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Abstract

Although many improvements in the manufacturing of guitars have been made recently, one aspect that has often
been overlooked is that of the acoustical consistency of the final manufactured product. The aim of this paper is to
create a better understanding of the effect of a brace on the frequencies of vibration of the brace-soundboard system.
This paper seeks to shed light on why a luthier ‘tunes’ braces when a guitar soundboard is hand-manufactured. A
simple analytical model of a rectangular brace and soundboard is derived from first principles using Kirchhoff plate
theory in order to develop insight into the effect of the soundboard’s stiffness and brace thickness on the frequencies
of the combined system. Natural frequencies and modeshapes of the combined system are calculated via the assumed
shape method. Results show that by adjusting the thickness of the brace in order to compensate for the stiffness of
the plate, one of the natural frequencies of the combined system can be adjusted to meet a desired value. However,
simultaneously adjusting several natural frequencies cannot be done with a rectangular brace. Therefore modifications
to the shape of the brace are explored.

Keywords: Frequency matching; Assumed shape method; Brace-plate system; Musical instrument; Plate vibration;
Orthotropic material; Tuning; Design-for-frequency; Spectrum control
Introduction
The scientific study of guitars and other stringed musical in-
struments has been around for over a half century and many
improvements to their production manufacturing have also
been made (Richardson 1990; Chaigne 1999; French 2008a).
In spite of this, manufactured instruments often do not
sound as good as instruments built by hand by experienced
luthiers. With precision tooling, production manufactured
instruments can be built to strict dimensional tolerances
and yet, acoustical consistency of the final product is still
not ensured –meaning that two instruments emerging from
the same production line will be dimensionally identical but
acoustically different (French 2008b). There are two princi-
pal reasons for the lack of acoustical consistency. The first
is that wood is a natural material, with natural variations
so that soundboards that are dimensionally identical may
be acoustically quite different. The other reason is that the
tuning process used by the experienced luthiers to hand-
build and tune instruments is based on years of experience
and tradition but scientifically is not well understood. This
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tuning process is what luthiers use to make up for the nat-
ural variation in the acoustical properties of wood and since
this tuning process is not well understood analytically, it is
impossible to replicate autonomously. The goal of this
paper is thus to develop a better analytical understanding of
the tuning process of a guitar soundboard during its manu-
facture. The ultimate end goal is that this understanding
can eventually be used to develop an automated tuning
process to be used during guitar manufacture.
While all parts of a guitar contribute to the overall sound,

there is general agreement that it is the soundboard, also
known as the top plate, of the guitar that is most acoustic-
ally active and for which the highest inconsistency exists
(Siminoff 2002a). The design of the soundboard serves two
purposes, one structural and one musical. The first purpose
is to structurally resist the immense tension of the strings
and the second purpose is to produce the sound associated
with the guitar. In order for the soundboard to be flexible
enough to vibrate at the desired frequencies, it is quite thin.
This makes the soundboard structurally unsuitable to resist
the immense string tension. In order to compensate for this,
braces are added to the underside of the soundboard as seen
in Figure 1. While their function is primarily structural, they
er. This is an open access article distributed under the terms of the Creative
mmons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
inal work is properly cited.

mailto:pdumo057@uottawa.ca
http://creativecommons.org/licenses/by/2.0


Soundboard

Braces

Figure 1 Underside of a braced guitar soundboard.
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can also be used to adjust the frequencies of the
soundboard-brace system. Soundboard frequency adjust-
ments are known as tuning and this can be effectively done
by varying the number and position of braces, as well as by
changing their dimensions. For luthiers trying to follow a
traditional bracing pattern, adjustment of the dimensions of
these braces is generally the preferred method by which a
guitar soundboard is tuned (Siminoff 2002b).
The method most widely used by luthiers for optimising

the brace and soundboard combination is known as tap tun-
ing. Tap tuning involves listening to the change in frequency
caused by the removal of brace material. The material is re-
moved from the brace by hand and the tap-tuning process
is an iterative process which involves tapping, listening and
removing of brace material. By removing material from
the brace, its stiffness is reduced as well as its mass;
however the removal of wood has a larger impact on
stiffness than on mass so the natural frequencies are re-
duced (Elejabarrieta et al. 2000). Since there is common
consensus that the lower modes of vibration are of greater
importance, generally only the lower natural frequencies
are observed (Richardson 1990; Hutchins & Voskuil 1993;
Natelson & Cumpiano 1994). This optimisation process
often leads to what is known as scalloped braces, as shown
Figure 2 Shape of a scalloped brace.
in Figure 2. Much debate still exists as to the acoustic ben-
efits of scalloped braces and the whole tuning process is
still not well understood (Siminoff 2002b).
On the other hand, for production-manufactured instru-

ments, current practice in the industry is to test the acous-
tic quality of a soundboard by measuring its stiffness
across the grain during the manufacturing process (French
2008a). The deflection across the grain of the soundboard
without braces is measured under a known load. Based on
a certain set of deflection ranges, the soundboards are
judged to be of higher or lower acoustical quality and are
therefore used in different product lines. This test gives an
idea as to the soundboard’s stiffness and thus the resulting
frequency range of the final product. Based on the sound-
board’s stiffness test, a brace from a collection of pre-
dimensioned braces is chosen for that soundboard. A cer-
tain quality control is obtained since the manufacturer is
aware of the range of soundboard stiffness for which their
dimensioned braces produce decent instruments.
The fact that dimensional changes to the braces have a

substantial impact on the frequency spectrum of the gui-
tar is known but the extent of this effect is still unknown.
However, research into the acoustics of musical instru-
ments has begun to explain the fundamental interaction
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between various components of an instrument (Caldersmith
1995) and also the effect on the resulting sound field.
Loosely generalized, research into guitars and other instru-
ments has focused on their radiated sound fields or on their
modal properties. Over the years, several experimental and
computational techniques have been applied to the study of
guitars, and in particular soundboards. One area of investi-
gation has been the visualization of guitar box and sound-
board resonances via holography and laser interferometry
(Jansson 1971; Stetson 1981; Firth 1977; Richardson 2010;
Jovicic 1977).
The radiation fields of the guitar have also been studied

numerically and experimentally (Brooke & Richardson
1993a; Brooke & Richardson 1991b; Lai & Burgess 1990;
Hill et al. 2004). Recent work has demonstrated that a rela-
tively small number of measured parameters are required
to predict the sounds radiated by a guitar (Richardson
2010; Hill et al. 2004; Richardson 2005). Interestingly,
Brooke and Richardson conclude that there are no simple
relationships between the modal properties of instruments
and their estimated “quality” (Brooke & Richardson 1993a).
At first glance this is surprising, although this is likely the
scientific equivalent to the musical statement that just be-
cause an instrument is in tune does not ensure it is a
“quality” instrument. On the other hand, most musicians
will reject out of tune instruments as unplayable therefore
one might infer that “good” modal properties are neces-
sary but not sufficient to ensure a decent instrument.
However, there does not seem to be a consensus on what
constitutes “good” modal properties.
Elejabarrieta, Ezcurra, and Santamarı́a performed an ex-

tensive set of experimental and numerical studies on a gui-
tar through its entire construction process by a master
luthier. They experimentally tested the soundboard at each
construction step as modifications were made by the lu-
thier, in order to understand the effect of his modifications
on the vibration properties of the soundboard (Elejabarrieta
et al. 2000). This was followed by a finite element analysis
of the same data (Elejabarrieta et al. 2001). As the guitar
continued to be built by the same luthier, they continued
with their work by analyzing the resonance box and its
modes of vibrations, along with the effect of the sound-hole
on the acoustic modes of the box (Elejabarrieta et al.
2002a). Their next step was an experimental and finite
element analysis of the coupling of the vibration modes of
the structural (soundboard and back-plate) and acoustic
(the box as a Helmholtz resonator) modes once the box of
the guitar had been assembled (Elejabarrieta et al. 2002b).
Finally, they investigated the fluid-air interaction of the gui-
tar box in which the interior gas was changed both experi-
mentally and numerically (Ezcurra et al. 2005). This set of
work contributed greatly to the understanding of how each
component of the guitar contributes to the final frequencies
of vibration but did not offer any suggestions as to how an
instrument designer might modify a given component to
achieve a specific acoustical objective. Boullosa experimen-
tally measured the radiation efficiency and frequency con-
tent of the vibrations of a classical guitar (Boullosa 2002;
Boullosa et al. 1999) but offers little in the way of insight as
to which components of the guitar or their modifications
contribute to either. Torres and Boullosa also studied the
effect of the bridge on the vibrations of the soundboard
both with finite elements and with laser vibrometry (Torres
& Boullosa 2009). Chaigne and various collaborators fo-
cused their research on the time-domain modelling of the
guitar (Chaigne 1999; Bécache et al. 2005; Derveaux et al.
2003) with the intent to better understand the vibroacousti-
cal behavior via physical and numerical modeling. Their in-
tent was for this to be used as a tool for the estimation of
quantities that are hard to measure experimentally as for
example the estimation of the relative structural losses and
radiation losses in the sounds generated by the guitar.
In other (non-musical) disciplines, stiffened plates have

been previously studied by various methods (Fox & Sigillito
1980; Barrette et al. 2000; Peng et al. 2006; Hong et al.
2006). However these studies have focused on the struc-
tural properties of such systems rather than the acoustical
properties of the interaction between the beam and plate
elements.
Despite the work that has been done to understand the

mechanics of the instruments, little has been done to im-
prove the acoustical consistency of manufactured guitars
in large part because the tuning process that is used for
hand-built instruments is not well understood and thus
cannot easily be replicated. The goal of this paper is to
begin to develop a better understanding of this tuning
process via a simple analytical model to represent the vi-
brations of an instrument soundboard and a supporting/
tuning brace. A simple model is sufficient to answer the
question at hand, therefore a simple model that can yield
the most physical insight is chosen for the analysis. The
question is: can we change the dimensions of the brace to
make up for changes in stiffness of the soundboard so that
the combined brace-soundboard system has desired fre-
quencies of vibration? This is the essence of what luthiers
do when they hand-tune an instrument during its con-
struction; they make small changes to the structural prop-
erties in order to produce desired changes in acoustical
properties. An idea similar to this has been considered
analytically for a xylophone (Orduna-Bustamante 1991),
where the effect of an undercut on the bar on its tuning
was modelled and analyzed. However, to the best of the
authors’ knowledge, this type of analysis has not been con-
sidered for a guitar.
Current research shows that it is the first few modes of

the coupled system that are necessary in order to tune the
soundboard during manufacturing (Hutchins & Voskuil
1993). In this work, the assumed shape method is used to
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analyze the continuous system, with the modes of the
soundboard without the brace used as the solution
building blocks. The assumed shape method is a global
element method detailed in (Meirovitch 1996a). It has
been shown to be particularly usefully in the modal ana-
lysis of stiffened and orthotropic plates (Xu et al. 2010;
McIntyre & Woodhouse 1988). The assumed shape
method has specifically been chosen as the analysis tool
because it can solve the mass and stiffness matrices ana-
lytically; thereby each matrix entry is a function of all
physical parameters. This helps give vibration insight
about the model’s natural frequencies and correspond-
ing modes (Bisplinghoff et al. 1996).
A brief outline of the paper is as follows. Section 2

presents the analytical model, specifically chosen based
on the pertinent background information provided in
Section 1. Section 3 demonstrates the results of the re-
search and Section 4 is a discussion of the results. The
effects of scalloped braces are dealt with in Section 5.
Finally, conclusions are given in Section 6.

Analytical model of the plate-brace system
A. Modeling assumptions
To analytically investigate the brace/soundboard inter-
action, we analyze the natural frequencies and mode-
shapes of a rectangular plate model with an attached
cross-brace, as shown in Figure 3.
The soundboard is modeled as a thin rectangular

Kirchhoff plate and the brace is modeled as a thicker
section of the same plate. A simple rectangular geom-
etry is assumed in order to enable the closed-form solu-
tion of a simple plate (without the brace) to be used as
the trial functions for the assumed shape method. Fur-
ther, since the solution of a rectangular plate is known
Figure 3 Orthotropic rectangular plate fitted with brace across its wid
in closed form, this will enable a direct comparison and
enable the understanding of the effect of the brace on
the vibration properties of the plate.
The Kirchhoff plate theory assumes small transverse

deflections and neglects transverse normal and shear
stresses, as well as rotary inertia. Although this is an ac-
curate assumption for the plate, due to the brace’s
thickness-to-width aspect ratio, it may imply a certain
error in that region of the soundboard. Also, because of
the method in which the brace thickness is added to
that of the plate in the kinetic and strain energy expres-
sions, it was necessary to change the direction of the
grain of the plate, in this region only, to match that of
the brace. This is reasonable since the plate is thin and
the properties of the brace dominate in this region. The
plate is also assumed to be simply supported all around,
although in reality it is somewhere between simply sup-
ported and clamped (Meirovitch 1996b). It has been as-
sumed that the system is conservative in nature, which
allows damping to be neglected. Although there is a
certain amount of damping found in wood, its effects
on the lower natural frequencies is thought to be min-
imal and has been neglected. This is justified because
the tuning process (adding and adjusting the dimen-
sions of the braces) has a greater effect on the lower
frequencies than on the higher frequencies (Hutchins &
Voskuil 1993).
The orthotropic properties of wood are modeled, there-

fore its longitudinal and radial properties are of interest,
labelled L and R respectively. The only material properties
that need to be considered independently in these direc-
tions are Young’s modulus, E and Poisson’s ratio, ν. For an
orthotropic plate the stress–strain relationships are given
by (Riley et al. 2006)
th.
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σx ¼ Sxxεx þ Sxyεy
σy ¼ Syxεx þ Syyεy
τxy ¼ Gγxy

ð1Þ

where the S are stiffness components are

Sxx ¼ Ex

1−νxyνyx

Syy ¼ Ey

1−νxyνyx

Sxy ¼ Syx ¼ νyxEx

1−νxyνyx
¼ νxyEy

1−νxyνyx

ð2Þ

The subscripts represent the direction of the plane in
which the material properties act. Therefore, Ex is the
Young’s modulus along the x-axis, Ey along the y-axis and
νxy andvyx the major Poisson’s ratios along the x-axis and
y-axis respectively. We begin with the expressions for
strain and kinetic energies for an orthotropic plate and
then consider modifications to these when the brace is
added to the plate.

B. Strain energy for an orthotropic plate
Using the stress–strain relationships of Eq. (1), the strain
energy for an orthotropic plate is given by (Timoshenko
& Kreiger 1964).

U ¼ 1
2

ZLx
0

ZLy

0

Dxw
2
xx þ 2Dxywxxwyy þ Dyw

2
yy þ 4Dkw

2
xy

h i
dydx

ð3Þ
where Lx and Ly are the dimensions of the plate in the x
and y directions, w =w(x, y) is the transverse displacement
and the subscripts on w refer to partial derivatives in the
given direction. The plate’s stiffnesses Dare given by

Dx ¼ Sxxh
3

12
Dy ¼ Syyh

3

12

Dxy ¼ Sxyh
3

12
Dk ¼ Gxyh

3

12

ð4Þ

where h is the thickness of the plate.

C. Kinetic energy for an orthotropic plate
The orthotropic properties of the plate only affect its
stiffness and not its density, so its kinetic energy is the
same as for an isotropic plate

T ¼ 1
2

ZLx
0

ZLy

0

_w2ρdydx ð5Þ

where the dot represents the time derivative, ρ is the
mass per unit area of the plate such that ρ = μ ⋅ h, μ is
the material density and h is the plate’s thickness.
D. Strain energy for a plate modified with an attached
brace
To account for the modification of the plate by adding a
brace to it, as seen in Figure 3, the strain and kinetic ener-
gies are modified to account for additional thickness be-
tween x1 and x2.
From the expression for strain energy, Eq. (3), the only

term affected by the change in thickness between x1 and x2
is the stiffness D. Therefore, the integral of Eq. (3) is split
into three separate parts so that the strain energy becomes

U ¼ 1
2

Zx1
0

ZLy

0

Dxpw
2
xx þ 2Dxypwxxwyy þ Dypw

2
yy þ 4Dkpw

2
xy

h i
dydx

þ 1
2

Zx2
x1

ZLy

0

Dxcw
2
xx þ 2Dxycwxxwyy þ Dycw

2
yy þ 4Dkcw

2
xy

h i
dydx

þ 1
2

ZLx
x2

ZLy

0

Dxpw2
xx þ 2Dxypwxxwyy þ Dypw2

yy þ 4Dkpw2
xy

h i
dydx

ð6Þ
The stiffnesses D are now section-specific because of

the change in thickness h from x1 to x2:

Dxp ¼
Sxxh

3
p

12
Dyp ¼

Syyh
3
p

12
Dxyp ¼

Sxyh
3
p

12
Dkp ¼

Gxyh
3
p

12
ð7Þ

and

Dxc ¼ Sxxh
3
c

12
Dyc ¼ Syyh

3
c

12
Dxyc ¼ Sxyh

3
c

12
Dkc ¼ Gxyh

3
c

12
ð8Þ

where the subscripts p and c denote the plate alone and
combined plate-and-brace system.

E. Kinetic energy for a plate modified with an attached
brace
Similar to the method used to modify the strain energy
term, the kinetic energy can also be written to take into
account the change in thickness from x1 to x2:

T ¼ 1
2

Zx1
0

ZLy

0

_w2ρp dydxþ
1
2

Zx2
x1

ZLy

0

_w2ρc dydx

þ 1
2

ZLx
x2

ZLy

0

_w2ρp dydx ð9Þ

where the density per unit area ρ is now calculated as:

ρp ¼ μ⋅hp andρc ¼ μ⋅hc ð10Þ
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F. The assumed shape method
The assumed shape method is chosen because it allows us
to use the flat-plate modeshapes as the fundamental build-
ing blocks of the solution, thereby permitting observation
of how the addition of the brace affects those fundamental
modeshapes. This method also permits greater flexibility in
analyzing the effects of changes in brace dimensions since
it enables the creation of an analytical solution from which
numerical solutions can be quickly obtained for various
thicknesses of the brace. The equations of motion are de-
rived using a computer algebra system (Maple). This yields
mass and stiffness matrices where each matrix entry is a
function of all physical parameters (dimensions, density,
stiffnesses, etc.). The effect of any parameter on the sys-
tem’s eigenvalues can then easily be examined without hav-
ing to re-establish the entire system model. Using the
assumed shape method, it has also been found that only
two additional odd or even trial functions more than the
one of interest are required for convergence (depending on
whether it is itself odd or even). The finite element method
was also considered. While the FE method offers signifi-
cant advantages over the other approximate methods,
namely its ability to model complex systems and boundar-
ies and a high numerical accuracy, its disadvantage for the
purpose of this work is its inability to make use of the
known mode shapes of the system without the brace. Fur-
thermore, the FE method also requires a large number of
degrees of freedom in order for the solution to converge to
accurate results. Contrary to the nature of the global func-
tions approach, the finite element method uses local func-
tions which extend over small subdomains of the system
(Meirovitch 1996b), thus comparison of the global behav-
iour to the exact solution of a simple plate problem cannot
be directly incorporated into this solution approach.
The first step of the assumed shape method is to

approximate the transverse displacement w(x, y, t) as
(Meirovitch 2001)

w x; y; tð Þ ¼
Xmx

nx¼1

Xmy

ny¼2

ϕnxny x; yð Þ⋅qnxny tð Þ ð11Þ

The ϕnxny are the chosen discrete spatial trial functions

and qnxny tð Þ are the generalized (time-dependent) coordi-

nates. Also, mx and nx represent the mode number and trial
function number in the x direction respectively and my and
nyrepresent the same in the y direction. Next, the trial func-
tions are chosen so as to satisfy the geometric boundary
conditions and be complete in order to ensure convergence
of the solution (Meirovitch 2001). No other considerations
of the boundary conditions need to be taken into account.
A simply supported plate implies boundary conditions such
that the transverse displacement w of the perimeter of the
plate is zero (Meirovitch 1996b).
Here, the modeshapes of the simply supported rect-
angular plate (without the brace) are known and these
will be used as the trial functions in Eq. (11), so that

ϕnxny ¼ sin nx⋅π⋅
x
Lx

� �
⋅ sin ny⋅π⋅

y
Ly

� �
ð12Þ

Applying the trial functions of Eq. (12) to Eq. (11),
gives a discrete series

w x; y; tð Þ ¼
Xmx

nx¼1

Xmy

ny¼2

sin nx⋅π⋅
x
Lx

� �
⋅ sin ny⋅π⋅

y
Ly

� �
⋅qnxny tð Þ

ð13Þ
which is then used in the strain and kinetic energy equa-
tions of the modified plate.
Once the strain and kinetic energies have been assem-

bled, Lagrange’s equations are used to find the equations
of motion which can then be written in matrix form as

M €q
→ þK q→ ¼ 0

→ ð14Þ
where M is the mass matrix and K is the stiffness matrix

given. Additionally, q→ is the generalized coordinate vector

q→¼ q11 q12 q21 q22 …½ �T ð15Þ
Letting the generalized coordinate system have a har-

monic solution as in (Meirovitch 1996b), then

q→ ¼ A
→

cos ωt þ ϕð Þ ð16Þ
Here, ω is the system’s natural frequency, ϕ the phase

shift and A
→

is a magnitude vector of dimension(mx ⋅my) × 1.
Then replacing the assumed harmonic solution into the
equation of motion, Eq. (14) an eigenvalue problem is ob-
tained, from which the natural frequencies and modeshapes
are found.

Results
The purpose of this analysis is to verify if it is possible to
alter the dimensions of the brace so as to obtain a desired
set of natural frequencies from the coupled system, know-
ing their respective properties before assembly. Both sym-
bolic and numerical computational tools are used.

A. Material properties
The material used throughout the analysis is that of Sitka
spruce, the most commonly used wood for stringed musical
instrument soundboards. Material properties for Sitka spruce
are obtained from the U.S. Department of Agriculture,
(Forest Products Laboratory (US) 1999). Since properties
between specimens of wood have a high degree of vari-
ability, the properties obtained from the Forest Products
Laboratory are an average of specimen samplings. The
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naturally occurring properties of wood act as an orthotropic
material. Material properties of Sitka spruce are seen in
Table 1. The subscripts ‘R’ and ‘L’ refer to the radial and
longitudinal property directions of wood respectively.

B. Plate and brace dimensions
A control test specimen, having the same dimensions for
every analysis, is used. The dimensions of the plate and
brace are based on typical dimensions of a section of in-
strument soundboard for which a single brace is used
for structural reinforcement. This turns out to be about
a quarter of a typical guitar soundboard. The brace di-
mensions are defined as in Figure 4.
The plate dimensions are defined as in Figure 3. Other

important reference points are also indicated. All the di-
mensions used in this study for the brace and the plate
as well as other pertinent reference points are listed in
Table 2. To avoid confusion, subscript ‘p’ stands for
plate, ‘b’ for brace and ‘c’ for combined plate and brace.

C. Frequencies and modeshapes
The assumed shape method used 10 × 10 trial functions.
Table 3 gives these results of this modelling approach.
Additionally, results of the natural frequencies obtained
via the assumed shape method for the first ten modes
were compared to those obtained using the finite elem-
ent method with over 21000 nodes. This served to verify
and validate the results presented here.
The dip in the center of the x-axis for the assumed

shape method modeshapes is the location of the brace,
which is visible on the modeshapes. The brace stiffens
this area and limits the amount of displacement that can
occur. Since the Kirchhoff model is used, shear and ro-
tary inertia are neglected, which may induce some inac-
curacies near the brace as the aspect ratio is larger there.

D. Effect of the brace on the natural frequencies of the
combined system
Systems having components combined using a rigid link
have the sum of the stiffness and of the mass components
of each subsystem, leading to natural frequencies which
generally fall somewhere between the two separate systems’
Table 1 Material properties for Sitka spruce as an
orthotropic material (Forest Products Laboratory (US) 1999)

Material Properties Values

Density – μ (kg/m3) 403.2

Young’s modulus – ER (MPa) 850

Young’s modulus – EL (MPa) ER/0.078

Shear modulus – GLR (MPa) EL × 0.064

Poisson’s ratio – νLR 0.372

Poisson’s ratio – νRL νLR × ER/EL
original natural frequencies. To verify this claim on the
continuous system, the original orthotropic system’s nat-
ural frequencies are compared to those of the combined
orthotropic system in Table 4. The exact values for the
natural frequencies of the brace seen in Figure 4 using
classical beam theory are given in (Hartog 2008). The
exact values for the natural frequencies of the simply sup-
ported orthotropic plate of Figure 3 are calculated via the
assumed shape method using the exact modeshapes ob-
tained from (Meirovitch 1996b).
These results show intuitive trends which help verify the

model and help in the understanding of the effect that
adding a brace has on the coupled system. A detailed dis-
cussion about the relationship between these results is
given in Section 4.

E. Tuning
In order to verify the feasibility of tuning braces to a
plate having a predetermined cross-grain stiffness, it is
necessary to look at effects of a change in both the
Young’s modulus in the radial direction ER and of the
brace thickness hb, on the modified orthotropic plate of
Figure 3. Although the lowest five natural frequencies
carry importance, only two will be observed during the
variation in structural properties. This is because fre-
quencies that have a mode of vibration which contains a
node at the location of the brace are not as affected by
the brace as those which have a mode which passes
through it. Therefore the two frequencies observed dur-
ing this analysis are the first and fourth natural frequen-
cies of the orthotropic plate-brace system. The second
and third modeshapes have a node at the location of the
brace and are not as affected by the brace, contrary to
the first and fourth modeshapes which don’t. This can
be observed in Table 4, where the first and fourth
modes use only one trial function along the x-axis such
that ω1:mx = 1,my = 1 and ω4:mx = 1,my = 2.
Since it seems that the cross-grain stiffness of a sound-

board has a large impact on its acoustical properties and
since this stiffness is related to the soundboard’s radial
Young’s modulus, the radial Young’s modulus or ER is var-
ied to see its effect on the systems natural frequencies.
The brace is kept to a constant thickness of hb =0.012m.
The results of this are shown in Figure 5.
It is clear from Figure 5 that as ER increases, so do the

1st and 4th natural frequencies. A similar analysis is
again performed, but this time ER is held constant at
850MPa and the thickness of the brace or hb is varied.
These results are shown in Figure 6.
In the same way as the previous case, it can be seen

from Figure 6 that when hb increases so do the 1st and
4th natural frequencies of the combined system.
Based on these results and in order to verify if it is pos-

sible to get consistency out of the natural frequencies, an
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analysis was performed in which an increase in the plate’s
radial stiffness was compensated by reducing the thickness
of the brace, shown in Table 5. The plate’s radial stiffness
and the thickness of the brace were varied so as to keep
the 1st natural frequency relatively constant while examin-
ing the effect this would have on the 4th natural frequency.
It is apparent from Table 5 that although the first nat-

ural frequency has been held more or less constant, this
also resulted in significant variation in the fourth natural
frequency. This led to a further analysis in which the ra-
dial stiffness and brace thickness were varied so that the
fourth natural frequency was held constant, as shown in
Table 6.
Once again, forcing the fourth natural frequency to be

more or less constant causes the first natural frequency to
vary considerably from its value at Er = 850 MPa. These re-
sults are further discussed in the next section.

Discussion
Based on the results presented in Section 3, the analysis has
demonstrated clear trends in the behaviour of a sound-
board having a brace across its width. Specific points are
discussed herein.

A. Material properties
The first thing to note during this analysis is the use of the
statistical average values of spruce’s material properties. It is
obvious that these material properties vary on a specimen
by specimen basis. However the assumption was made that
Table 2 Test specimen dimensions

Dimensions Values

Length – Lx (m) 0.24

Length – Ly (m) 0.18

Length – Lb (m) 0.012

Reference – x1 (m) Lx/2 – Lb/2

Reference – x2 (m) x1 + Lb

Thickness – hp (m) 0.003

Thickness – hb (m) 0.012

Thickness – hc (m) hp + hb
there is a relationship between the radial stiffness ER and the
other properties. While this is definitely alluded to by the
(Forest Products Laboratory (US) 1999), it is unclear how
much variation is actually present in these relationships.
Based on years of luthier experience in using the cross-grain
stiffness as a measure of soundboard quality, it would appear
that the relationship between this stiffness and other proper-
ties is more consistent than the properties themselves. It
would, however, be quite interesting to further investigate
this phenomenon, as this is has been found to be a great
way of modeling the material properties of wood.
Clear, quartersawn, musical instrument spruce has been

shown to have remarkably consistent microscopic properties
in spring and summer growth. Furthermore, spruce displays
an abrupt transition period which means that micro-scale
properties are generally in line with macro-scale mechanical
properties (Kahle & Woodhouse 1994). Therefore, by avoid-
ing visual imperfections as is currently being done in indus-
try, it is reasonable to assume that bulk material properties
taken on a specimen-by-specimen basis is an adequate
measure of overall system performance. However, it would
be interesting to investigate how localized changes in mater-
ial properties would affect system performance, especially at
the location of the brace. Modifications to the method, by
increasing the number of zones of interest in the kinetic and
strain energy equations for example, could take into ac-
count micro-scale variations in the material specimen. On
the other hand, more rigorous testing of material proper-
ties would be necessary to populate the input information
required for the analysis. On the macro-scale, CNC ma-
chinery could be reprogrammed to shape braces as re-
quired by the material property measurements of the plate.
To increase the accuracy of the model by including

frequency-dependent damping properties, an analytical
approach such as that described in (McIntyre & Wood-
house 1988) could be used to modify the mathematical
model in order to take damping into account.

B. Dimensions
The dimensions used on the test specimen consisting of
the simply supported rectangular plate and brace across
the width, are based on typical dimensions of those used



Table 3 Results for the assumed shape with 10x10 trial
functions (orthotropic)

mx my Assumed shape method

Natural Frequency (Hz) Modeshape

1 1 590

2 1 703

2 2 930

1 2 1015

2 3 1185

1 3 1248

3 1 1273

Table 3 Results for the assumed shape with 10x10 trial
functions (orthotropic) (Continued)

2 4 1551

1 4 1598

2 5 2051
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on guitar soundboards. The plate itself having only one
brace is typical of the area on a soundboard around the
lower bout where is positioned one of the legs of the typ-
ical x-brace pattern. This leads to a model which produces
a set of the lowest frequencies within the acoustical range
sought by a typical musical instrument (e.g. A0-C8 or
27.5 − 4186.01 Hz).
Table 4 Comparison of the orthotropic brace, plate and
combined system natural frequencies

mx my Brace
natural

frequencies

Plate
natural

frequencies

Combined system
natural

frequencies

% Increase
by adding

(Hz) (Hz) (Hz) the brace

1 1 873 166 590 256%

2 1 873 530 703 33%

2 2 3491 662 930 40%

1 2 3491 330 1015 207%

2 3 7855 923 1185 28%

1 3 7855 629 1248 98%

3 1 873 1146 1273 11%

2 4 13965 1321 1551 17%

1 4 13965 1054 1598 52%

2 5 21820 1853 2051 11%

1 5 21820 1604 2090 30%



Figure 5 The 1st and 4th natural frequencies of the combined system when varying ER (hb = 0.012 m).
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C. Effect of the brace on plate modes
When results are compared between the plate alone and
the plate with the brace as seen in Table 4, it is clear that
the addition of the brace affects modes for which the lo-
cation of the brace is not a node, such as mx = 1, more
than a mode having a node at the location of the brace,
such as mx = 2. This is also clear from the percentage in-
crease in the natural frequencies for the mx = 1 mode,
which is much higher than for the mx = 2 modes. It is
also impossible to avoid a slight increase in the natural
frequencies for the mx = 2 modes or all other even
modes because their nodes are along a line and the
brace does in fact have a finite width. This finite brace
width causes local stiffening to occur around it, affecting
the curvature of the even modes and thereby also in-
creasing their frequencies.
This table also demonstrates that for modes directly

affected by the brace, the natural frequencies in fact
fall somewhere between those of the brace and plate
alone. These results are those which are expected from
basic vibration theory. For the modes not directly affected
by the brace, a simple increase in the original plate’s natural
frequency is observed due to the forced changes in the
mode’s curvature.
Figure 6 The 1st and 4th natural frequencies of the combined system
D. Tuning
The effects of variations in the cross-grain stiffness of the
plate, measured as ER, are observed in Figure 5. It is clear
that when the stiffness across the grain is reduced so too
are the natural frequencies, as expected. Similarly, the ef-
fects of the brace’s thickness, measured as hb, are consid-
ered in Figure 6. As the brace’s thickness increases, so does
its natural frequencies since its stiffness increases at a larger
rate than its mass.
Luthiers use this phenomenon in order to adjust the

braces to a given soundboard, changing the thickness of
the brace in certain sections to compensate for changes in
the stiffness of the soundboard. This adjustment process is
tested analytically whereby the brace is adjusted inversely
to the plate’s cross-grain stiffness in order to hold the first
natural frequency of the combined system constant. These
results can be seen in Table 5. While the first natural fre-
quency variation falls well below the 1% human hearing
threshold for sound variation (Chaigne 1999), the variation
in the fourth natural frequency lies above it.
A second attempt was made to tune the fourth natural

frequency, modifying the properties of the brace so that
the fourth natural frequency remained constant despite
variations in the stiffness of the soundboard. As can be
when varying hb (ER = 850 MPa).



Table 5 The system is compensated so that the 1st natural frequency is held constant

Young’s modulus Brace thickness 1st natural frequency % change of ω1 from 4th natural frequency % Change of ω4 from

ER (MPa) hb (m) ω1 (Hz) ER = 850 ω4 (Hz) ER = 850

600 0.0150 590 0.0% 884 13%

650 0.0142 590 0.0% 913 10%

700 0.0136 592 0.3% 941 7%

750 0.0130 591 0.2% 967 5%

800 0.0125 592 0.3% 992 2%

850 0.0120 590 0% 1015 0%

900 0.0116 591 0.2% 1038 2%

950 0.0112 590 0.0% 1059 4%

1000 0.0109 592 0.3% 1080 6%

1050 0.0105 589 0.2% 1098 8%

1100 0.0102 589 0.2% 1117 10%
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seen in Table 6, a wider adjustment span is required for
the brace in order to achieve consistency in the fourth
natural frequency. This time, the frequency variation
of the fourth natural frequency lies well below the 1%
threshold. However, the variation in the first natural fre-
quency is wider than the first attempt.
These results indicate that it is possible to produce an

acoustically consistent set of brace-plate assemblies that
have at least one desired natural frequency. Conversely,
it does also indicate that a rectangular brace is not suit-
able for adjusting multiple frequencies.
After obtaining these results, it has become clear that

adjustments to the shape of the brace itself are required.
This has led back to the debate on whether or not scal-
loped braces have an acoustical role in producing more
consistent instruments. This being an interesting topic on
its own, further investigation of the scalloped brace is
found in Section 5.
Table 6 The system is compensated so that the 4th natural fr

Young’s modulus Brace thickness 1st natural frequency % ch

ER (MPa) hb (m) ω1 (Hz)

600 0.0909 934

650 0.0683 927

700 0.0387 907

750 0.0194 781

800 0.0144 661

850 0.0120 590

900 0.0104 541

950 0.0093 508

1000 0.0084 482

1050 0.0077 462

1100 0.0071 446
E. Sources of error
Evidently, improved accuracy in the calculation of the nat-
ural frequencies of the modified plate could be obtained by
simply incorporating shear deformation and rotary inertia
into the plate model. Nevertheless, other assumptions were
also made which have an impact on the preciseness of the
calculated values.
The first assumption was that the mass of air which

would normally surround the soundboard of a mu-
sical instrument has been neglected. Including the
mass of air surrounding the soundboard would in fact
decrease the natural frequencies because the mass of
air acts to increase the total inertia of the soundboard
(Leissa 1993).
To simplify the model, the assumption was also made that

the soundboard is simply supported when in fact it is prob-
ably somewhere between simply supported and clamped
(Meirovitch 1996b). Since clamped edges prevent rotation at
equency is held constant

ange of ω1 from 4th natural frequency % change of ω4 from

ER = 850 ω4 (Hz) ER = 850

58% 1015 0.0%

57% 1015 0.0%

54% 1015 0.0%

32% 1015 0.0%

12% 1015 0.0%

0% 1015 0%

8% 1015 0.0%

14% 1015 0.0%

18% 1014 0.1%

22% 1014 0.1%

24% 1014 0.1%
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the edge, local stiffening occurs. This leads to an increase in
the natural frequencies.
Damping was also neglected during the analysis, which

allowed for a much simpler model. Although this assump-
tion is justified due to the fact that a musical instrument is
designed to sustain rather than to absorb vibration, it is the
damping or decay time of specific partial frequencies, be-
cause of wood’s distinct properties, which help give a
wooden instrument its tone (Chaigne 1999). Therefore, to
improve the acoustical preciseness of the model, damping
would need to be included in the analysis.
Finally, in order to create the orthotropic system, the dir-

ection of the grain at the location of the brace was changed
for the plate. This would in fact slightly modify the stiff-
ness properties of the system in this location, thereby
influencing the natural frequencies.

Analysis of a scalloped brace
Based on the results of Section 3, it is clear that a rectangu-
lar brace can be modified to control one of the lower fre-
quencies, but alone is unable to control multiple frequencies
at once. Based on these previous results, insight was ob-
tained as to what needs to be done in order to tune at least
two of the lower modes, therefore a preliminary analysis was
performed based on the hypothesis that modifying the shape
of the brace itself has the ability to control more than one of
the system’s natural frequency.
As previously mentioned, during the manual tuning

process a brace will often end up having a scalloped shape.
While some believe this is the result of the tuning process,
there has been some speculation that this enables a luthier
Brac

1st mode of 

2nd mode of 

Figure 7 Scalloped brace with the modes of vibration it affects.
to control two modes at once (Siminoff 2002b). This specu-
lation is based on the fact that because of a scalloped
brace’s peculiar shape, individual modifications of the two
lowest modes running along its longitudinal direction, as
seen in Figure 7, are possible.

A. Modeling of the scalloped brace
For comparative purposes, the same model used for the
rectangular brace including the orthotropic material prop-
erties described will be used in this section. Only prelimin-
ary modifications to the shape of the brace itself are
explored herein. In order to model the scalloped brace, a
second order piece-wise polynomial function was chosen
to model the thickness of the brace. This polynomial func-
tion puts the peaks of the scallops at ¼ and ¾ of the way
down the brace. The function is given by

hb ¼

y2 þ hbo for y <
Ly
4

y−
Ly
2

� �2

þ hbo for
Ly
4
≤ y ≤

3Ly
4

y−Ly
� �2 þ hbo for y >

3Ly
4

8>>>>><
>>>>>:

ð17Þ

where h
bo is the height of the brace at its ends and center.

This hb is then substituted into the kinetic and strain en-
ergy equations as used for the modified plate model in the
assumed shape method.

B. Results
Since the equations of kinetic and strain energy now
include a polynomial instead of a constant during the
e

vibration

vibration
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solution process, the computational power necessary for
such a symbolic solution increases immensely. The results
obtained for the orthotropic modified plate using a scal-
loped brace can be seen in Table 7. The solution uses 5 ×
5 trial functions in order to solve the lowest five natural
frequencies. In order to compare results with the results
of the previous section, the rectangular brace is given a
thickness of hb = 0.012 m, as before. The original thick-
ness of the scalloped brace is also marked as hbo = 0.012
m.

C. Discussion
Although the natural frequencies have a clear increase in
value throughout for the scalloped brace compared to the
rectangular brace, there is a marked difference for the 1 × 2
mode, where there is in fact a reduction in the natural fre-
quencies of the system. The original thickness of the scal-
loped brace is equal to that of the rectangular brace, which
adds additional material to the system, and thus increases
the natural frequencies. Since the peaks of the scalloped
brace occur at the maximum displacement locations of the
4th mode of vibration in the direction of the brace (1 × 2
mode), it increases the inertia at these locations by increas-
ing the mass locally. This is the reason for the reduction in
the natural frequency observed for the 4th modeshape.
These peaks also minimize the effect of extra mass on the
other modes of vibration, because their maximum dis-
placement is found to be either at the center of the brace
where the brace’s thickness goes unchanged or the brace is
in fact at a location of one of their nodes.
These discoveries lead to the theory that what a luthier is

in fact doing when scalloping a brace, is adjusting two or
more modes at once, or at least controlling which modes
are affected the most by the bracing since not all modes are
equally affected. It is evident that the exact shape chosen
based on the polynomial of Eq. (17) may not be the optimal
solution. Further investigation into the scallop shape itself is
necessary to further grasp the magnitude of its effect on the
frequency spectrum of the soundboard. Research on under-
standing the effects of a scalloped shape brace on the nat-
ural frequencies of a brace-plate system is ongoing, but
Table 7 Comparison of brace geometry on a simply
supported orthotropic modified plate

mx my System natural
frequencies with
rectangular brace

System natural
frequencies with
scalloped brace

% change
in frequencies

(Hz) (Hz)

1 1 592 621 4.9%

2 1 711 743 4.5%

2 2 950 1003 5.6%

1 2 1063 1053 −0.9%

2 3 1211 1279 5.6%
shows great promise in a field that deserves to be explored.
Only preliminary results have been discussed herein.

Conclusions
In this paper, the effect on natural frequencies of adding
a brace to a soundboard was modeled and analyzed in
order to better understand how luthiers tune a musical
instrument. The assumed shape method was used in the
analysis and the insight gained by using this approach
was tremendous.
First, the analysis has shown that the acoustic properties

of a soundboard can be modified by adjusting the thickness
of a brace. In fact, it has shown that specific natural fre-
quencies can be controlled. However, the rectangular brace
used for most of the analysis has been found to have the
ability to control only one frequency at a time.
Scalloped braces have been shown to be a solution for

which multiple natural frequencies of a soundboard can
be adjusted. Further investigation on this subject should
be explored. However, it does indeed help to clarify the
purpose of using scalloped braces, as has been done for
hundreds of years, and also gives hope that it is possible
for a wooden musical instrument manufacturing process
to include acoustical consistency.

Nomenclature

A: Magnitude vector
D: Stiffness function
E: Young’s modulus
G: Shear modulus
h: Thickness
k: Stiffness
K: Stiffness matrix
Ks: Shear correction factor
m: Mass
M: Mass matrix
L: Longitudinal axis parallel to the wood grain
Lx: Length along the x axis
Ly: Length along the y axis
m: Mode number
n: Trial function number
q: Generalized coordinates
Q: Generalized non-conservative forces
R: Radial axis normal to the growth rings and
perpendicular to the wood grain
S: Stiffness components
t: Time
T: Kinetic energy of the system
T: Tangential axis tangent to the growth rings and
perpendicular to the wood grain
u: Displacement along the x axis
U: Strain energy of the system
v: Displacement along the y axis
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V: Potential energy of the system
w: Displacement along the z axis
wo: Displacement along the z axis of the plate’s neutral plane
W: Work
x: Axis direction and position
y: Axis direction and position
z: Axis direction and position
γ: Shear strain
ε: Normal strain
μ: Density
ν: Poisson’s ratio
ρ: Mass per length or mass per area
σ: Normal stress
τ: Shear stress
φ: Discrete spatial trial functions
ω: Natural frequency
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