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Abstract

Hillslope instability has been thought to be one of the most important factors for landslide susceptibility. In this
study, we apply geomorphic analysis using multi-temporal DEM data and shake intensity analysis to evaluate the
topographic characteristics of the landslide areas. There are many geomorphologic analysis methods such as
roughness, slope aspect, which are also as useful as slope analysis. The analyses indicate that most of the co-seismic
landslides occurred in regions with roughness, hillslope and slope aspect of >1.2, >30, and between 90 and 270,
respectively. However, the intersection regions from the above three methods are more accurate than that derived
by applying single topographic analysis method. The ground motion data indicates that the co-seismic landslides
mainly occurred on the hanging wall side of Longmen Shan Thrust Belt within the up-down and horizontal peak
ground acceleration (PGA) contour of 150 PGA and 200 gal, respectively. The comparisons of pre- and post-
earthquake DEM data indicate that the medium roughness and slope increased, the roughest and steepest regions
decreased after the Wenchuan earthquake. However, slope aspects did not even change. Our results indicate that
co-seismic landslides mainly occurred at specific regions of high roughness, southward and steep sloping areas
under strong ground motion. Co-seismic landslides significantly modified the local topography, especially the
hillslope and roughness. The roughest relief and steepest slope are significantly smoothed; however, the medium
relief and slope become rougher and steeper, respectively.
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Introduction

It has been commonly accepted that steep topography
are of high landslide frequency in active orogenic region.
The co-seismic landslides usually occurred in active oro-
genic regions, which are one of the major secondary na-
ture hazards related to strong earthquakes (Harp and
Jibson 1996; Gallousi and Koukouvelas 2007; Owen et al.
2008; Ren and Lin 2010; Dai et al. 2011a). In some cases,
co-seismic landslides even produce more serious human
loss and damages than the earthquake itself. Thus, the co-
seismic landslides have fundamental influence on human
life and seismic design of buildings etc. It has been noticed
that transportation and deposition of the landslide mate-
rials will also have fundamental impact on the topographic
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evolution (Meng et al. 2006; Godard et al. 2010; Ouimet,
2010; Hovius et al. 2011; Parker et al. 2011). Contem-
porary, the topographic conditions will also affect the
susceptibility of landslides (Jibson et al. 2000; Dai and
Lee 2002; Korup et al. 2007). A variety of approaches
have been used in slope instability analysis, which has
been one of the most important topographic features in
detecting susceptible landslide areas (Dai and Lee 2002;
Korup et al. 2007; Ren and Lin 2010; Chuang and Fabbri
2008). With the development of Geographical Informa-
tion Systems (GIS), numerous quantitative topographic
analysis approaches have developed in recent years.
Topographic roughness, slope aspect and hillslope are
the most commonly used features in tectonic geomor-
phologic and landslide-related studies (e.g., Dai and Lee
2002; Casson et al. 2005; Zhang et al. 2011; Ren and Lin
2010). The lithologic units and concentrations of the
co-seismic landslides induced by Wenchuan earthquake
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have been analyzed in detail (Dai et al. 2011a). In this
paper, we will mainly focus on the topographic charac-
teristics of the co-seismic landslides. The shaking inten-
sity is another important parameter that has been
thought to be related to co-seismic landslides as well as
sand liquefactions (Harp and Wilson 1995; Murphy
et al. 2002; Meunier et al. 2007; Wang et al. 2011). In
this study, we also use the open accessed strong motion
records to analyze the relationship between Wenchuan
earthquake triggered co-seismic landslides and the peak
ground acceleration (PGA) distribution, which is dis-
tributed by CSMNC (China Strong Motion Networks
Center), IEMCEA (Institute of Engineering Mechanics,
China Earthquake Administration).

The occurrence of 2008 Mw 7.9 Wenchuan earthquake
provides a valuable opportunity to verify the accuracy of
multiple approach analyses involving variable topographic
analyses and shaking intensity. The landslide areas are
validated using the pre-earthquake high-resolution digital
elevation model (DEM) data derived from 1:50,000 topo-
graphic maps. The analyses indicate that the co-seismic
landslides are closely correlated to the topographic condi-
tions as well as the shaking intensity. The topographic
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effects of the Wenchuan earthquake are also analyzed
based on post-earthquake DEM data derived from stereo
pair of IRS-P5 (Indian Remote Sensing Satellite) remote
sensing images by comparing with pre-earthquake DEM.

Study area

The Longmen Shan region is one of the steepest mar-
gins of the Tibetan Plateau accompany with almost
5000 m altitude decrease across the margin within
50 km distance (Burchfiel et al. 1995, 2008; Chen and
Wilson 1996, Figure 1). It is also an active orogen whose
activity has been largely underestimated due to the less
crustal shortening and low slip rates of the major faults
within it, as revealed by low geodetic slip rates, shorten-
ing rates (King et al. 1997; Chen et al. 2000; Zhang
et al. 2004; Gan et al. 2007) and geological slip rates
(Densmore et al. 2007; Zhou et al. 2007). There are four
major active fault systems within the Longmen Shan Thrust
Belt: Wenchuan-Maowen, Yingxiu-Beichuan, Guanxian-
Anxian and Qingchuan fault systems (Burchfiel et al. 1995,
2008; Densmore et al. 2007; Zhou et al. 2007). It has
been reported that the Wenchuan earthquake ruptured
the Yingxiu-Beichuan and Guanxian-Anxiang faults
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Figure 1 Simplified tectonic map of the Tibetan Plateau (a) and Longmen Shan region (b). Tectonic structures are modified from (Lin, et al.
2009, 2012, Liu-Zeng et al. 2009, Xu et al. 2009, Zhang et al. 2010). Thick red lines on the main map indicate the co-seismic surface ruptures of the
2008 Mw 7.9 Wenchuan earthquake. Green crosses indicate the strong motion seismograph stations. Green triangles indicate the GPS survey
locations for ground control points to improve the quality of DEM data derived from stereo pairs of remote sensing imagery data. Black polygons
show the co-seismic landslides. Translucent polygons indicate the study areas of Site |, Il and IlI.
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Table 1 Stereo pairs IRS-P5 Imagery used in post-earthquake
DEM derivation

No. Path Row Date

1 659 250 20080603
2 659 251 20080603
3 659 252 20080603
4 659 253 20080603
5 659 254 20080603

(Lin et al. 2009; Xu et al. 2009; Liu-Zeng et al. 2009;
Zhang et al. 2010), although it is still ambiguous that
whether the Qingchuan fault is ruptured (Lin et al.
2012). A large amount of co-seismic landslides were
triggered on the steep slope regions accompany with
the co-seismic deformations (e.g. Ren and Lin, 2010;
Yin et al. 2010; Dai et al. 2011a,2011b; Parker et al.
2011; Tang et al. 2011), which significantly changed the
local topography. The co-seismic landslides mainly
distributed in a corridor that bounds the co-seismic
surface rupture, with major portion on the hanging wall
side (Ren and Lin 2010; Yin et al. 2010; Godard et al.
2010; Ouimet 2010; Dai et al. 2011a, 2011b). Thus, the
earthquake triggered deformation and landslides can
dominate local erosion and landscape evolution in
Longmen Shan region (Meng et al. 2006), as in other
active orogen in the world (Hovius et al. 2011; Mackey
and Roering 2011). Therefore, the co-seismic landslides
of the Wenchuan earthquake should be controlled
by the topographic conditions and will consequently
affect the local topographic evolution in Longmen
Shan region.
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Data and methods

Data acquirement

With the development of GIS techniques, recent quanti-
tative topographic analyses are usually based on DEM
data. Previous studies suggest that the DEM data derived
from stereo pair of remote sensing imagery data is favor-
able in landslide detection (Casson et al. 2005). The Indian
Remote Sensing Satellite P5 (IRS-P5) carries two Panchro-
matic cameras (PAN fore and PAN after), which is favor-
able for deriving post-earthquake DEM. In this study, we
derived a 5 m resolution DEM using the stereo pairs of
2.5 m resolution IRS-P5 imagery data. Three representa-
tive sites (Site I-III) were selected for DEM derivation,
which have no cloud coverage at the time of imagery
acquisition (Table 1). To improve the DEM quality, we
also applied field ground control points (GCP) survey
using Trimble R8 GPS (Figure 1). Finally, we derived
the DEM using the GCP points, Rational Polynomial
Coefficient (RPC) camera model (Tao and Hu 2001)
and tie points between the Pan fore and Pan after im-
agery. The checkpoints indicate that the error of the
post-earthquake DEM is usually less than 1.5 m (Tables 2
and 3), which is precise enough for landslide topog-
raphy analysis. Because there are no pre-earthquake
stereo pairs of remote sensing imagery data available,
the pre-earthquake DEM data are derived from the
best data we can get—the 1:50,000 topographic maps.
The topographic maps are surveyed using stereo pairs
of aerial photograph with sufficient ground control
points (GCP) by National Administration of Surveying,
Mapping and Geoinformation of China (NASMGC) in
1970s.

Table 2 Elevation precision of topographic map derived pre-earthquake DEM

No. Longitude(°) Latitude(®) GPS_Elevation(m) DEM_Elevation(m) Error(m)

1 106.023 329621 616.749 620.08234 33333364
2 105457 320184 678851 682.28235 34313486
3 103435 32.9307 3587.7 3583.9824 —3.7175781
4 102,501 32.7856 347193 34623823 -9.5476758
5 104.571 324053 131277 13124823 —0.2877002
6 104.831 321819 1068.06 1064.7823 —3.2776514
7 104.444 31.8019 1002.18 1002.1824 0.0023731

8 103.166 32075 2957.83 29486824 —9.1476269
9 104.782 31.4865 489.381 484.88232 —4.4986758
10 104.187 31.3529 571.82 5712334 -0.5866016
" 104.441 31.1571 483.26 484.68231 1422312

12 104.077 30.732 490.226 49468231 4456312

13 10341 30415 559.666 550.9823 —8.6837002
14 106.034 30.8042 295216 299.77786 45618625

The mean elevation error is calculated to be +4.1 m.
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Table 3 Elevation precision of imagery derived post-earthquake DEM

Page 4 of 10

No. Longitude(°) Latitude(®) GPS_Elevation(m) DEM-Elevation(m) Error(m)
1 103.89948 31.34582 1390.878 1393403 —-2.525
2 103.96341 31.22905 876.761 874.376 2385

3 104.02967 31.34853 798.949 799.126 -0.177
4 103.99306 31.27809 738503 73737 1.133

5 103.9768 31.35489 1090.177 1090.542 —0.365
6 104.53361 31.87152 599.059 598938 0.121

7 104.22619 3203414 1104.028 1103.25 0.778

8 10435132 31.95228 1470.297 1467.909 2388

9 1044132 31.8329 942.5816 940.137 24446
10 104.58483 31.82802 5714206 57247 —1.0494
11 104.52359 31.778 806.9447 805.641 13037
12 103.942 31.31536 9423366 946.256 -3919%4

The elevation mean error is calculated to be £1.5 m.
Previous DEM precision check tables show the mean error of the pre-earthquake DEM is +4.1 m, and median error is £3.6 m; the mean error of the post-earthquake
DEM is +1.5 m, and mean elevation error is +1.2 m.
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Figure 2 Topographic features of Site I. The roughness (a), hillslope (b), slope aspect (c) distribution of Site | based on pre-earthquake DEM
data; and the intersection region of the above three regions (d) by applying thredholds >1.2 (a), >30 (b) and between 90 and 270 (c). The maps
show the landslide mainly occurred in the derived regions.
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Methods

Topographic analyses

Roughness To express the ragged topography, roughness
is a widely-used factor in topographic studies. Roughness
is defined by the ratio between the surface area and
projected area. It is usually obtained by averaging the
roughness value over an area of 3 x 3 pixel size. By run-
ning a test to determine the best threshold on the balance
of the percentage of landslides within the derived region
and corresponding area, the threshold of 1.2 for roughness
could be determined (Figures 2, 3 and 4). It shows that
most of the landslides occurred in regions with roughness
larger than 1.2, i.e,, the threshold of 1.2 is the most effect-
ive value in landslide detection. We also compared the
pre- and post-earthquake roughness within the landslide
area. It indicates that the medium topographic roughness
significantly increased after earthquake. The roughest
relief is also smoothed by the Wenchuan earthquake
(Figure 5(b)).

Hillslope Slope instability analysis has been one of the
most important topographic analyses regarding landslide
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susceptibility. It has been testified that steep slope areas
are prone to landslides (Burbank et al. 1996; Densmore
et al. 1998; Dai and Lee 2002). The co-seismic landslides
of the Wenchuan earthquake mainly distribute in regions
with slopes larger than 30° on pre-earthquake DEM
(Ren and Lin 2010; Figures 2, 3 and 4). Thus, we ana-
lysis the relationship between the co-seismic landslides
and slope distribution by applying a threshold of 30° on
the slope distribution map (Figures 2, 3 and 4, Table 4).
In order to detect the slope changes produced by the
co-seismic landslides, we compared the slope distribution
pre- and post-earthquake within the landslide area. It indi-
cates that the medium slope significantly increased after
earthquake, which indicates that the topography is becom-
ing steeper. However, the steepest slopes decreased after
earthquake, which indicates that the Wenchuan earth-
quake also smoothed the pre-earthquake steepest slopes
(Figure 5(a)).

Slope aspect The slope aspect is the expression of hori-
zontal direction that a mountain slope faces. Due to the
exposure to sunrays, the slope aspect has fundamental
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Figure 3 Topographic features of Site Il. The roughness (a), hillslope (b), slope aspect (c) distribution of Site Il based on pre-earthquake DEM
data; and the intersection region of the above three regions (d) by applying thresholds >1.2, between 90 and 270, and 30.
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Figure 4 Topographic features of Site lll. The roughness (a), hillslope (b), slope aspect (c) distribution of Site Il based on pre-earthquake DEM
data; and the intersection region of the above three regions (d) by applying thresholds >1.2, between 90 and 270, and 30.

influence on the landslide possibility due to the differences
of temperature, sediment condition, vegetation etc. (e.g.
Rech et al. 2001; Fekedulegn et al. 2003). Mechanical,
chemical and biological weathering are much stronger on
the southward facing slopes than that on the northward
facing slopes, where are more open to the sunlight and
warm wind. The slope aspect analysis on post-earthquake
DEM also shows high landslide density on the southward
facing slopes (Figures 2, 3 and 4). The southward slope
aspect is generally between 90 and 270 degree. Therefore,
applying threshold value of 90—270, we can derive the
landslide potential area on the basis of the slope aspect
analysis. According to the slope aspect, post-earthquake
slope aspect did not change much, comparing with pre-
earthquake data within the landslide area. It indicates
that the co-seismic landslides did not affect the slope
aspect, i.e., it is not controlled by such tectonic events.

Seismic information
According to the co-seismic landslides, seismic information
such as ground motion is one of the main trigger

mechanisms. We consequently analyzed the character-
istics of landslide areas based on multiple approaches
including ground motion information.

Preliminary analyses of the strong motion records show
that the peak ground acceleration (PGA) contours distrib-
ute in the region peripheral to the co-seismic surface rup-
ture with the maximum value of 957.7 gal (Li et al. 2008;
Figure 6). We collected the strong motion records of 267
stations in the regions affected by Wenchuan earthquake.
The PGA maps of the UD (up-down) and horizontal
(combination of north—south and east—west) vectors, re-
spectively, show close relation with the co-seismic surface
rupture zone (Figure 6(a) and (b)). Previous studies have
demonstrated that PGA also could be used as a threshold
to evaluate landslide susceptibility (Harp and Wilson
1995; Murphy et al. 2002; Meunier et al. 2007; Wang
et al. 2011). Recent study suggests that the co-seismic
landslide of the Wenchuan earthquake is closely related to
the PGA value (Wang et al. 2011). The co-seismic land-
slides are also directly controlled by the geological struc-
tures such as the co-seismic surface ruptures. Previous
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Figure 5 Co-seismic topographic changes. Distribution of Pre-earthquake and post-earthquake hillslope (a), roughness (b) and slope aspect

(c). The medium topography are roughened and steepened, however the steepest and roughest topography are smoothed by the Wenchuan
earthquake. The slope aspect is almost unchanged.
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Table 4 Topographic analysis of the co-seismic landslides
produced by the 2008 Wenchuan earthquake

LD IAD EALD

Site |

Slope aspect 51.73% 45.46% 23.52%

Roughness 56.72% 54.10% 30.68%

Slope 67.33% 41.85% 28.18%

Intersection 30.55% 100% 30.55%
Site Il

Slope aspect 50.34% 69.31% 34.89%

Roughness 75.96% 53.89% 40.94%

Slope 82.85% 47.46% 39.32%

Intersection 38.34% 100% 38.34%
Site Ill

Slope aspect 66.50% 20.77% 13.81%

Roughness 46.90% 56.57% 33.04%

Slope 5842% 36.79% 17.25%

Intersection 34.14% 100% 34.14%

LD: Landslide density: landslides occurred within the derived regions based on
topographic analysis of roughness, hill slope and slope aspect by applying
corresponding thresholds (detail thresholds refer to the text); IAD: intersection
area density, represents the area percentage of the intersection area within
the derived regions; EALD: Equal area landslide density, by multiple the
landslide percentage with the intersection area percentage which is used to
describe the efficiency of each method in landslide occurrence detection.

study has demonstrate the significant hanging wall effect
(Ren and Lin 2010), thus according to thrust fault, land-
slide occurrence will mainly occupy the hanging wall side.
The co-seismic landslides triggered by the Wenchuan
earthquake mainly occurred on the hanging wall side
where confined by the up-down and horizontal PGA
contour of 150 gal and 200 gal, respectively (Figure 6(a)
and (b)).

Discussion

Co-seismic landslide is a kind of special landslide directly
triggered by strong earthquake (Harp and Jibson 1996;
Gallousi and Koukouvelas 2007; Owen et al. 2008; Ren
and Lin 2010; Dai et al. 2011a). Therefore, the co-seismic
landslides are related to the topographic situation and
seismic shaking. In landslide-related studies, roughness,
hillslope and slope aspect analyses are the most widely
used methods in geomorphologic studies (Dai and Lee
2002; Casson et al. 2005; Ren and Lin 2010; Korup et al.
2007; Chuang and Fabbri 2008). After the 2008 Mw 7.9
Wenchuan earthquake, there are numerous co-seismic
landslides were triggered (Ren and Lin 2010; Yin et al.
2010, Godard et al. 2010; Ouimet 2010; Dai et al. 2011a,
2011b), which provide an ideal opportunity to check the
co-seismic landslides characters. Based on the pre-
earthquake DEM data, we can analysis the topographic
character of the landslided area. Comparing pre-
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Figure 6 Relationship between PGA and distribution of co-seismic
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the distribution of co-seismic landslides produced by the
Wenchuan earthquake.

earthquake and post-earthquake DEM data, we can
consequently analysis the topographic effects of the
Wenchuan earthquake. In order to derive the high land-
slide density region, the threshold values of roughness,
hillslope and slope aspect are set to be >1.2, >30, and
between 90 and 270, respectively.

Landslide occurrence shows clearly correlation with
the topographic conditions. At all the three sites, over
50% landslides occurred in the derived roughness, aspect
and hillslope areas over the threshold values, respectively
(Table 4). In order to evaluate the actual correlation be-
tween the above topographic parameters and landslide
occurrence, we apply equal landslide density as the main
factor. Equal landslide density is the ratio between the
landslide areas and the corresponding areas derived by
applying the roughness, hillslope and slope aspect
thresholds. Among the three parameters, roughness is
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closely correlated to landslide rather than hillslope, i.e., the
highest equal area landslide density. The intersection re-
gions are derived from the intersection regions of the
roughness, hillslope and slope aspect areas by applying the
above thresholds. Therefore, the areas decreased signifi-
cantly and the landslides occurred in the intersection re-
gion is lower than 40%. However, the intersection region
is only 20-69% of the areas derived from roughness, hill-
slope, and slope aspect map. Consequently, the equal area
density of the co-seismic landslide is still the highest. The
geological structure of Longmen Shan Thrust Belt and
seismic shake information of PGA data both suggest that
the co-seismic landslides mainly occurred in regions
within the up-down and horizontal PGA contour of 150
and 200 gal on the hanging wall side (Figure 6).
Post-earthquake DEM analysis indicates the medium
roughness and hillslope regions are becoming rougher
and steeper after the Wenchuan earthquake. The rough-
est relief and steepest slopes are smoothed by the
Wenchuan earthquake (Figure 5). This indicates that
the medium topographic roughness and hillslope are
modified by the Wenchuan-like strong earthquakes or
landslides. However, slope aspect did not change much,
which indicates the formation and modification of slope
aspect is not directly related to single tectonic events
such as strong earthquake or landslide. The roughest
and steepest regions are co-seismically smoothed by the
Wenchuan earthquake. Thus, rough and steep regions
are difficult to stand for a long geological epoch with re-
peated strong earthquakes. Previous studies have demon-
strated that landslides have played an important role in
the surface processes in Longmen Shan region (Meng
et al. 2006). Consequently, our results indicate that the
co-seismic landslides are controlled both by topographic
conditions and ground motion. The strong earthquakes
play an important role in local topographic formation and
modification by triggering co-seismic landslides.

Conclusions
Based on the data and analyses of the present study, we
arrived at the following conclusions.

1) Collaborative topographic analyses are efficient in
landslide susceptibility evaluation. The co-seismic
landslides are related to the topographic roughness,
hillslope and slope aspect. The topographic
thresholds are >1.2, between 90 and 270, and 30,
respectively. The co-seismic landslides are also
directly related to PGA values, which is usually
occurred on hanging wall within the up-down and
horizontal PGA contour of 150 and 200 gal,
respectively.

2) Topographic conditions such as roughness and
hillslope are controlled by tectonic event like the
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Wenchuan earthquake, however, slope aspect is not
modified by such event.

3) The roughest relief and steepest slope regions were
smoothed after the Wenchuan earthquake, however
the medium roughness and slope regions became
rougher and steeper, respectively.
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