Chamnarnpan et al. SpringerPlus 2013, 2:540
http://www.springerplus.com/content/2/1/540

® SpringerPlus

a SpringerOpen Journal

RESEARCH Open Access

Hierarchical fixed points of strictly pseudo
contractive mappings for variational inequality

problems

Tanom Chamnarnpan', Nopparat Wairojjana'? and Poom Kumam

1%

Abstract

Hierarchical fixed point problem

In this paper, we introduce a new iterative scheme that converges strongly to a common fixed point of a countable
family of strictly pseudo-contractive mappings in a real Hilbert space which is also a solution of variational inequality
problem related to quadratic minimization problems. Our results extend ones of Yao et al. [Math. and Comput. Modell.
52(9-10):1697-1705, 2010], Gu et al. [J. Appl. Math. 2011:17 p., 2011] and some authors.
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Introduction

Throughout this paper, we assume that H is a real Hilbert
space with inner product and norm denoted by (:,-) and
Il - |I, respectively and let C is a nonempty closed and
convex subset of H. A mapping f : C — H is called a con-
traction on C if there exists a constant p €[0,1) such
that

If ) —fI < pllx—yll, Vx5 € C.
A mapping T : C — H is called a nonexpansive on C if
I1Tx = Tyl < llx—yll, Vx,y € C.

A mapping M : H — H is called a strongly monotone
operator with coefficient « if there exists a constant o > 0
such that

(x =3, Mx — My) = allx — yI1%, Va,y € H
and M is called a monotone operator if
(x —y,Mx — My) >0, Vx,y € H.

It is well known that the mapping (/ — T) is a mono-
tone operator, if T is a nonexpansive mapping and [ is a
identity mapping.
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A mapping T : C — H is called k-strict pseudo-
contraction if there exists a constant k € [0, 1) such that

ITx—TyI1* < lx—ylI*+klI-T)x—I-T)y|? Vx,y € C.

If there exists a point x € C such that x = Tx, then x is
said to be fixed point of 7. We denote the set of all fixed
pionts of T' by F(T). It is well known that F(T) is closed
and convex if T is nonexpansive.

Note that the class of k-strict pseudo-contraction map-
pings includes the class of nonexpansive mappings on
C as a subclass. i.e, T is nonexpansive if and only
if T is O-strict pseudo-contraction. Recently, many
authors have been devoting the studies on the prob-
lems of finding fixed points for k-strict pseudo-contraction
mappings; see Acedo and Xu (2007); Cho et al. (2009);
Jung (2010); Jung (2011); Zhou (2008) and the references
therein.

A variational inequality in a real Hilbert space H is
formulated as finding a point x* € C such that

(Fx*,x —x™) >0, VxeC, (1)

where F : C — H is a nonlinear mapping. We denote
the set of solution of (1) by VI(C, F). If F is a monotone
operator, then (1) is also known as a monotone variational
inequality.

For given nonlinear operators F,g, we consider the
problem of finding # € H such that

(F(u),g(v) —gm)) =0, VY g),gu)eC (2)
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which is known as the general variational inequality prob-
lem. For given nonlinear operators F, g, i, we consider the
problem of finding u € H : h(u) € C such that

(F(u),g(v) —h(u)) =0, YVgv) e C (3)

which is called the extended general variational inequality.

The variational inequalities have been studied widely
and are being used as a mathematical programming tool
in modeling a wide class of problems arising in sev-
eral branches of pure and applied sciences; see Baiocchi
and Capelo (1984); Giannessi and Maugeri (1995);
Kinderlehrer and Stampacchia (1980). For general vari-
ational inequalities and extended general variational
inequalities, we can refer Noor (2004,2009); Noor et al.
(2012a,2012b) and references therein.

It is well-known that the variational inequality (1) is
equivalent to the fixed point equation

x* = Pc[ — yF)x*], (4)

where y > 0 and Pc is the metric projection of H onto
C which assigns, to each x € H, the unique point in C,
denoted Pc[x], such that

o — Pclx] || = inf{llx — y| : y € C}.

Therefore, fixed point algorithms can be applied to solve
variational inequalities.

The following problem is called a hierarchical fixed
point problem: Find x* € F(T) such that

(x* — Sx*,x —x™) >0, VxeF(T). (5)

where S : C — H be a mapping. It is known that
the hierarchical fixed point problem (5) links with some
monotone variational inequalities and convex program-
ming problems; see Gu et al. (2011); Yao et al. (2010).

In order to solve the hierarchical fixed point problem
(5), Moudafi (2007) intoduced the following Krasnoselski-
Mann algorithm:

X1 = (1 — ap)xy + an(BnSxn + (1 — By) Txy), (6)

where S, T : C — C are two nonexpansive mappings, {o,}
and {B,} are two sequences in (0, 1). Then he showed that
{x,} converges weakly to a fixed point of T which is a solu-
tion of problem (5). For obtaining a strong convergence
result, in Mainge and Moudafi (2007) and Marino and Xu
(2011) introduced the following algorithm:

Xpp1 = (1 — an)f(xn) + au(BuSxy + (1 — Bu) Txu), (7)

where f : C — C is a contraction mapping, S and 7T :
C — C are two nonexpansive mappings, {&,} and {B,}
are two sequences in (0,1). Then they showed that {x;}
converges strongly to a fixed point of 7" which is a solution
of problem (5).
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On the other hand, Cianciaruso et al. (2009) introduced
a two step algorithm to solve the problem (5) as follows:

Yn = BuSxn + (1 — Bu)xu,

(8)
X1 = o f(xn) + (1 — an)Tyn:

where f : C — C is a contraction mapping, S and
T : C — C are two nonexpansive mappings, {c,} and {8,}
are two sequences in (0,1). Under some certain restric-
tions on parameters, the authors proved the sequence {x;}
generated by (8) converges strongly to x* € F(T), which is

a unique solution of the following variational inequality:
(I =", x—x") =0, VxeF(T). )
By changing the restrictions on parameters, the authors
obtained another result on the iterative scheme (8), i.e.,
the sequence {x,} generated by (8) converges strongly to
x* € F(T), which is a unique solution of the following

variational inequality:

1
(;(1 —x"+ T —Sx",x—x") >0, VxeF(T), (10)

where 7 € (0, 00) is a constant.

In 2010, Yao et al. (2010) modified the two step algo-
rithm (8) to extend Range of f from C to H by using
the metric projection of H onto C. They introduced the
following iterative scheme:

Yn = BnSxn + (1 — Bu)xn,

(11)
Xn+1 = Pclog f(xn) + (1 — an)Tyn] ’
where f : C — H is a contraction mapping, S and
T : C — C are two nonexpansive mappings, {o,} and
{B,} are two sequences in (0, 1). The authors proved the
sequence {x,} generated by (11) converges strongly to x* €
F(T), which is a unique solution of one of the variational
inequalities (9) and (10).
In 2011, Gu et al. (2011) introduced the following itera-
tive algorithm:

Yn = Pc[BuSxn + (1 — Bu)xul,

X1 = Pclonf(xn) + D i q (@i —a) Tiyal, VY >1,
(12)

where f : C — H is a contraction mapping, S : C — H
is a nonexpansive mapping, {T;}32, : C — C is a count-
able family of nonexpansive mappings, &g = 1, {@} and
{Bn} are two sequences in (0, 1). The authors proved the
sequence {x,} generated by (12) converges strongly to x* €
F(T), which is a unique solution of one of the variational
inequalities (9) and (10).
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In this paper, motivated and inspired by the results of
Gu et al. (2011), we introduce and study the following
iterative scheme:

Yn = PC[ﬁnsxn +1 - ,Bn)xn] ’

X1 = Pclon f(xn) + X i g (@i — @) Viyul, Vn>1,
(13)

where V; = kI + (1 — k)T; and {T;}2, : C — Cis
a countable family of k;-strict pseudo-contraction map-
pings. Under some certain condition on parameters, we
first prove that the sequence {x,} generated by (13) con-
verges strongly to x* € N2, F(T;) which is a unique
solution of the following variational inequality:

(=fra*,x—x*) >0, VxeNZ F(T). (14)

By changing the restrictions on parameters, we also
prove that the sequence {x,} generated by (13) converges
strongly to x* € N°, F(T}), which is a unique solution of
the following variational inequality:

Vx € N2 F(Ty),
(15)

(%(1 —a*+ I —Sx",x—x%) > 0,

where t € (0,00) is a constant. It is easy to see that,
if k; = 0 for each i > 1, then our algorithm (13) is
reduced to algorithm (12) of Gu et al. Also our results
extend the corresponding one of Yao et al. (2010); Xu
(2004); Cianciaruso et al. (2009); Moudafi (2000) and Gu
et al. (2011) from the countable family of nonexpansive
mappings to more general the countable family of strictly
pseudo contraction mappings.

Preliminaries
This section collects some lemma which be use in the
proofs for the main results in the next section. Some of
them are known; others are not hard to derive.

We will use the following notation:

(i) — for strong convergence and — for weak
convergence.

(i) ww(xy) = {x:x, — x} denotes the weak w-limit set
of {x,}.

Lemma 1. Browder (1976) Let H be a Hilbert space, C is
a closed convex subset of Hand T : C — C be a nonex-
pansive mapping with F(T) # (. If {x,,} is a sequence in C
weakly converging to x and if {(I — T)x,} converges strongly
toy, then (I-T)x = y; in particular, ify = O thenx € F(T).

Lemma 2. Acedo and Xu (2007) Let C be a nonempty
closed convex subset of a real Hilbert space H. If T : C — C
is a k-strict pseudo-contraction, then the mappingl — T is
demiclosed at 0. That is, if {x,} is a sequence in C weakly
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converging to x and {(I—T)x,} converges strongly to 0, then
(I—Tyx=0.

Lemma 3. Let x € H and z € C be any points. Then we
have the following:

1. Thatz = Pcl«] if and only if there holds the relation:
(x—2z,y—2) <0, VyeC.
2. Thatz = Pc[x] if and only if there holds the relation:
e —2l? < llx = yI* = lly = 2l1%, VyeC.
3. There holds the relation:
(Pcla] —Pcly), x=y) = IPclx] —Pch] I, Va,y € H.

Consequently, Pc is nonexpansive and monotone.
Lemma 4. Marino and Xu (2006) Let H be a Hilbert space,
C be a closed convex subset of H, f : C — H be a con-
traction with coefficient 0 < p < land T : C — C

be a nonexpansive mapping. Then, for0 < y < y/p, for
x,y € C,

1. the mapping (I — f) is strongly monotone with
coefficient (1 — p) that is

(=5, =fHx =T =fy) = 1= p)lx =y
2. the mapping (I — T) is monotone, that is
x—yI-Tx—-U-T)y =0.

Lemma 5. Xu (2002) Assume that {a,} is a sequence of
nonnegative numbers such that

anr1 < (1 —ypay + 8y, Yn>0,

where {y,} is a sequence in (0, 1) and {5,} is a sequence in
R such that

L3 02y Vn =00,
2. limsup,,_, o f,—‘: <0or) 218, < oo.

Then lim,,_ o0 a, = 0.

Lemma 6. Acedo and Xu (2007) Let C be a closed convex
subset of H. Let {x,,} be a bounded sequence in H. Assume
that

(1) The weak w-limit set wy,(x,) C C,
(2) Foreachz e C,lim,_  ||x, — z| exists.

Then {x,} is weakly convergent to a point in C.

Lemma 7. Zhou (2008) Let H be a real Hilbert space, C be
a closed and convex subset of H, and T be a k-strict pseudo-
contraction mapping on C, then F(T) is closed convex, so
that the projection Pp(r) is well defined.
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Lemma 8. Zhou (2008) Let H be a Hilbert space, C be a
closed and convex subset of H, and T : C — H be a k-strict
pseudo-contraction mapping. Define a mapping V : C —
HbyVx=xx+ 1 —ATxforallx € C. Then, as » €[k, 1),
V'is a nonexpansive mapping such that F(V) = F(T).

Lemma 9. Gu et al. (2011) Let H be a Hilbert space and
C be a nonempty closed and convex subset of H. Let T be a
nonexpansive mapping of C into itself such that F(T) # §.
Then || Tx — x||> < 2(x — Tx,x — &), V' € F(T),Vx € C.

Main results
Let us consider the net iterative scheme as follows:

Yn = PclBuSxn + (1 — Bu)xul,

Xni1 = Pclonf(xn) + i q (@i — @) Viyul, Vn>1,
(16)

where V; = kI + (1 - k)T;, f : C — H is a p-
contraction mapping, S : C — H is a nonexpansive
mapping, {T;}72; : C — C is a countable family of k;-
strict pseudo-contraction mappings and N°, F(T;) # 0.
Setap = 1, {a,} C (0,1) is a strictly decreasing sequence
and {B,} C (0,1). As we will see the convergence of the
scheme depends on the choice of the parameters {«;,} and
{B.}. We list some possible hypotheses on them:

(H1) there exists y > 0 such that 8, < yay;
(H2)  limy, 00 Bu/an = T €[0,00);
(H3)  limy—a, =0and ) ;2 o = 00;
(H4) 3.2 low — an1] < 00;
(H5) 302 1B — Bu—1l < 003
(H6)  limy o0 |y — ap—1l/an = 0;
(H7)  limyeo [Bn — Bn-11/Bn = 0;
(H8) limy, s o [lotn —atn—1|+180—Bu—1ll /auBn = 0;
(H9) there exists a constant K > 0 such that
é'ﬂiln - ﬂnlill =K.

Proposition 1. Assume that (H1) holds. Then {x,} and
{yn} are bounded.

Proof. Let z € N2, F(T;) = N2, F(V;). Then we have

%11 — 2l = | Pclotnf () + Y (i1 —e) Viya] —Pclz]

i=1

of (o) + Y (i1 — @) Viyn — 2

i=1

IA

= lan(fxn) —2) + ) (i1 — ) (Vigu — 2)

i=1

Page 4 of 12

< anllf ) —f@I + aullf (2) — 2]
+ Xn:(aifl —a)[|Viyn -zl
i=1
< anpllxn — zll + anllf (2) — |
+ Xn:(ai—1 —a)llyn — 2|l
i=1
< applxn — 2zl + aullf (2) — 2
+ i(ai—l — o) | BnSxn + (1 — Bu)xn — 2|
i=1
<aonpllxn—zll+anlf (@) —zl+ 1= Ba) s —2zl)
+ Xn:(aifl_ai)(ﬂn”‘sxn — Szl +BullSz — 2|

i=1
<anpllxn—zl+onlf (2) =zl + 1= B llxn —zI)
+ Y (@1 — @) (Bullxn — 2l + BullSz — 2|
i=1
= apllxy — zll + aullf (2) — 2|l
+ Y (i1 — ) (16, — zll + BullSz — zI))
i=1
= appllxn — zll + aullf (2) — 2|l
+ A — an)(lxn — zll + BullSz — zl))
=1 —a,(1 = p)llws —zll + aullf (2) -zl
+ 1 — an)pulSz — 7|
<A = ay(1 = p)llwn — zll + aullf (2) — zll
+ BullSz — z||
<A = a1 = p)llwn — zll + aulllf(2) — 2l
+vISz —zll]. (17)

So, by induction, one can obtain that

1
2|l <max { %o — zlI, m[llf(Z) —zll+y 15z — zll }
(18)

Hence {x,} is bounded. Of course {y,} is bounded too.
O

Proposition 2. Suppose that (H1) and (H3) hold. Also,
assume that either (H4) and (HS) hold, or (H6) and (H7)
hold. Then
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(1) {x4} is asymptotically regular, that is,
lim [lxy+1 — %l = 0, (19)
n—0o0

(2) the weak cluster points set wy (x,) C N2, F(T;).

Proof. Set u, = auf(x,) + Y r_q(ati-1 — ;) Viyu. From
(16) and since Pc is a nonexpansive mapping, we have

%241 —%nll = IPclun] —Pclun—1] ||
< lluy — up—1l (20)
= ”an(f(xn)_f(xn—l))+(an —otp—1)f (%n—1)
n
+ Y (i1 — ) (Viyn = Vigu—1)
i=1
+(@n—1—0n) Vyyn-1 “ <aull fxn) —fxn—1)l
n
+ Z(Olifl = o) yn = Yu—1ll
i=1
+ lon — au—1 | (f Gn=D Il + 1 Viyn—-11D
< anpllxn — xp—1ll + 1 — o) lyn — yn—1ll

+ lan — @1 [(f Fn—DIl + [ Viyn—-11D)-
(21)

By definition of y, one obtain that
lyn=yn-1ll= IPc[BnSxn + (1 — Bu)xn]
— Pc[Bu-18%n—1 + (1 = Bu—1)xn—1] |l
= N (BuSxn + (1 — Bu)xn)
= (Bn—1S%n—1 + (1 = Bu—1)xu-1) |
= [1Bu(Sxn — Sxp—-1) + (Bn — Bn—1)Sxn—1
+ (1= Bu—1) Cn—2n—1)+(Bnu—1 — Bn) Xn—1ll

< xn—=%n—1ll+1Bn = Bn—1|(1SXn—1 |+ %01 1D)-
(22)

So, substituting (22) in (21), we obtain
%n+1 — %ull < onpllxn — xp-1ll + (1 — an)[%n — 21l
+ 1B — Bu—11(ISxn—11l + llxn—11)]
+ lan — a1l (f Cn—D | + | Viyn—1ll)
= Q-0 -=pa)lxn —xp-1l
+ 1B — Bn—1l(ISxp—1 1l + -1

+ lay — an—1|(f @D + 1 Viyn—11D.
(23)
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By Proposition 1, we say
M := max { sup{[|Sx,—1l + [%n-11l},
n>1
sup{Ilf Gn—-D Il + I Viyn—1ll} ¢ -
n>1
So, we have
l%n+1—%nll < A—1—p)an)llxn—xn—1l
(24)

+ Mlloy—ay—1| + 180 — Bu-1l].

So, if (H4) and (H5) hold, we obtain the asymptotic reg-
ularity by Lemma 5, if instead, (H6) and (H7) hold, from
(H1), we can write

ltnt1 —xull < (1 — A = pPay) lxn — xp—1l
loy, — o1

+M0ln|: + |ﬂn_ﬂnl|]

o7 oy

<A-QA-pa)lxy — xp-1
loyy — a1l

+Mot,,|: +y|,3n_ﬂn1|i|'

(677 Bn

(25)

By Lemma 5, we obtain the asymptotics regularity.
In order to prove (2), since Vjx,, € C for each i > 1 and
Yoo (@p—1 — ay) + oy = 1, we have

n
D (i1 —ap)Vixy +aup e C, VpeC.
i=1

(26)

Now, fixing p € NX,F(V;), from (16), we have
Yoim (i1 — ) (v — Vixy)

n
=Pc [un] + (1—a)xn— (Z(ai_l — o) Vit + anp>
i=1
+ opp—xnt1
n
= Pclun] —Pc [Z(ai_l —atj) Visen + anp}

i=1

+ (1 = an)(xy — Xp41) + (P — Xpt1).
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It follows that Y7L (-1 — ;) (% — Vi, %y — 2)

= <PC (un] — Pc |:Z(O‘i—1 — o) Vixn + Olnp} 2% — Z>

i=1

+ (1 =o)X — Xnt1,%0 — 2) + (P — X1, %0 — 2)

n
Uy — Z(ai—l — ) Vixy + anp
i=1

< ll%n — zll

+ A —an)ll%n— X 1llllxn — zll+anllp — Xnp1 1%, —2]|

o (f (6n) = P)+ (i1 =) (Viy — Vikn)
i=1

lln — zll

+ A = an)ll%n — K1l lxn =2zl +anllp — Xpp1 |12 —2]|

n
< aull f o) = pll1n =21+ Y (i1 —0ti) |70 =% 160 — 2|
i=1

+ A—an)llxn — xpr1llllxn — 2l + anllp—%np1 [l 1% —2]|

n
< |f )=l %0 — 2l (i 1= i)l St — 2l 126 — 2|
i=1

+ A—an)llxn — xpr1llllxn — 2l + anllp =241 [l 1% —2]|
= aull fxn) =pllllxn — 2l + A — ) Bull Sxn —%u || 1% — 2l

+ A = an)llxn — xpr1 160 — 2l +anllp—Xni 11l lxn —2ll.
(27)

Now, from Lemma 9 and (27), we get %Z:’:l (otj—1 —
)%y — Viwl|?

n
< Y (@i 0) (xn— Vi, % —2)
i=1

< anll f ) —pllllxn—zll + A—ctn) Bull Sxn —2u |15, — 2|l

+ A—an)ll%n —xng1 llxn —2ll + @nllp — Xng1llllxn — 2ll.

By (H1) and (H3), it follows that 8, — 0, as n — 00, so
that

n
dim Y (i1 — ) | — Viaa|® = 0. (28)
i=1
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Since (atj—1 — ;) 1%, — Vixull? < Y0y (otim1 — ai) |y —
Vix,||? for each i > 1 and {a,} is strictly decreasing,
one has

lim |x, — Vix,|| =0, Vi>1. (29)
n—0o0
Hence, we obtain
xp — Vix
lim |lx, — Tix,| = lim 12 = Vil _ 0, Vi>1.
n—00 n—oo (1—ky)
Since {x,} is asymptotically regular and demiclosedness
principle, we obtain the proposition. O

Corollary 1. Suppose that the hypotheses of Proposition 2
hold. Then

(i) lim,— oo 1% —yull =0;
(ii) limy o0 [0y — Viyull =0, Vi>1;
(iii) lim, oo lyn — Viyull =0, Vi>1.

Proof. To prove (i), we can observe that

6 — yull < Bullxn — Sxnll.

Since B, — 0as n — 00, we obtain (7).
To prove (ii), we observe that

170 — Viznll < 1yn — %ull + %0 — Vixull, Viz=1
and
%0 = Viyull < 1% = yull + lyn — Vizall, Viz= 1.
Since ||y, — x,|| — Oand ||x, — Vix,|| > 0asn — oo,

Vi > 1, then |y, — Vix,|| — O, that is, we obtain (ii). To
prove (iif), we can observe that

lyn — Vivull < lln — yull + e — Viyull, Vi= 1.
By (i) and (i), we obtain (iii). O

Theorem 1. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S : C — H be a nonexpansive
mapping and {T;}7°, : C — C be a countable family of k;-
strict pseudo-contraction mappings and F = N2, F(T;) #
@. Let ag = 1, and x1 € C and define the sequence {x,} by

{yn = PclBuSxn + (1 — Bu)xal,

Xn+1 = PC[arLf(xn) + Z?:1(ai—1 - Oli)viyn] , Vn>1,
(30)

where {a,} C (0,1) and {a,} is a strictly decreasing
sequence, V; = kil + (1 — k) Ty, {B,} C (0,1) and {a;}
and {B,} are sequences satisfying the conditions (H2) with
t = 0, (H3), either (H4) and (HS), or (H6) and (H7). Then
the sequence {x,} converges strongly to a point z € F, which
is the unique solution of the variational inequality:

(U=fz,x—2z) =0, Vxe F. (31)
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Proof. First of all, since P£f is a contraction. By Banach
contraction principle, so there exists a unique z € F such
that z = Pxf(z), Moreover, from Lemma 3(1), we have

(fz) —z,y—2) <0, Vye F.

Since (H2) implies (H1), thus {x,} is bounded. More-
over, since either (H4) and (H5) or (H6) and (H7) then {x,,}
is asymptotically regular. Similarly, by Proposition 2, the
weak cluster points set of x,, that is, w,(x,), is a subset
of F.

Let {x;, } be a subsequence of {x,,} such that

limsup(f(z) —z,x, — 2) = klim (f(@) — 2z, %0, — 2),

and x,,, — & So, it follows that x" € F. Then, we also have
lim (f(2) — 2,20, —2) = (f(z) — 2,4 —z) <0.
k— o0
Set u,, = auf (x,) + Y 1_q(2ti-1 — ;) Viyu, we obtain

%641 =217 = (Pclttn] —thn, Pclttn] —2)+(thn—2, Xpi1—2).
(32)

By Lemma 3(1), we have

(Pclun] —ttn, Pcun] —2z) < 0. (33)

From (32) and (33), it follows that
%11 —2112

< Un—2,%p41—2) = an(f(xn)_f(z):xn+l —2z)

+an{f(2) =z %01 —2) Y (@1 — )

i=1

X AVi¥n — 2, %41 — 2)

<anpllXn—zll1Xnt1 — 2l +an{ f(2) =2, %441 —2)
X (L=a)llyn—zllllxp+1 =2zl Sanpllxn — 2|
X %n41 — 2l + an{f (2) — 2, %041 — 2)

X (L=ap) | BuSxn~+ (1= Bu)xn —2z| %11 —2l
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<aupllxn =zl 1xpt1—2ll +an(f(2) =2, %n1+1—2)
X (1= o) [ln — 2l 1611 — 2l
+ (1 = an)BullSz — zll %41 — |l
=[1—an(l — p)]llxn — zll%n41 — 2l
+an{f(2) — 2, %041 — 2)

+ (1 = an)BullSz — 2| |%n1 — 2]

1—ay(1—p)
< [”2 196 —2II% + [1%n11—2II>

+ on(f (D) =2 xpt1—2)+ (1 —an) Bull Sz—2||

2(1—p)ay

2
————— |l*n—2
1+(1_p>aJ” n =zl

X [l%p 41—zl < [1

n 20t
[1 +- ;O)Olni| @ =z =2
[ 2(1 — ay)Bn

— Sz — z||||x —Zz
1+(1—p)ani| I 1%4+1 — 2]

2(1-p)a, , [2<1—p>an]
= 1—7 n— -
[ 1+<1—p)an]”x e FeEs

(1 —ay)Bau

b
x {1_p<f(z) R R R vy

x I8z — z|[|lxpns+1 — 2l } .

— 20-p)an — 2(0—p)an 1
Let yu = (3o, 200 = S1pya, {ﬂwz) &
Snin = 2) + (B Sz = 2] g — 2| for all m = 1.
Since

(1 —au)Bu

1
lim sup {l_p(f(z) —Z,%Xp+1 — 2) + sy
n

n— 00
x |18z — z|| ll%n41 — ZII} <0,

2(1—play

o) —_—
2im10n = 00 and {1

> (1 — p)ay, we have

> 8
Zynzoo and limsup—" <0.

=1 n—oo Vn

Hence, by Lemma 5, we conclude that x, — z as
n—> 0. O
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Remark 1. In the iterative scheme (30), if we set f = 0,
then we get x, — z = PxO0. In this case, from (31), it
follows that

(z,z—x) <0, Vxe F.
That is
IzlI* < (z,%) < |lzllllxl, Vxe F.

Therefore, the point z is the unique solution to the
following quadratic minimization problem:

. 2
Z = arg min ||x||~.
g min |

By changing the restrictions on parameters in
Theorem 1, we obtain the following results.

Theorem 2. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a p-
contraction mapping, S : C — C be a nonexpansive map-
ping and {T;}7°, : C — C be a countable family of k;-strict
pseudo-contraction mappings and F = N2, F(T;) #
@. Let ag=1, and x1 € C and define the sequence
{xn} by

Yn = Pc[BuSxn + (1 — B)xn] = BuSxn + (1 — Br)xn

Xnt+1 = PC[anf(xn) + 2?21(0%‘—1 — ;) szn] , Vn>1
(34)

where {a,} C (0,1) and {a,} is a strictly decreas-
ing sequence, V; = kil + (1 — k)T, {8} C (0,1)
and {a,} and {B,} are sequences satisfying the con-
ditions (H2) with t € (0,00), (H3), (H8) and (H9).
Then the sequence {x,} converges strongly to a point
x* € F, which is the unique solution of the variational
inequality:

1
(—d =N+ T —-Sa",x—x") >0, VxeF. (35)

T
Proof. First, we shows that (49) has the unique solution.

Let x” and x* be two solutions. Then, since x’ is solution,
for y = x* one has

(d =, a —x*) < (I — S)x,a* — &) (36)
and

(I —HHx*, x* — &)y < (I - S)x*, &' — ). (37)
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Adding (36) and (37), we obtain

(1= p)lla’ —&*|> < (d =5’ — T — fHa*, ' — x*)

< —p{I =8’ —(I-8)x",x' —x*) <0

so x' = x*. Also now the condition (H2) with 0 < 7 < o0
implies (H1) so the sequence {x,} is bounded. Moreover,
since (H8) implies (H6) and (H7), then {x,} is asymptoti-
cally regular. Similarly, by Proposition 2, the weak cluster
points set of x;,, i.e., w, (%), is a subset of F.

From (20)-(24), we observe that

l%¢n+1 — %5l oty — 1| (1o — 21l
1—-(1-— n|———
5 < 5 <[1—=1-p)ay] 5
lay, — otp—1] [Bn — ,Bn—l|i|
+ M +
|: B Bn
e — 2p—1l
=[1->1- ] —
(1 -1 - p)au] By

1= (1= p))an] flxn—2 ||[1v ! ]
—l— Uy n—Xn— —V—
P ! ,Bn ,Bn—l

loy, — a1l |Bn — ,Bn—1|:|
M
" [ BT B

oy, — xn—1ll

ﬁn—l

T ||[1— ! ]
" ol ﬂn Ignfl

=1 -1-p)a]

+M|:|an — o] + |,3n_,8n—1|:|

ﬁ}’l ﬂn
< [1—<1—p>>an1”"”_i"”l‘1”+an1<1|xn—xn_1||
|an - an—1| |,3n - ﬂn—1|:|
+M +
& .
< (== a1l K=
,Bn—l
|an - an—1| |,3n - ,Bn—1|:|
+M + .
B .
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Let y» = (1 — p)ay and 8, = auKllxy — xp1ll +
M [ ‘a”_ﬂi"’ll + ‘ﬂ”_ﬂf’“’ll ] From condition (H3) and (H8),
we have

> 8
Zyn =00 and lim = =0.
l:1 n— 00 )/n
By Lemma 5, we obtain
lim loerg1 — 2l -0
n—00 /3” -
. lety11 — uyll . lety11 — uyll
lim — = lim —— =0.
n— 00 ,Bn n— 00 oy

From (34), we have

Xy —xp—1 = (1 — ay)x, — |:PC[ Un] =ty + otpf (xX4)

+ ) @i — @) (Viyn —yn) + (1 — a,q)yn}

i=1
= (1 — op)Bulxy — Sxy) + (U — Pcluyl)
+ Y (@1 =) O — Viyn) + (@ — f (%))
i=1
It follows that

Xy — Xp—1 1

m = (xy — Sxp) + m(un — Pclu,])

1 n
+ m ;(aifl — )Y — Viyn)

(247
+ m(xn —f(xn)).

Let v, = (xl”:oj:”)’ﬁi. Forall z € F = NX,K(T) =

NXF(V)), we get

-1 Pelun], Pel 1]
(Vi X — 2) = m(un— clun], Pcluy—1] —2)
ay
+ m((l — )%, %0 — 2)
+ (xp — Sxy, x —z)+;
" e (1_0[;4)/3;4

n
> (@1 — ) — Vi ku — 2).

i=1

(38)
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By Lemma 4, we have
(% — Sxpy % — 2) = (I — S)xy, — I — Sz, %, — 2)

+(U—=8)z,x,—2) > ((I—8)z,x,,—2z),
(39)

(T =)xnxn—2) = =fHxn — T =z, %1 — 2)

(T2 x0—2) = (1 — )2y — 2]

+ (T = fzx, —2) (40)

and

In = Vi — 2) = (I = V)yu — (I = V)2, X% — Y)
(T = Vyu — A = Viz, 9 — 2)

> = Vyn — U = V)z, %0 — yu)

= Bl — Vi)yn, %n — Sxu), Vi=> 1.
(41)
By Lemma 3(1), we obtain
(un — Pclun], Pclun—1]—2)
= (un — Pclun], Pclun—1]1 —Pclun])
+ (un — Pclun], Pclun] —2z)
> (up — Pclun], Pclun—1] —Pclun]). (42)

Now, from (38)-(42), it follows that

loon — 212 < OB — 2 — (U~ )23y — 2]
1= p)ay
lttn—1 — unll
+ m”un — Pclu,] ||
1 Bn
- E((I -z, %y — 2) — m

D (@i — a)(( = Vi)yn Xn — Sxn),  (43)
i=1

since v, — Oand (I — V})y, — 0, as n — o0, then
every weak cluster point of {x,} is also a strong cluster
point. By Proposition 2, {x,} is bounded, thus there exists
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a subsequence {x,,} converging to x*. For all z € F by
(38), we compute

(1 —oan)B
(L =) = 2) = = (U By, = 2)
nk
1
- 7<unk_PC[Mnk],PC[Mnk71] _Z>
Ay
I —ay)B
- #<xnk_5xnk’xnk - Z)
oy
1 &
- (i1 — ;)
(a}’lk ;

X (J’nk - ‘/iynk!xnk - Z>

l—«
< Mmk’xnk gy P
ank (Olnk

&3

D (@1 =i (= Vi) Xy — S,
i=1

— —Num—1 —thy Mt _PC[Mnk] Il
Olnk
_ (1 - ank)ﬁnk

Oy

(I = 8)z, %y, — 2).
X
(44)
Since v, = 0,({ — V))y, — Oforalli > 1, and ||u, —
up—1|l/on — 0, letting k — oo in (44), we obtain

(= fHx*, x* —2z) < —t(U — S)z,x* —z), Vze F.

Since (49) has the unique solution, it follows that
ww(x,) = {x*}. Since every weak cluster point of {x,} is
also a strong cluster point, we conclude that x, — x* as
n — oo. This completes the proof.

If wetake T; = T, foralli > 1, where T : C — Cisa
k-strict pseudo-contraction mapping in Theorem 1, then
we get the following result: O

Corollary 2. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S : C — H be a nonexpansive
mapping and T : C — C be a k-strict pseudo-contraction
mapping such that F(T) # (. Let x1 € C and define the
sequence {x,} by

In = Pc[BnSxn + (1 — B)xul,
*nt1 = Pclon f(xn) + (1 —an)Vy,], Vn>1,
(45)

where V = kI + (1 — k)T, {a,} C (0,1) and {B,} C (0,1)
are sequences satisfying the conditions (H2) with Tt = 0,
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(H3), either (H4) and (HS), or (H6) and (H7). Then the
sequence {x,} converges strongly to a point z € F(T), which
is the unique solution of the variational inequality:

(I-fz,zx—2z) >0, Vxe F(D).

Taking k; = 0, for all i > 1 in Theorem 1, then we get
the following result:

Corollary 3. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S : C — H be a nonexpansive
mapping and {T;}7°, : C — C be a countable family of
nonexpansive mappings and F = N2 F(T;) # 0. Let
ap = 1, x1 € C and define the sequence {x,} by

Yn = PC[,anxn +@1 - ,Bn)xn] »

X1 = Pclon f(xn) + D i q (@i —a) Tiyal, Y >1,
(46)

where {a,} C (0,1) and {oy,} is a strictly decreasing
sequence, {B,} C (0,1) and {a,} and {B,} are sequences
satisfying the conditions (H2) with t = 0, (H3), either
(H4) and (HS), or (H6) and (H7). Then the sequence {x,}
converges strongly to a point z € F, which is the unique
solution of the variational inequality:

(U-f)z,x—2) >0, Vxe F.

If we take k = 0 in Corollary 2, then we get the following
result:

Corollary 4. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S : C — H be a nonexpansive
mapping and T : C — C be a nonexpansive mapping such
that F(T) # 0. Let x1 € C and define the sequence {x,} by

In = Pc[BnSxn + (1 — B)xul
(47)
%1 = Pclon f(xn) + (1 — @) Ty,], Vn>1,

where {a,} C (0,1),{B,} C (0,1) and {«a,} and {B,} are
sequences satisfying the conditions (H2) with t = 0, (H3),
either (H4) and (HS), or (H6) and (H7). Then the sequence
{xn} converges strongly to a point z € F(T), which is the
unique solution of the variational inequality:

(U—=flz,x —z) =0, VxeF(T).
Ifwetake T; = T, foralli > 1, where T : C — Cisa

k-strict pseudo-contraction mapping in Theorem 2, then
we obtain the following result:
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Corollary 5. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S : C — C be a nonexpansive
mapping and T : C — C be a k-strict pseudo-contraction
mapping and F = F(T) # (. Let x1 € C and define the
sequence {x,} by

Yn = BnSxn + (1 — Bu)xn,
(48)
Xn+l = PC[anf(xn) +1- Oln)Vy,,], Vn>1,

where V =kl + (1 — k)T, {a,} C (0,1), {84} C (0,1) and
{ay} and {B,} are sequences satisfying the conditions (H2)
with T € (0,00), (H3), (H8) and (H9). Then the sequence
{x1} converges strongly to a point x* € F, which is the
unique solution of the variational inequality:

(%(I—f)x*%—(l—S)x*,x—x*)ZO, Vx e F. (49)

If we take k; = 0, for all i > 1 in Theorem 2, then we get
the following result:

Corollary 6. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S : C — C be a nonexpansive
mapping and {T;}°, : C — C be a countable family of
nonexpansive mappings and F = N2 F(T;) # §. Let
ap = 1, x1 € C and define the sequence {x,} by

Yn = BuSxn + (1 — Bu)xu,

X1 = Pclon f(xn) + Y iq (@ic1 — o) Tiye), Vn =1,
(50)

where {a,} C (0,1) and {a,} is a strictly decreasing
sequence, {B,} C (0,1) and {a,} and {B,} are sequences
satisfying the conditions (H2) with t € (0,00), (H3),
(H8) and (H9). Then the sequence {x,} converges strongly
to a point x* € F, which is the unique solution of the
variational inequality:

(%(1—f)x*+(1—5)x*,x—x*)zO, Vx e F. (51)

If k =
Corollary:

0 in Corollary 5, then we get the following

Corollary 7. Let C be a nonempty closed and convex
subset of a real Hilbert space H. Let f : C — H be a
p-contraction mapping, S, T : C — C be nonexpansive
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mappings and F = F(T) # (. Let x1 € C and define the
sequence {x,} by

In = BnSxn + (1 = Bp)xn,
(52)
Xnp1 = Pclofx) + (L —a)Ty,], Vu=>1,

where {a,} C (0,1), {B,} C (0,1) and {o,} and {B,} are
sequences satisfying the conditions (H2) with t € (0,00),
(H3), (H8) and (H9). Then the sequence {x,} converges
strongly to a point x* € F, which is the unique solution of
the variational inequality:

(%(1 — x4+ d —Sx*,x—a*) >0, VxeF. (53)

Remark 2. Prototypes for the iterative parameters are,
for example, a, = n~% and B, = n~ (with 6,0 > 0).
Since |y — ap—1] ~ n~? and |8, — Bu1| = n~?, it is not
difficult to prove that (H8) is satisfied for 0 < 8, w < land
(H9) is satisfied if 6 + @ < 1.

Remark 3. Theorem 1 and Theorem 2 extend and
improve the result of Gu et al. (2011) from the count-
able family of nonexpansive mappings to more general the
countable family of strictly pseudo contraction mappings.
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