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Abstract

co-efficient; Random sample and consensus

Audio classification acts as the fundamental step for lots of applications like content based audio retrieval and audio
indexing. In this work, we have presented a novel scheme for classifying audio signal into three categories namely,
speech, music without voice (instrumental) and music with voice (song). A hierarchical approach has been adopted to
classify the signals. At the first stage, signals are categorized as speech and music using audio texture derived from
simple features like ZCR and STE. Proposed audio texture captures contextual information and summarizes the frame
level features. At the second stage, music is further classified as instrumental/song based on Mel frequency cepstral
co-efficient (MFCC). A classifier based on Random Sample and Consensus (RANSAC), capable of handling wide variety
of data has been utilized. Experimental result indicates the effectiveness of the proposed scheme.
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1 Introduction
With the rapid growth in multimedia technology, it has
become quite easy to possess an audio library of huge
volume. But, the management of such database becomes
very crucial for efficient use. The collection, classified into
different categories like speech, music may render better
organization and will provide an easy access to desired
data. But, the manual classification is quite labor inten-
sive. As a result, automatic classification and retrieval
of audio data has become an active area of research.
A lot of work have been directed towards the develop-
ment of content-based image and video retrieval system
in comparison to audio domain (Zhang and Kuo 1998).
An efficient audio classification system can serve as the
foundation for various applications like audio indexing,
content based audio retrieval (Tseng 1999), music genre
classification (Tzanetakis and Cook 2002; Lidy and Rauber
2005), audio content description.

In general, an automatic audio classification system
consists of two steps: extraction of features from the sig-
nal and classification based on the extracted feature. In
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order to discriminate speech and music, a wide vari-
ety of low level and perceptual/psycho-acoustic features
have been proposed by the researchers to describe the
audio content. Low level features can further be catego-
rized as time domain and frequency domain features. ZCR
(zero crossing rate) (West and Cox 2004; Downie 2004)
and STE (short time energy) (Saunders 1996; El-Maleh
et al. 2000) are the commonly used time domain fea-
tures. Features like signal bandwidth, spectral centroid,
signal energy (Beigi et al. 1999; McKay and Fujinaga 2004;
West and Cox 2005), fundamental frequency (Zhang and
Kuo 1998), mel-frequency cepstral co-efficients (MFCC)
(Eronen and Klapuri 2000; Foote 1997) belong to the
category of frequency domain features. Roughness and
loudness measures (Fastl and Zwicker 2007) have been
presented to capture the perceptual aspect. In (Breebaart
and McKinney 2004), a model has been proposed to
simulate the human auditory system and 62-dimensional
features are computed to describe the auditory filter-
bank temporal envelope (AFTE). Sub-band energy
(Liu et al. 1997; Guo and Li 2003) is used as descriptor.
Compressed domain features (Wang et al. 2003) have also
been introduced.

Different classification techniques have been adopted
to categorize audio data into various classes. Thresh-
old based techniques are widely used (Saunders 1996;
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Zhang and Kuo 2001). Audio classification based on
neural network (Matityaho and Furst 1994; Harb and
Chen 2003), genetic algorithm (Pwint and Sattar 2005),
SVM (Guo and Li 2003; Sadjadi et al. 2007), Hidden
Markov Model (Pikrakis and Giannakopoulos 2006) have
also been considered by the researchers.

It has been observed that lot of attempts have been
made to classify the audio data in a wide variety of cat-
egories and sub-categories. But, in most of the cases
sub-classification of music data into song (music with
voice) and instrumental (music without voice) has been
ignored. Only a few works (Berenzweig and Ellis 2001;
Zhang and Kuo 2001; Zhang 2003) have addressed the
issue. Berenzweig et al. (2001) have relied on the fact
that song will have features of speech embedded in it
and a speech-trained model is used to detect the song.
But, the success of the scheme depends on the avail-
ability of suitable speech recognizer. Zhang et al. (2001)
have considered four features based on average ZCR and
fundamental frequency. Threshold for each features are
considered to characterize the music signals and finally
the decision is taken based on heuristic approach. A mod-
ified version of the scheme is presented in (Zhang 2003).
The success of the schemes heavily depend on the proper
selection of thresholds.

Past study indicates that researchers have experimented
with a wide variety of features and classification tech-
niques. In our effort, we have relied on the basic
perception of the audio signal of each type and accord-
ingly features are considered to represent their acoustic
signatures. We have proposed audio texture as a means of
concise representation of the audio signal. Normally, fea-
tures are computed over the frames in the signal. Audio
texture captures the repetitive pattern of such features.
In this work, ZCR and STE have been considered as the
frame based features. We have also included the task
of differentiating music without voice (instrumental) and
with voice (song) in our system. It is important in the
applications like locating singing voice segments in music
signal or in the audio track of a movie (Berenzweig and
Ellis 2001; Zhang and Kuo 2001). Moreover, in the context
of a multilingual nation like India, it is often required for
a music retrieval system to discriminate between music
with voice and music without voice. Thus, the proposed
system classifies the signals into three classes namely,
speech, instrumental and song. The paper is organized
as follows. The introduction is followed by the pro-
posed methodology described in Section 2. Experimental
result and concluding remarks are put in Section 3 and 4
respectively.

2 Proposed methodology
As it has been discussed in Section 1, two class problem
of speech and music discrimination has been addressed
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by the researchers based on different low level features.
But, a direct application of those schemes can not handle
the problem of three way classification i.e. identification
of speech, instrumental and song. The difficulty arises out
of the fact that in the feature space, song has a substantial
overlap with speech and instrumental as it is composed
of both the components. This observation has motivated
us to go for hierarchical approach. At the first stage we
opt for classifying the signal into speech and music and
in the subsequent stage we take up the issue of categoriz-
ing music into instrumental and song. We rely on audio
texture based on ZCR and STE (Ghosal et al. 2009) and
MECC based features respectively in the two stages. Pro-
posed audio texture provides an effective mechanism for
summarizing the ZCR and STE values of all the frames
in the audio signal. The computation of the features have
been elaborated in Section 2.1 and 2.2. The classification
scheme is described in Section 2.3.

2.1 Audio texture
The concept of texture in the domain of image process-
ing is quite common. For an image, texture is formed
by the repetition of fundamental image elements and it
is evaluated by the properties like coarseness, smooth-
ness, randomness and regularity. In an intensity image,
intensity variation over a neighbourhood gives rise to the
texture and co-occurrence of gray levels has evolved as a
measure (Haralick and Shapiro 1991). The idea has been
further extended in (Saha et al. 2004) where instead of
dealing with the pixel intensity, co-occurrence of features
at sub-image level has been considered to get a better
perception. We have adopted the similar concept and
proposed audio texture for characterizing an audio signal.

In general a speech signal occupies a limited range of
frequencies in comparison to a music signal. A speech sig-
nal is typically characterized by the presence of voiced and
unvoiced zone and they differ in terms of frequency and
energy. Moreover, silence is quite common in a speech
signal and such zones are of almost zero energy. Thus, in
case of a speech signal, interleaved occurrences of voiced,
unvoiced and silence zone gives rise to a pattern. In case
of music, such behaviour is absent. This observation has
led us to devise audio texture for speech/music classifica-
tion. The zones are taken as the the fundamental elements
of the speech signal and repetition of those elements leads
to audio texture. As the zones are distinguished by the fea-
tures like frequency and energy content, we consider ZCR
and STE computed over the frames as an approximation
of the zone features. The repetition pattern captured in
the co-occurrence matrices of such features can act as a
measure for audio texture.

In Section 1, it has been indicated that zero crossing rate
(ZCR) and short time energy (STE) are two commonly
used time domain, low level features which play major role
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in speech/music discrimination. Texture of the audio sig-
nal is generated based on those. Considering audio data as
discrete signals, it is said that a zero crossing has occurred
whenever two successive samples have different signs.
Rate of zero crossing provides an impression regarding the
frequency content. Audio signal is divided into N frames
{x;(m): 1 < i < N}. Then, for i frame, zero crossing rate
is computed as follows:

n—1

zi =) signlxi(m — 1xi(m)] (1)

m=1
n is the number of samples in the i/ frame and

1, ifv <O

sign[v] = (2)
& 0, otherwise

As the collection of frame level ZCR is of very high
dimension, the audio signal is represented by the sum-
marized information. Mean and standard deviation of
{zi : i = 1,2,...,N} are taken as two features. Such
type of representation gives only an overall idea about the
signal. To obtain a better representation of the signal char-
acteristics we have utilized the concept of co-occurrence
matrix (Haralick and Shapiro 1991) which is widely used
in image processing. In an image, the occurrence of the
different intensity values within a neighborhood reflects
a pattern and it is utilized to parameterize the appear-
ance/texture of an image. The same concept is adopted
here. For each frame, ZCR is computed using equation (1).
Thus, {z;}, a sequence of ZCR is obtained for the signal.
Occurrence of different ZCR values within a neighbor-
hood reflects the pattern and characterizes the quasi-
periodic behavior of the signal. Thus, a matrix, C of
L x L dimension (where, L = max{z;} + 1) is formed as
follows:

e Initialize C[i{][/]=0Vij€{0,1,...,L}
o fori=1toN —d

Clzillzird] = Clzillzizal +1
e Clil[j] = #]C[’%mc Vijel{ol,...,L}

where, d is the distance at which occurrence of the val-
ues are being considered. Thus, the matrix C represents
distribution of pairwise occurrence of different ZCR val-
ues. It is likely that in case of a speech signal, there will
be substantial co-occurrence of low ZCR denoting silence
zone and high-low transition (or vice versa) for non-
silence to silence (or vice versa) switching. Such transition
also occurs due to interleaving of voiced and unvoiced
speech. These will have a reflection in C. Music is com-
paratively richer in frequency content, distribution will
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be well spread in the matrix. Due to noise there may
be little variation in the signal which may affect the co-
occurrence matrix. Moreover, very close frequencies are
also not perceivable to human ear.

To combat these issues, we had to go for a modified
scheme to construct the co-occurrence matrix. The ZCR
scale may be divided into k bins defined by the points ., £
txsx o, where, 1, and o, are mean and standard deviation
of {z;}, t takes the values 0,1,2,... and s is the step size.
It is obvious that substantial contribution will be confined
within u, £ o,. Hence, to reveal the distribution charac-
teristics in a detailed manner s is taken from (0, 1). Once
the bins have been formed, z;s are mapped onto bins and
instead of z; values, corresponding bin numbers are used
as the index in forming the co-occurrence matrix Myy.
From the co-occurrence matrix, M, following statistical
features (Umbaugh 2005) are computed:

Entropy = — Z ZM[;

1 log,M[i] [ j]

(3)
Energy = Y [M[i] [j]]? (4)
i
Inertia =y Y (i — j)*MIi] []] (5)
i
Inverse_difference = Z Z M) []] (6)

Correlation =

ZZ(l—Mx)(] 1y L[]

0x0y =
(7)

where,
e =0y Ml 1))
i
ny =373 Mlil 1]
j i
=Y A —u)?Y Ml
i )
Uy = Z(l — //Ly)z ZM[l] [/]
j i

Thus, computing these features, a 5-dimensional ZCR
based feature vector is formed. It may be noted that the
texture features thus obtained is a better alternative for
summarizing the frame level features.
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Similarly, short time energy based features are also com-
puted. First of all, for each frame short time energy is
computed as follows:

1 n—1
Ei=— 3 [xi(m)? (8)
m=0

where frame contains # samples. Based on the set of STE,
E; for the frames, the co-occurrence matrix is formed
in the same manner as it has been done in case of co-
occurrence matrix of ZCRs. As the range of energy values
is quite high, it would have been a big problem for matrix
dimension. Mapping of the absolute value to bin solves the
problem. Such mapping also overcome another problem.
Overall rise/fall in the amplitude level of the signal does
not change the nature of the signal but affects the energy
value. Mapping scheme present in this work also cancels
such impact and retains the signal characteristics.

In case of a speech signal, silence zone will have min-
imal energy. Moreover, interleaved voiced and unvoiced
speech will lead to interleaving of high and low energy.
It will give a typical pattern in the co-occurrence matrix
enabling us to discriminate the speech from rest. Co-
occurrence matrix based features are computed to obtain
5-dimensional STE based feature vector. Figure 1 show
2-D contour plots of ZCR co-occurrence matrices and
STE co-occurrence matrices. Frequency of the co-occur-
rence pattern has been indicated by the colour and colour
code also has been shown along with. It is clear that
the plots are quite different for speech and music sig-
nals. For ZCR occurrence patterns of speech signal shows
a few peaks as its frequency content is limited. Music
being rich in frequency content, multiple peaks becomes
apparent in the form of coloured patch in the plot. For
speech silence zone has almost zero energy and energy
distribution is localized with in a small range of bins. In
case of music, energy is distributed widely across the bins
which is reflected by the coloured patch in the plot. Thus,
the utility of the concept of occurrence pattern is clearly
visible.

Taking ZCR and STE co-occurrence matrices based
features together, a 10-dimensional feature vector is
formed and it acts the descriptor for an audio signal
for speech/music classification. As the proposed audio
texture for music with/without voice is quite similar in
nature, it can not be used for discriminating them further
and it has forced us to restrict its usage in speech/music
classification only.

2.2 MFCC

It has been indicated in (Zhang and Kuo 2001) that unlike
song, the spectrogram of instrumental music reflects sta-
ble frequency peaks in the spectrogram. In case of song,
because of the human voice, such stability is not visible.
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It has motivated them to think of ZCR and fundamen-
tal frequency based descriptors and to devise a threshold
based classification scheme. The same observation has
motivated us to look into frequency domain. In case of
instrumental music, ideally the spectral power is con-
fined around certain frequencies. Whereas, for song, it
is distributed over a wider range of frequency. Song is
further complex signal as it is normally accompanied by
instrumental music also. Considering all these aspects, we
have relied on cepstrum based feature. A cepstrum is the
inverse Fourier transform of the log spectrum and the
technique is particularly good at separating the compo-
nents of complex signals made up of several simultaneous
but different elements combined together.

Mel-frequency cepstral co-efficients are short term
spectral based features used by many researchers for
speech recognition (Walker et al. 2004), retrieval sys-
tem (Foote 1997), music summarization (Logan and Chu
2000), speech/music discrimination (Logan 2000). The
strength of MFCC is in compact representation of ampli-
tude spectrum. The steps for computing MFCC is elabo-
rated in (Rabiner and Juang 1993). The brief description is
as follows.

The audio signal is first divided into number of frames
of fixed duration. Frames may consist of samples with an
overlap with the previous frame. To minimize the discon-
tinuity at the beginning and end of the frame an window-
ing function (Hamming window is the most widely used
one) is also applied on the frame. Amplitude spectrum
for each (windowed) frame is obtained by applying Dis-
crete Fourier Transform (DFT). As the relation between
perceived loudness and amplitude spectrum is more log-
arithmic than linear, logarithm of amplitudes is taken.
Thus, N- dimensional spectrum is obtained where N is
the frame size. The spectrum is smoothened to make it
perceptually meaningful. The simplest way of doing this
to consider the average spectrum over the frequency bins.
But eqi-spaced bin over the frequency scale does not
conform the human auditory system as the perceived fre-
quency and the signal frequency are not linearly related. It
has led to the development of Mel frequency. The relation
can be expressed as follows.

S
fn = 2595 % log;,(1 + m)

where, f and f, are signal frequency and corresponding
Mel frequency respectively. The mapping is approximately
linear below 1kHz and logarithmic above. Thus, logarithm
of amplitude spectrum obtained after DFT is mapped
on to Mel-frequency scale and smoothened by consid-
ering the bins over the Mel-scale. The elements in the
smoothened Mel-spectra vector are highly correlated. To
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(a) 2-D contour plot of ZCR based co-occurrence matrices
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(b) 2-D contour plot of STE based co-occurrence matrices

Figure 1 2-D contour plot of co-occurrence matrices of speech and music signals — (a) ZCR based co-occurrence matrices (b) STE based
co-occuurence matrices. X and Y axes show ZCR(STE) bins and values of the matrix elements are denoted by different colours.

decorrelate and to reduce the number of parameters Dis-
crete Cosine Transform (DCT) is performed as follows.

Nr—1
B [ 2 72k + n

T

where
1 .
Clny = : 7 ifn=0
0, otherwise

where, 0 < n < Ny — 1, S[k] be the Smoothened Mel-
spectrum and N7 is the number of elements in the
smoothened Mel-spectra vector. k[n], thus obtained
denotes the Mel-frequency cepstral co-efficient and first
13 co-efficients are taken as the features for the frame.

After computing the MFCCs for all the frames, the
vector comprising of the average value corresponding to
each co-efficient forms the feature descriptor. It may be
noted that each Mel-frequency cepstral co-efficient, k[n]

is obtained after DCT of log-spectrum and hence, it cap-
tures the weighted combination of all spectral component.
As a result, even if a limited number of co-efficients are
taken as features, signature of the complete frequency
spectrum is still embedded in them. Thus, MFCC pro-
vides a compact representation of the amplitude spectrum
of a signal.

It has been already mentioned that song is complex in
nature in comparison to instrumental and unlike song,
instrumental is characterized by stable frequency peaks in
the spectrogram (Zhang and Kuo 2001). The presence of
perceivable amplitude over a wider range of frequency in
a song is well reflected by the presence of more number
of strong peaks in the MFCC plots as shown in Figure 2.
As the plots for instrumental and song is quite different,
MECC can be utilized in classifying the music signals in
the sub categories in the second stage of the proposed
scheme. On the other hand, the MFCC plots for speech
signals, there are few stable peaks making it similar to
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instrumental signal and also a number of weak peaks
which may overlap with song signal. Thus, it may create
confusion with instrumental/song signal in various cases.
As a result its success in discriminating speech from rest
is limited and we have avoided using it at first stage. More-
over, it can not help in a direct classification of speech,
instrumental and song.

2.3 (lassification scheme

The audio signal, be it speech or instrumental or song,
may have a wide variety making the task of classification
critical. In this context a direct threshold based approach

is quite prohibitive. As a result, many researchers have
relied on the classification schemes like neural network,
SVM and HMM. The variation even within a class of
audio signal gives rise to outliers putting detrimental bias
in classification. Furthermore, each classifier has its own
set of parameters which are not always readily perceivable
and performance depends heavily on the proper selection
of such parameters. In order to achieve optimal perfor-
mance, tuning of parameters like kernel width is very
critical for SVM. On the other hand, in case of HMM,
finding out number of states, state transition probability,
distinct observation per state etc. are not at all trivial task.



Ghosal et al. SpringerPlus 2013, 2:526
http://www.springerplus.com/content/2/1/526

It has motivated us to look for an estimator which is char-
acterized by the the parameters those are easy to interpret
and tune and capable of handling the diversity of data
satisfactorily. In this context, RANdom Sample And Con-
sensus (RANSAC) appears as a suitable alternative that
can model the diversified data even in presence of consid-
erable outliers. Successful application of the scheme in the
domain of image processing (Torr and Zisserman 2000;
Zuliani et al. 2005) has also motivated us to apply it for
audio classification.

RANSAC (Fischler and Bolles 1981) is an iterative
method to estimate the parameters of a certain model
from a set of data contaminated by large number of out-
liers. The strength of RANSAC over other estimators lies
in the fact that the estimation is made based on inliers
i.e. whose distribution can be explained by a set of model
parameters. It can produce reasonably good model pro-
vided a data set contains a sizable amount of inliers. It
may be noted that RANSAC can work satisfactorily even
with outliers amounting to 50% of entire data set (Zuliani
2005).

RANSAC algorithm is primarily composed of two
steps — hypothesize and test. These are executed itera-
tively. During hypothesize phase, a minimal sample set is
randomly selected and model parameters are computed
based on only the elements in the selected sample set. In
the test phase, consistency of all the elements in the entire
data set are verified to check whether or not they are con-
sistent with the model obtained. Consistent elements are
included to form the new sample set. The process goes
on iteratively and in each iteration a model is obtained.
Finally, the model that fits best is taken as the estimate.

Considering the data elements to be n-dimensional,
RANSAC tries to fit a hyperplane and estimates the model
parameters. Let the hyperplane is represented as

wo +widy +wady + ... +wud, =0

where, < dj,d>,...d, > be the n-dimensional point. It
estimates the value of w;s by minimizing the fitting error
for each element in the entire data set. An element e;
is considered as an inlier/consistent with respect to the
model provided its orthogonal regression, d(e;, W) with
the model is within the threshold §; where,

wo + Z] wjejj

/w%—i—zjwjz

ande; =< e;1,€j2 . .. € >.In our experiment, § is taken as
0.02 as suggested in (Fischler and Bolles 1981). Y d(e;, W)
is taken as the total fitting error for the model under con-
sideration. The model with minimum error is considered
as the final one.

Classically, RANSAC is an estimator for the parame-
ters of a model from a given data set. But, in this work,

d(ei! W) -
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it has been used a classifier. Corresponding to the data
set of each category a model is estimated first. Then for a
given element, its class can be determined easily by find-
ing the best matched model. As it has been discussed
that RANSAC estimates the model relying on the inliers,
unlike other technique, it is less affected by the noisy data.
Thus, RANSAC is well suited for our purpose.

It has been already discussed that audio texture can
discriminate only speech and music. It can not further
distinguish a music signal as instrumental/song. On the
other hand MFCC plots for instrumental and song are
quite distinct but the same for speech introduces con-
fusion. Hence at first stage RANSAC models the signals
as speech or music considering audio texture as the fea-
ture and classification is carried out. At the next stage,
RANSAC further classifies the detected music signals
into song/instrumental based on the model formed using
MEFCC as the feature. Thus, a hierarchical classification
scheme is followed.

3 Experimental result

In order to carry out the experiment, we have prepared
a database consisting of 399 speech files and 540 music
(270 instrumental and 270 song) files. Files are mostly CD
recordings, some are the recordings of live program and
noise affected. Part of data has also has been downloaded
from different web sites. Speech data differs in terms of
speaker and language. Instrumental files correspond to
different instruments like piano, guitar, flute, drum. The
songs are of different genre like classical, folk, rock. The
database thus reflects appreciable variety in each class.
Each file has the audio of around 40-45 seconds duration.
Sampling frequency for the data is 22050 Hz. Samples are
of 16-bits and of type mono.

In our experiment, apart from RANSAC, we have con-
sidered other classification techniques like K-means clus-
tering, multilayer perceptron network (MLP), support
vector machine (SVM). For all the classifiers, we need
training data and test data. We have carried out two set of
experiments. In one case (referred as T1), 50% of the data
for each class has been used as training data and rest are
taken as test data. In the other case (referred as T2), 25%
of the data for each class is taken as training data and rest
form the test data.

In case of RANSAC, training data used for generating
the model and remaining data are used for testing. In T1,
experiment is repeated by reversing the training and test
data set. Finally, average of the performances is consid-
ered. For T2, four sets of training data is considered and
experiments are carried out four times by considering the
remaining data in each case as the test data. Finally, as in
case of T1, average of the performances is reported. Simi-
lar approach is followed for K-means clustering, MLP and
SVM based classification.
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Table 1 Overall accuracy (in %) for direct classification into
speech, instrumental and song

T1 T2
MFCC A+B  Audio MFCC A+B

Classification Audio

scheme texture (B) texture (B)

(A) (A)
K-means 54.00 5267 5488 51.19 5000 5267
MLP 62.00 7178 6000 60.68 69.14  59.20
RANSAC 79.77 7222 7933 7888 7018  79.08

For K-means clustering based classification (Hastie et al.
2005), training data is first clustered with number of
clusters same as the number of categories into which clas-
sification is required. Clusters are labeled based on the
type of the majority data elements in the cluster. Test
data is classified following nearest neighbour classifica-
tion rule. For MLP, we have considered only one hidden
layer. Number of nodes in the input and output layers
are 1 and ny respectively. n; is taken as the dimension

Table 2 Accuracy (in %) of speech, music classification
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of the feature vector and #, is same as the number of
classification labels. Hidden layer consists of % + 1.
In order to train the network, feed forward back propaga-
tion method has been used. For SVM, we have considered
Radial Basis Function (RBF) as the kernel function. Cost
parameter controlling the number of support vectors and
gamma that governs the kernel width are two important
parameters to be tuned. In our experiment, the optimal
values for the parameters are chosen by applying grid
search over a wide range of possible values.

Initially, we have tried to classify the audio signals
directly into three categories namely, speech, instrumen-
tal and song. Table 1 shows the overall classification
accuracy. Experiments have been carried out using only
10-dimensional audio texture (referred as A) and again
using 13-dimensional MFCC based features (referred
as B). Finally, both type of features are taken together
to form 23-dimensional feature vector (referred as A+B).
ZCR and STE computed over each frame are divided by
the frame size to normalize the values. In case of MFCC,
at frame level the co-efficients are first computed and

Classification scheme Experiment setup Type of signals

Featutre set

ZCR, STE based features A — A? Proposed audio texture

K-means T Speech 50.55 60.00 73.89
Music 74.07 74.07 85.93

Overall 64.67 68.08 81.11

T2 Speech 48.15 57.52 71.85

Music 71.04 72.10 84.40

Overall 61.87 6591 79.38

MLP T1 Speech 7101 78.50 78.33
Music 90.37 7592 88.15

Overall 82.67 77.02 84.22

T2 Speech 68.52 74.92 74.07

Music 86.63 72.84 84.40

Overall 79.38 73.72 80.27

SVM T1 Speech 73.89 86.00 7833
Music 90.74 8148 89.26

Overall 84.00 8340 84.89

T2 Speech 69.63 83.28 76.67

Music 88.86 79.75 8540

Overall 81.16 81.25 81.90

RANSAC T Speech 75.00 88.00 96.11
Music 92.96 85.93 97.78

Overall 85.78 86.80 97.11

T2 Speech 74.07 85.62 93.70

Music 90.59 8247 93.81

Overall 83.98 83.81 93.77
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average of the corresponding co-efficients over the frames
are taken as the signal level descriptor. 13-dimensional
feature vector is then normalized where the strongest
magnitude is mapped to 1 and others are mapped pro-
portionately. Thus, each element in the feature vector is
normalized with in the range [0, 1]. It has been discussed
in Section 2 that proposed audio texture can discriminate
speech from the rest and MFCC based features are similar
for speech and music. As a result, a direct three way clas-
sification by audio texture, MFCC or their combination
does not perform well irrespective of the classification
technique as indicated in Table 1. It has motivated us to
go for hierarchical approach.

As it has been discussed in Section 2.1, proposed audio
texture based on ZCR and STE can clearly discriminate
speech and music signal, we have taken up the issue of
speech-music classification at the first stage. Performance
of proposed feature has been compared with the com-
monly used ZCR and STE based features (the average
and standard deviation of the frame level ZCR and STE
values). Table 2 shows that proposed features perform
better for different classification schemes. Thus, it is effec-
tive in summarizing the frame level features. We have
also worked with the concept of delta and double delta
(A — A?) of features (Kumar et al. 2011; Chen and Bilmes
2007) as it takes care of contextual information like the
proposed feature. Similar process is repeated with frame
level delta co-efficients to generate double delta features.
Thus, 26 dimensional feature vector is obtained. Perfor-
mance of this feature as shown in Table 2 reflects that
it works better in recognizing speech in comparison to
music recognition. But, the result indicates that proposed
feature is more effective. It may be noted that if the vol-
ume of training data is reduced from 50% (in case of T1)
to 25% (in case of T2), there is a fall in accuracy to an
extent varying between 2% to 5%. Even then, the pro-
posed feature provides better result. It is also evident that
RANSAC based classification provides quite satisfactory
performance.

We have further compared the performance of the pro-
posed system with the work done by Sadjadi et al (2007).
In their work, 16-dimensional feature vector using FFT
based perceptual features and MFCC has been considered

Table 3 Comparison of performance for speech, music
classification

Classification accuracy (in %)

Methodology Speech Music Overall

T T2 T1 T2 T1 T2
Sadjadi's method 8889 8667 8444 8267 8622 8427
(Sadjadi et al. 2007)
Proposed method 9555 9370 9778 9381 9689 9377
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Table 4 Accuracy (in %) of instrumental, song classification

Classific. scheme  Instrumental Song Overall

T1 T2 T1 T2 T1 T2
K-means 4007 3960 9260 8713 6667 6337
MLP 6222 5941 9407 8960 7815 7450
SVM 7704 7475 8296 81.68 8000 7821
RANSAC 94.81 9059  91.11 88.61 9296  89.60

and one class SVM based iterative method for clustering
has been deployed. Table 3 shows that proposed method-
ology performs better under both the training condition.

With the data set classified as music, we carry out
the second stage of classification. At this stage, music
signal is further classified as music without voice (instru-
mental) and music with voice (song). As discussed in
Section 2.2, 13-dimensional MFCC based feature vector
is used. Table 4 shows the classification accuracy for vari-
ous schemes and training conditions. It has been observed
that accuracy falls to an extent for smaller training data
set. Even then, the proposed scheme provides better and
considerably high accuracy.

It has been indicated in Section 1 a very few work have
been directed in discriminating instrumental and song.
Zhang (2003) in his work has addressed the issue. The
classification has been made based on the average zero
crossing rate and fundamental frequency properties. Four
aspects like degree of a signal being harmonic, funda-
mental frequency’s concentration during a period of time,
variance of ZCR and amplitude range of average ZCRs
have been considered. For each of these four aspects, there
is one empirical threshold set and a decision value defined.
If the threshold is satisfied, the decision value is set to 1;
otherwise, it is set to a value between 0 and 1 according
to the distance to the threshold. The four decision values
are averaged with predetermined weights to derive a total
probability for a music to be instrumental. It is taken as

Table 5 Comparison of performance (in %) for
instrumental, song classification

Methodology Instrumental Song Overall

T1 T2 T1 T2 T T2
Zhang's feature
and SVM 6444 6287 8222 8069 7333 7178
(Zhang 2003)
Zhang's feature
and RANSAC 74.81 7327 7778 7673 7630  75.00
(Zhang 2003)
Proposed method 9481 9059 9111 8861 9296 8960
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instrumental if the said probability exceeds certain thresh-
old and at least three of the decision values are above 0.5.
The method heavily relies on the selection of number of
parameters like thresholds and weights. It is quite diffi-
cult to set them properly. Moreover, details regarding the
threshold have not been outlined. Hence, In order to com-
pare the performance, we have considered the features
proposed by Zhang and tried with different classifica-
tion techniques. Table 5 indicates, proposed methodology
performs better.

4 Conclusion

In this work, we have presented a hierarchical scheme
for classifying audio signals into three categories namely
speech, music without voice (instrumental), music with
voice (song). In the first stage, we classify the signals as
speech or music and subsequently music is further classi-
fied as instrumental and song. Audio texture that has been
derived based on ZCR and STE co-occurrence matrices
can successfully discriminate speech and music. Thus,
audio texture acts as an effective way for summarizing
frame level features. It has been shown that MFCC based
features are well suited in classifying the music signal as
instrumental and song. RANSAC has been utilized as the
classifier and it is capable of handling the wide variation
in data. Experimental result indicates the effectiveness of
the proposed methodology.
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