corpus.

4. Experiment-IV: In the fourth experiment, we keep
only the ‘Protein’, ‘DNA’ and ‘RNA’ annotations in
the GENIA corpus. This corpus is integrated with the
GENETAG corpus, and this resultant corpus is used
for training. Evaluation results are reported on the
original GENETAG test corpus.

We generate several different versions of CRF and SVM
based classifiers by considering various subsets of the
available features. Here we report only the performance
of the best individual classifier. Results of all these exper-
iments are reported in Table 4. It shows the best perfor-
mance with a CRF classifier in all the four experiments.
Finally we apply our single objective GA based ensem-

ble technique (Ekbal and Saha 2011b) to combine the
results of all the individual base classifiers. In all our
experimental settings, we observe that our approach per-
forms superior compared to all the individual classifiers.
It attains the performance improvements of 1.88, 1.37,
1.50 and 1.83 F-measure points over the four best individ-
ual classifiers, respectively. Comparison between Table 1
and Table 4 clearly show that due to corpus incompatibil-
ity performance drops significantly when GENIA is added
to AIMed. When only the protein annotation is retained
and others are replaced by non-NE tags, the overall per-
formance drops by 9.88 percentage F-measure points (c.f.
results of Experiment-I). This, in turn, decreases the over-
all performance. Overall performance further drops when
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Table 4 Evaluation results of the approach on cross-corpus datasets (we report percentages); Here ‘FM’ denotes
‘F-measure’

Approach Training set Test set Recall Precision FM

Best Ind. Classifier JNLPBA (protein only)+AIMed AIMed 83.14 83.19 83.17

SOO JNLPBA (protein only)+AIMed AIMed 85.10 85.01 85.05

Best Ind. Classi JNLPBA (protein + DNA)+AIMed AIMed 82.17 84.15 83.15

SOO JNLPBA (protein + DNA)+AIMed 3-fold cross 84.07 86.01 85.03

validation on AIMed

Best Ind. Classi JNLPBA (protein only)+GENETAG GENETAG 89.44 93.07 91.22

SOO JNLPBA (protein only)+GENETAG GENETAG 91.19 94.98 93.05

Best Ind. Classi JNLPBA (protein + DNA + RNA)+GENTAG GENTAG 88.70 93.55 91.06

SOO JNLPBA (protein + DNA + RNA)+GENTAG GENTAG 90.09 95.16 92.56

we consider DNA annotations, in addition to ‘Protein’ (c.f.
results of Experiment-II). But, in each of these two cases,
the system performs superior in comparison to the per-
formance reported in (Wang et al. 2009). Similarly, we
also observe the drops in accuracies (comparing between
Table 1 and Table 4) in case of GENIA and GENETAG.
However, it is to be noted that the performance drops are
very minor in comparison to AIMed. Overall F-measure
values decrease by only 1.85 and 3.34 percentage points in
the third and fourth experiments, respectively. Thus, we
can conclude that these corpora, i.e. GENIA and GENE-
TAG are more compatible to each other.
Our datasets are imbalanced. In order to make the ratio

of positive and negative examples more compatible, we
remove the sentences that don’t contain any gene/protein
names from the combined corpora. Evaluation results of
these sampled corpora are reported in Table 5. Compar-
isons between the results of Table 4 and Table 5 show that,
in general, the performance improves due to the removal
of non-informative sentences from the AIMed, GENE-
TAG and GENIA corpora. However for the first experi-
ment (i.e., GENIA + AIMed), we observe a little drop (1.10

percentage F-measure points) in the overall performance.
But it is to be noted that when DNA annotation is also
considered along with ‘Protein’ annotation, performance
increases by 0.51 percentage F-measure points (c.f. results
of Experiment-II). Thus, we can conclude that removal
of non-informative sentences from the training corpora
sometimes helps to improve system performance.
We also compare our approach with the results obtained

by (Wang et al. 2009). They attained the recall, preci-
sion and F-measure values of 65.06%, 67.31% and 66.16%,
respectively for the experiment similar to our first exper-
iment. Similarly for the other three experiments they
reported the overall F-measure values of 55.76%, 63.62%
and 48.21%, respectively. Thus, for all kinds of experi-
ments our approach attains better performance.

Conclusions
In this paper we have assessed the challenges associated in
using more than one corpus for biomedical named entity
extraction. The challenges are mainly due to the differ-
ent annotation schemes followed by the different groups.
One of the major motivation of this work was to come

Table 5 Evaluation results of the approach on cross-corpus non-informative sentence-removed datasets (we report
percentages)

Approach Training set Test set r p FM

Best Individual Classifier JNLPBA (protein only)+AIMed AIMed 80.58 84.43 82.46

SOO Based Ensemble JNLPBA (protein only)+AIMed AIMed 81.98 86.01 83.95

Best Individual Classifier JNLPBA (protein + DNA)+AIMed AIMed 84.66 83.50 84.08

SOO Based Ensemble JNLPBA (protein + DNA)+AIMed AIMed 86.07 85.01 85.54

Best Individual Classifier JNLPBA (protein only)+GENETAG GENETAG 91.79 90.61 91.20

SOO Based Ensemble JNLPBA (protein only)+GENETAG GENETAG 93.19 92.08 92.63

Best Individual Classifier JNLPBA (protein + DNA + RNA)+GENTAG GENTAG 93.98 90.67 92.29

SOO Based Ensemble JNLPBA (protein + DNA + RNA)+GENTAG GENTAG 95.09 92.16 93.60

Here ‘r’: recall, ‘p’: precision, ‘FM’: F-measure.
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up with a system that could achieve good accuracies for
many domains. We identified and developed a very rich
feature set that mostly contains the domain-independent
features. Due to this domain-independent nature we were
able to apply these features on many benchmark datasets.
Initially we have generated individual classifiers varying
these feature combinations. We have used CRF and SVM
frameworks as the base classifiers. Later on outputs of
these classifiers are combined using a single objective clas-
sifier ensemble selection technique. This classifier ensem-
ble technique is based on genetic algorithm (Ekbal and
Saha 2011b), a randomized search and optimization tech-
nique guided by natural evolution and genetics. Experi-
ments with the benchmark datasets like JNLPBA, AIMed
and GENETAG show that our developed approach attains
state-of-the-art accuracies. We also performed a series
of experiments by considering various combinations of
the benchmark datasets. Our preliminary experiments
revealed the complexities associated with the compatibil-
ities of protein annotations across the corpora with the
performance degradations by significant margins (accord-
ing to the exact matching criterion, the F-measure values
decreased by about 9.88% on AIMed and 3.34% on GENE-
TAG). Experiments with the removal of non-informative
sentences (i.e. sentences that don’t contain any protein
or gene names) from the training showed some perfor-
mance improvements. Results also showed that our sys-
tem achieves the state-of-the-art accuracies for all these
cases.

Methods
In this section we first formulate the weighted vote based
classifier ensemble selection problem and thereafter dis-
cuss about the genetic algorithm (GA) based classifier
ensemble technique (Ekbal and Saha 2011b) to solve this
particular problem.

Weighted vote based classifier ensemble problem
formulation
The weighted vote based classifier ensemble problem
(Ekbal and Saha 2010b) is stated below. Suppose, the N
number of available classifiers be denoted by C1, . . . ,CN .
Let, A = {Ci : i = 1;N}. Suppose, there are M out-
put classes. The weighted vote based classifier ensemble
problem is then stated as follows:
Find the weights of votes V per classifier which will

optimize some function F(V ). Here, V is an real array
of size N × M. V (i, j) denotes the weight of vote of the
ith classifier for the jth class. More weight is assigned for
that particular class for which the classifier is more con-
fident; whereas the output class for which the classifier is
less confident is given less weight. These weights are used
while combining the outputs of classifiers using weighted
voting. Here, Fis are some classification quality measures

of the combined weighted vote based classifier. The par-
ticular type of problem like NE extraction has mainly
three different kinds of classification quality measures,
namely recall, precision and F-measure. Thus, F ∈ {recall,
precision, F-measure}.
The weighted vote based classifier ensemble problem

can be formulated under the single objective optimiza-
tion (SOO) framework as below: For each classifier,
find the weights of votes V per classifier such that,
maximize [F(V )], where F ∈ {recall, precision, F-measure}.
We choose F = F-measure, which is the harmonic mean
of recall and precision both.

Methodology
Below we describe the genetic algorithm based classi-
fier ensemble technique (Ekbal and Saha 2011b) used
in the current works. This technique is applied to com-
bine the outputs of multiple classifiers. The steps of the
genetic algorithm based classifier ensemble technique are
as follows.

String representation and population initialization
This string representation scheme is very similar to that
developed in (Ekbal and Saha 2010b; 2011b). Suppose,
there are N available classifiers and O output classes.
Then, the length of the chromosome is N × O. Each
chromosome encodes the weights of votes for possible O
output classes14 for each classifier. We use real encoding
that randomly initializes the entries of each chromosome
by a real value (r) between 0 and 1. Here, r is an uniformly
distributed random number between 0 and 1. If the pop-
ulation size is P then all the P number of chromosomes of
this population are initialized in the above way.

Fitness computation
Initially, the F-measure values of all the classifiers are cal-
culated using 5-fold cross validation. Each of these classi-
fiers is built using various representations of the available
features and/or feature templates. Thereafter, we execute
the following steps to compute the fitness value of each
chromosome.

1. Let, the overall F-measure values of the N number of
classifiers be Fi, i = 1 . . .N .

2. Initially, the training data is equally divided into 5
parts. Each classifier is trained using 4/5 portions of
the training data and evaluated with the remaining
1/5 part. Now, for the ensemble classifier the output
class for each token in the 1/5 training data is
determined using the weighted voting of these N
classifiers’ outputs. The weight of the output class
provided by themth classifier is equal to I(m, i) × Fm.
Here, I(m, i) is the entry of the chromosome
corresponding tomth classifier and ith output class.
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The combined score of a particular class ci for a
particular token t is:

f (ci) =
∑

I(m, i) × Fm,

∀m = 1 : N & op(t,m) = ci

Here, op(t,m) denotes the output class provided by
themth classifier for the token t.
The class receiving the maximum combined score is
selected as the joint decision. Note that in case
different boundaries are outputted by the distinct
classifiers, the final output is decided by the
maximum combined score.

3. The overall F-measure value of the ensemble for the
1/5 part is calculated.

4. Steps 2 and 3 are repeated 5 times to perform 5-fold
cross validation.

5. The average F-measure value of this 5-fold cross
validation is used as the fitness value of the particular
chromosome. This fitness function, fit = F-measureavg
is maximized using the search capability of GA.

Genetic operators
Roulette wheel selection is used to implement the pro-
portional selection strategy. We use the normal single
point crossover (Holland 1975). Crossover probability is
selected adaptively as in (Srinivas and Patnaik 1994). The
expressions for crossover probabilities are computed as
follows:
Let fmax be the maximum fitness value of the current

population, f be the average fitness value of the population
and f ′ be the larger of the fitness values of the solutions
to be crossed. Then the probability of crossover, μc, is
calculated as:

μc =
{
k1 × (fmax−f ′

)

(fmax−f )
if f ′

> f
k3 otherwise

Here, as in (Srinivas and Patnaik 1994), the values of k1
and k3 are kept equal to 1.0.
Each chromosome undergoes mutation with a proba-

bility μm. The mutation probability is also selected adap-
tively for each chromosome as in (Srinivas and Patnaik
1994). The expression for mutation probability, μm, is
given below:

μm =
{
k2 × (fmax−f )

(fmax−f )
if f > f

k4 otherwise

Here, values of k2 and k4 are kept equal to 0.5. This adap-
tive mutation helps GA to come out of local optimum.
Here, each position in a chromosome is mutated

with probability μm in the following way. The value is
replaced with a random variable drawn from a Laplacian

distribution, p(ε) ∝ e−
|ε−μ|

δ , where the scaling factor δ

sets the magnitude of perturbation. Here, μ is the value
at the position which is to be perturbed. The scaling fac-
tor δ is chosen equal to 0.1. The old value at the position
is replaced with the newly generated value. By generating
a random variable using Laplacian distribution, there is a
non-zero probability of generating any valid position from
any other valid position while probability of generating a
value near the old value is more.

Termination condition
In this approach, the processes of fitness computation,
selection, crossover, and mutation are executed for a max-
imum number of generations. The best string seen up
to the last generation provides the solution to the above
classifier ensemble problem. Elitism is implemented at
each generation by preserving the best string seen up to
that generation in a location outside the population. Thus
on termination, this location contains the best classifier
ensemble.

Features for named entity extraction
Feature selection plays an important role for the success
of machine learning techniques. We use a large number
of following features for constructing the various models
based on CRF and SVM classifiers (Saha and Ekbal 2011).
These features are general in nature and can be applied

for other domains as well as languages. Due to the use of
variety of features, the individual classifiers achieve very
high accuracies.

1. Context words: These are the words occurring
within the context window wi+3

i−3 = wi−3 . . .wi+3,
wi+2
i−2 = wi−2 . . .wi+2 and wi+1

i−1 = wi−1 . . .wi+1,
where wi is the current word.

2. Word prefix and suffix. These are the word prefix
and suffix character sequences of length up to n. The
sequences are stripped from the leftmost (prefix) and
rightmost (suffix) positions of the words.

3. Word length. We define a binary valued feature that
fires if the length of wi is greater than a pre-defined
threshold. Here, the threshold value is set to 5. This
feature captures the fact that short words are likely
not to be NEs.

4. Infrequent word. A list is compiled from the
training data by considering the words that appear
less frequently than a predetermined threshold. The
threshold value depends on the size of the dataset.
Here, we consider the words having less than 10
occurrences in the training data.

5. Part of Speech (PoS) information: PoS information
is a critical feature for NE identification. In this work,
we use PoS information of the current and/or the
surrounding token(s) as the features. This
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information is obtained using GENIA tagger15
V2.0.2, which is used to extract PoS information
from the biomedical domain.

6. Chunk information: We use GENIA tagger V2.0.2
to get the chunk information. Chunk information
(or, shallow parsing features) provides useful
evidences about the boundaries of biomedical NEs.
In the current work, we use chunk information of the
current and/or the surrounding token(s).

7. Dynamic feature: Dynamic feature denotes the
output tags ti−3ti−2ti−1, ti−2ti−1, ti−1 of the word
wi−3wi−2wi−1, wi−2wi−1, wi−1 preceding wi in the
sequence wn

1 .
8. Unknown token feature: This is a binary valued

feature that checks whether the current token was
seen or not in the training corpus. In the training
phase, this feature is set randomly.

9. Word normalization: We define two different types
of features for word normalization. The first type of
feature attempts to reduce a word to its stem or root
form. This helps to handle the words containing
plural forms, verb inflections, hyphen, and
alphanumeric letters. The second type of feature
indicates how a target word is orthographically
constructed. Word shapes refer to the mapping of
each word to their equivalence classes. Here each
capitalized character of the word is replaced by ‘A’,
small characters are replaced by ‘a’ and all
consecutive digits are replaced by ‘0’. For example,
‘IL’ is normalized to ‘AA’, ‘IL-2’ is normalized to
‘AA-0’ and ‘IL-88’ is also normalized to ‘AA-0’.

10. Head nouns: Head noun is the major noun or noun
phrase of a NE that describes its function or the
property. For example, transcription factor is the
head noun for the NE NF-kappa B transcription
factor. In comparison to other words in NE, head
nouns are more important as these play key role for
correct classification of the NE class. In this work, we
use only the unigram and bigram head nouns like
receptor, protein, binding protein etc. For domain
independence, we extract these head nouns only
from the training data. A feature is defined that fires
iff the current word or the sequence of words
appears in either of these lists.

11. Verb trigger: These are the special types of verbs
(e.g., binds, participates etc.) those occur preceding
to NEs and provide useful information about the NE
class. However, in the spirit of maintaining the
domain independence of the system, we do not use a
predefined list of trigger words. Based on their
frequencies of occurrences, these trigger words are
extracted automatically from the training corpus. A
feature is then defined that fires iff the current word
appears in the list of trigger words.

12. Word class feature: Certain kind of NEs, which
belong to the same class, are similar to each other.
The word class feature is defined as follows: For a
given token, capital letters, small letters, numbers
and non-English characters are converted to “A”, “a”,
“O” and “-”, respectively. Thereafter, the consecutive
same characters are squeezed into one character.
This feature will group similar names into the same
NE class.

13. Informative words: In general, biomedical NEs are
too long and they contain many common words that
are actually not NEs.
For example, the function words such as of, and etc.;
nominals such as active, normal etc. appear in the
training data often more frequently but these don’t
help to recognize NEs. In order to select the most
important effective words, we first list all the words
which occur inside the multiword NEs. Thereafter
digits, numbers and various symbols are removed
from this list. For each word (wi) of this list, a weight
is assigned that measures how better the word is to
identify and/or classify the NEs. This weight is
denoted by NEweight (wi), and calculated as follows:

NEweight(wi)

= Total no. of occurances of wi as part of a NE
Total no. of occurances of wi in the training data

(1)

The effective words are finally selected based on the
two parameters, namely NEweight and number of
occurrences. The threshold values of these two
parameters are selected based on some experiments.
The words which have less than two occurrences
inside the NEs are not considered as informative.
The remaining words are divided into five classes.

Table 6 Orthographic features

Feature Example Feature Example

InitCap Src AllCaps EBNA,
LMP

InCap mAb CapMixAlpha NFkappaB,
EpoR

DigitOnly 1, 123 DigitSpecial 12-3

DigitAlpha 2× NFkappaB, 2A AlphaDigitAlpha IL23R, EIA

Hyphen - CapLowAlpha Src, Ras,
Epo

CapsAndDigits 32Dc13 RomanNumeral I, II

StopWord at, in ATGCSeq CCGCCC,
ATAGAT

AlphaDigit p50, p65 DigitCommaDigit 1,28

GreekLetter alpha, beta LowMixAlpha mRNA,
mAb
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We compile five different lists for the above five
classes of informative words. A binary feature vector
of length five is defined for each word. If the current
word in training (or, test) is found in any particular
list then the value of the corresponding feature is set
to 1. This feature is a modification to the one used in
(Saha et al. 2009).

14. Content words in surrounding contexts : This is
based on the content words in the surrounding
context. We consider all unigrams in contexts
wi+3
i−3 = wi−3 . . .wi+3 of wi (crossing sentence

boundaries) for the entire training data. We convert
tokens to lower case, remove stopwords, numbers,
punctuation and special symbols. We define a feature
vector of length 10 using the 10 most frequent
content words. Given a classification instance, the
feature corresponding to token t is set to 1 if
and only if the context wi+3

i−3 of wi contains t.
Evaluation results show that this feature is very
effective to improve the performance by a great
margin.

15. Orthographic features: We define a number of
orthographic features depending upon the contents
of the wordforms. Several binary features are defined
which use capitalization and digit information. These
features are: initial capital, all capital, capital in inner,
initial capital then mix, only digit, digit with special
character, initial digit then alphabetic, digit in inner.
The presence of some special characters like
(‘,’,‘-’,‘.’,‘)’,‘(’ etc.) is very much helpful to detect NEs,
especially in biomedical domain. For example, many
biomedical NEs have ‘-’ (hyphen) in their
construction. Some of these special characters are
also important to detect boundaries of NEs. We also
use the features that check the presence of ATGC
sequence and stop words. The complete list of
orthographic features is shown in Table 6.

We have used the C++ based CRF++ package16, a sim-
ple, customizable, and open source implementation of
CRF for segmenting or labeling sequential data.

Endnotes
1 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
interactions.tar.gz

2 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/
GENEATG.tar.gz

3 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
interactions.tar.gz

4 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/
GENEATG.tar.gz

5 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/
report.html

6 http://www.nactem.ac.uk/tsujii/GENIA/ERtask/
report.html

7 We use GENIA and JNLPBA to refer to the same
corpus throughout the paper

8 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/
GENEATG.tar.gz

9 http://www.biocreative.org/news/biocreative-ii/
10 http://crfpp.sourceforge.net
11 http://chasen.org/~taku/software/yamcha/
12 http://chasen.org/~taku/software/yamcha/
13 http://chasen.org/∼taku/software/TinySVM/
14 We also treat the beginning and internals (denoted

by BIO labeling scheme) of a multiword NE as the
separate classes

15 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger
16 http://crfpp.sourceforge.net
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