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Abstract

The primary problem with lung sound (LS) analysis is the interference of heart sound (HS) which tends to mask
important LS features. The effect of heart sound is more at medium and high flow rate than that of low flow rate.
Moreover, pathological HS obscures LS in a higher degree than normal HS. To get over this problem, several HS
reduction techniques have been developed. An important preprocessing step in HS reduction is localization of HS
components. In this paper, a new HS localization algorithm is proposed which is based on Hilbert transform (HT) and
Heron’s formula. In the proposed method, the HS included segment is differentiated from the HS excluded segment
by comparing their area with an adaptive threshold. The area of a HS component is calculated from the Hilbert
envelope using Heron’s triangular formula. The method is tested on real recorded and simulated HS corrupted LS
signals. All the experiments are conducted under low, medium and high breathing flow rates. The proposed method
shows a better performance than the comparative Singular Spectrum Analysis (SSA) based method in terms of
accuracy (ACC), detection error rate (DER), false negative rate (FNR), and execution time (ET).
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Introduction
The conventional stethoscope based auscultation tech-
nique is a cost-effective and non-invasive diagnostic
procedure. This technique is very popular among the
physicians and commonly used by them since 1816
(Laennec 1962). However, the performance of this diag-
nostic technique degrades due to the presence of noise
in lung sound signals. Modern electronic stethoscope can
reduce the ambient noises from lung sounds, but they are
inefficient to avoid heart sound noise.
During the recording of lung sound, heart sound inter-

feres and changes the temporal and spectral contents of
the respiratory sound. This may lead to misinterpretation
of the underlying lung diseases. Heart sounds comprise
of two primary sounds S1 and S2. In addition, it may
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have components like S3, S4 and murmurs associated
with pathological conditions. The first heart sound, S1
and second heart sound, S2 are produced by the openings
of the atrioventricular valves and closures of semilunar
valves, respectively and vice versa (Pourazad 2004). The
third (S3) HS occurs at the end of S2 due to the vibra-
tion of blood inside the ventricles and the fourth (S4) HS
is appeared just before the S1 due to the contraction of
atria (Webster 1998; Balasubramaniam and Nedumaran
2010). These components carry important information
regarding the cardiac system and are segmented to diag-
nose the valvular heart diseases (Schmidt et al. 2010; Tang
et al. 2012; Sanei et al. 2011; Patidar and Pachori 2013).
However, lung sounds are produced by stochastic and dis-
ruptive flow of air within lung airways (Blake 1986). Most
of the heart sound information lies in the frequency range
of 20-150 Hz (Arnott et al. 1984; Lu et al. 1988; Cromwell
et al. 2002) but murmur sounds have a higher frequency
range of 600 Hz (Patidar and Pachori 2013). On the other
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hand, lung sound information spread out over a wide
range of frequency approximately 20-1600 Hz (Gavriely
et al. 1981). However, a major part of the lung sound
information is confined to a frequency less than 200 Hz
(Sovijarvi et al. 2000).
With the advances in modern technologies, computer

science, and statistical signal processing, a lot of research
work has been conducted to overcome the problem of
HS removal to highlight the LS (Iyer et al. 1986; Lu
et al. 1988; Kompis and Russi 1992; Hadjileontiadis and
Panas 1997; Gnitecki et al. 2003; Gnitecki and Moussavi
2003; Ahlstrom et al. 2005; Yadollahi and Moussavi 2006;
Pourazad et al. 2006; Flores-Tapia et al. 2007; Ghaderi
et al. 2011). This is an important preprocessing step in
lung sound analysis. A common approach of heart sound
reduction is high pass filtering of lung sounds. However,
this approach attenuates the lung sound components that
resemble to heart sound in spectral domain (Donoho
1995). Except the wavelet de-noising technique, the per-
formance of all the other heart sound cancellation meth-
ods depends on a properly defined heart sound location.
Many research groups have developed methods to detect
the heart sounds locations in LS signals. These meth-
ods are based on adaptive filtering (Iyer et al. 1986; Lu
et al. 1988; Kompis and Russi 1992; Hadjileontiadis and
Panas 1997; Gnitecki et al. 2003), time-frequency filtering
(Pourazad et al. 2006), multiscale product based (Flores-
Tapia et al. 2007), and statistical signal analysis (Gnitecki
and Moussavi 2003; Ahlstrom et al. 2005; Yadollahi and
Moussavi 2006; Ghaderi et al. 2011) approaches. Adap-
tive filtering techniques need a reference heart sound
signal which is produced either by the noisy lung sound
signal itself or by an external source, e.g., electrocardio-
gram (ECG) signal. A combined theory of spectrogram
and wavelet transform analysis is proposed to detect the
HS components in (Pourazad et al. 2006). A multiscale
product based method is implemented in (Flores-Tapia
et al. 2007) to localize the HS segments. Several sta-
tistical methods are used to find out the heart sound
locations, such as variance fractal dimension trajectory
(Gnitecki and Moussavi 2003), recurrence time statistics
(Ahlstrom et al. 2005), entropy (Yadollahi and Moussavi
2006), and singular spectrum analysis (SSA) (Ghaderi
et al. 2011). Entropy (ENT) and SSA based algorithms give
comparatively better results than other techniques. How-
ever, SSA method gives better results than that of ENT
method in terms of false negative rate, error in localiza-
tion and correlation coefficient. Moreover, SSA method is
much faster than ENT method. Gadheri et al. has shown
the superiority of SSA method over ENT technique in
(Ghaderi et al. 2011).
All these techniques highlight their performances for

normal lung sound signals at low and medium flow rate
but not at high flow rate.

The objective of this work is to develop an effective
and efficient algorithm to localize primary heart sounds
(S1 and S2) and pathological heart sounds (S3 and S4)
components that is applicable to both normal as well as
abnormal cases of lung sounds for three different breath-
ing flow rates: low, medium and high. In this paper, a novel
heart sounds (S1, S2, S3 and S4) localization algorithm
is proposed by using Hilbert transform (Johansson 1999;
Mertins 1999) and Heron’s formula (Stanojevié 1997) and
the proposed method is referred to as Hilbert Heron
Algorithm (HHA). The HS and non HS segments are
discriminated by investigating the morphological charac-
teristics of the cardiac sounds. It has been taken under
consideration that each HS component extends for a cer-
tain duration (Khandpur 2003; Schlant and Alexander
1994) and defined by two global minima and one max-
imum points. The minima points are correspond to the
starting and ending of the HS component and the maxi-
mum point is correspond to the highest energy peak of the
HS component. By connecting the global extrema points
some scalene triangles can be drawn and their areas will
be used to identify the HS and non HS segments. The
area of the triangle can be computed from the envelope
signal using Heron’s formula. The envelope signal is esti-
mated from the filtered mixed LS signal using HT. The
decision regarding the heart sound included segment or
heart sound excluded segment is taken by comparing the
area with an adaptive threshold value. The threshold value
is calculated from the variance of the area vector as dis-
cussed in Section “Methodology”. The performance of the
proposed method is compared with the SSA method by
evaluating the results for both cases of simulated mixed
lung sound signals (normal and pathological) and real
recorded lung sound signals. The method gives better
performance than the SSA method in terms of false neg-
ative rate, accuracy, detection error rate, and execution
time.
The remaining part of this paper is organized as follows.

Section “Theoretical background on Hilbert transform
and Heron’s formula” provides theoretical background
on the Hilbert transform and Heron’s formula and
Section “Methodology” describes in detail the methodol-
ogy. The experimental database and certain implementa-
tion issues are described in Section “Experimental data
sets and implementation issues” and Section “Results and
discussion” presents the experimental results and dis-
cusses the efficiency of the method. The conclusion is
given in section “Conclusion”.

Theoretical background on Hilbert transform and
Heron’s formula
The Hilbert transform
Hilbert transform was developed by German scientist
David Hilbert (Johansson 1999; Mertins 1999) in the
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beginning of the 20th century for interpreting the Euler
formula

e jθ = cosθ + jsinθ (1)

where j is an imaginary unit, i.e., j = √−1. The Hilbert
transform of a real valued continuous time domain signal,
y(t) is defined by

H{y(t)} = ŷH(s) = 1
π

∮ ∞

−∞
y(t)
t − s

dt (2)

where s is real and H{·} is the Hilbert operator. Here, the
integration has to be carried out according to the Cauchy
principle value, that is,

∮ ∞

−∞
y(t)
t − s

dt = lim
ε→0

(

∫ s−ε

−∞
+

∫ ∞

s+ε

)
y(t)
t − s

dt, ε > 0. (3)

However, real world signals are discontinuous in nature
and can be expressed as a discrete-time signal. In the dis-
crete domain, the envelope of the real discrete signal y[n]
is estimated by the discrete Hilbert transform denoted by
Hd{·}. The discrete Hilbert transform Hd{·} of a sequence
y[n] having a finite period R can be computed using its
Discrete Fourier transform (DFT). The DFT of y[n] is
denoted by Y [m] is calculated by

Y [m]=
R−1∑
n=0

y[n]Z−nm
R , 0 � m � R − 1. (4)

where ZR = e
j2π
R , m is the discrete frequency and n is the

discrete time. The DFT Y [m] of the discrete time domain
signal y[n] can be expressed as a combination of a real and
an imaginary component, i.e.,

Y [m]= YRe[m]+jY Im[k]

The discrete Hilbert transform ŷDHT [n] = Hd{y[n] } of
y[n] is calculated as

ŷDHT [n] = 1
R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(R−1)
2∑

m=0
YRe[m] sin

( 2πmn
R

)

+
(R−1)

2∑
m=0

YIm[m] cos
( 2πmn

R
)

−
R−1∑

m= (R+1)
2

YRe[m] sin
( 2πmn

R
)

−
R−1∑

m= (R+1)
2

YIm[m] cos
( 2πmn

R
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

ŷDHT [n] = 1
R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R
2 −1∑
m=0

YRe[m] sin
( 2πmn

R
)

+
R
2 −1∑
m=0

YIm[m] cos
( 2πmn

R
)

−
R−1∑

m= R
2 +1

YRe[m] sin
( 2πmn

R
)

−
R−1∑

m= R
2 +1

YIm[m] cos
( 2πmn

R
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

The equation (5) is applicable when R is even and
equation (6) for odd R.

Heron’s formula
Heron was a Greek mathematician and engineer in 10-70
AD (Stanojevié 1997). He contributed much in the field of
optics, mathematics and enginering. But Heron is popu-
lar for deriving the formula for computing the area of the
triangle. The formula consists of two steps:
Step 1: Compute the semiperimeter h of the triangle

using the lengths of its sides, u, v, and w as

h = u + v + w
2

(7)

Step 2: Calculate the area A of the triangle using
semiperimeter and the lengths of its sides by the
equation (8).

A =
√

1
4v2c2

(
1 − cos2 θ

)
=

√
1
4v2c2

(
1 −

(
v2+w2−u2

2vw

)2)

=
√(

2u2w2+2u2v2+2v2w2−u4−v4−w4
16

)
= √

(h ∗ (h − u) ∗ (h − v) ∗ (h − w))

(8)

where

θ = ∠vw = arccos
(
v2 + w2 − u2

2vw

)

The detail of the formula is given in proposition 1.8 of
his book, Metrica. The proof of Heron’s formula has been
done by Roger Boscovich and stated in (Stanojevié 1997).

Methodology
The proposed method distinguishes HS element from
non HS element based on the principle that heart sound
component has higher area than that of the non heart
sound component. A flow chart of the proposed method
is given in Figure 1. The entire process is comprised of the
following steps:

Amplitude normalization
The amplitude of the mixed signal varies considerably
due to various factors such as recording instrument gain,
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Figure 1 Flow chart of the proposedmethod. Sub-figures (a)-(f) depict the outcomes of the different steps of the proposed method. The sound
signal displayed in (a) corresponds to high flow mixed signal. The white arrowheads in (d) indicate the the events that correspond to HS and LS
components.

different recording locations over the anterior and pos-
terior chest, physiology, age and sex of the subject. The
amplitude variation creates a difficulty during analysis of
different signals of non-uniform amplitude. This problem
is minimized by setting the maximum value of variance of
the signal to +1 and minimum to −1. Let y(n) be the sig-
nal value at nth sample, andM be the absolute maxima in
the sample space. The normalized signal ynorm(n) is given
by

ynorm(n) = y(n)

G
(9)

G = max
i

(∣∣y(i)∣∣) (10)

Here n = 1, 2, 3, . . . ,K and K is the total number of
samples in the signal.

Filtering
The intensity and frequency components of the pul-
monary sound change according to the variation in flow
rate. The amplitude of the lung sound increases with

an increase in respiratory flow (Yadollahi and Moussavi
2006). Hence, HS may become invisible for medium and
high flow rates. It is very difficult to localize the HS seg-
ments for high flow than medium and low flow cases.
In this study, the flow rate effect is minimized by fil-
tering the mixed lung sound signals using a 10th order
Butterworth finite impulse response (FIR) filter with a cut-
off frequency of 150 Hz. The filtering operation enhances
the HS components by attenuating the higher frequency
LS andmurmur components as shown in Figure 2. The fil-
tered sound is used as input to the next step to detect the
HS segments.

Hilbert Envelope Extraction
The envelope curve gives a simple and demonstrable
representation of a narrow band signal to investigate
its intrinsic characteristics (Choi and Jiang 2008). The
envelope of a signal can be computed by different tech-
niques like Hilbert transform and Shannon energy based
approach. In this study, we have chosen HT to com-
pute envelope of HS dominated filtered mixed sound
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Figure 2 (a) A typical example of a normal LS signal. (b) A time domain representation of an abnormal HS signal (pan systolic murmur). (c)Wave
form of the mixed signal and (d) wave form of the filtered signal.

signal because of two reasons. Firstly, Shannon energy
based envelope detection algorithm performs well for
medium intensity signal and it gives poor result for
high and low intensity signal (Choi and Jiang 2008; Ari
and Saha 2007). Secondly, the computational complex-
ity of Shannon envelope is much greater than that of
the Hilbert envelope because Shannon method takes into
considerations the windowing and overlapping processes
(Choi and Jiang 2008; Ari and Saha 2007). We have exper-
imentally observed that HT takes only 0.02 sec for cal-
culating the Hilbert envelope and Shannon energy based
method takes 3.97 sec for computing the Shannon enve-
lope for the same signal of length 40313 samples. As lung
sound shows a wide band spectrum and heart sound gives
a narrow band spectrum, the Hilbert transform facilitates

to detect the heart sound elements in lung sound signals
in spite of their spectral overlap. Hilbert envelope can
trace the variation of heart sound components in lung
sound as a periodic train. The Hilbert envelope is com-
puted based on Hilbert Transform as described in Section
“Theoretical background on Hilbert transform and
Heron’s formula”. Let xnf (n) be the normalized, filtered
mixed signal. The complex analytic signalA[ xnf (n)] of the
given signal xnf (n) is expressed as

A[ xnf (n)]= xnf (n) + jHd{xnf (n)} (11)

The envelope curve EH(n) of the given signal xnf (n) can
be computed from the magnitude of the analytic signal
A[ xnf (n)], and is expressed as
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EH(n) =
√
xnf (n)2 + Hd{xnf (n)}2 (12)

The phase φ(n) information of the analytic signal
A[ xnf (n)] is determined by the following equation

φ(n) = arctan[
Hd{xnf (n)

xnf (n)
] (13)

Peak Detection in the Envelope
The Hilbert envelope curve EH(n) is estimated from the
filtered mixed signal using equation (12) and is shown in
Figure 1(c). The envelope signal consists of many peaks
which are originated from the HS components and from
the low frequency LS components of the filtered mixed
signal as shown in Figure 1(b). Each peak of the envelope
curve EH(n) has a rising and a falling edges, respectively.
The rising edge gives the positive gradient values and
falling edge gives negative gradient values at each point
over the envelope. These peaks are detected through the
following steps:
Step 1: Smoothening of the envelope: The Hilbert enve-

lope EH(n) of the signal is not smooth because of the
presence of lung sound components. Hence, it is required
to smoothen for more accurate peak detection which is
associated with HS. To accomplish this, a filtering oper-
ation is done using a 5th order Butterworth FIR filter
with a cutoff frequency varying in a range of 7-25 Hz.
We discuss the effect of variation in cut-off frequency in
Section “Results and discussion”.
Step 2: Identification of local maxima and minima: The

extreme points of the envelope signal can be calculated
by considering the sign changes across the first derivative
of the envelope. A sample value EH(i) of the smoothed
envelope curve will be a minimum valued point for
d(EH (n))

dn |n=i= 0 ‖ d(EH (n−1))
dn |n=i< 0 ‖ d(EH (n+1))

dn |n=i> 0
and will be a maximum valued point for d(EH (n))

dn |n=i= 0 ‖
d(EH (n−1))

dn |n=i> 0 ‖ d(EH (n+1))
dn |n=i< 0.

Step 3: Estimation of peaks: A peak consists of three
consecutive extrema points which include two minima
and one maximum. Each peak has a finite extension from
one minimum point to another as shown in Figure 1(d).
The duration of the individual peak varies according to its
source characteristics. The peak locations are identified by
calculating their extreme points and marked with a white
arrow head in Figure 1(d).

Picking up the S1, S2, S3 and S4 peaks
The peaks detected using the above described peak detec-
tion framework do not always correspond to heart sound
components. Some peaks occur due to the presence of
artifacts and unfiltered lung sound components. The non-
heart sound peaks are rejected and the heart sound peaks
are selected using a geometrical formula derived by Greek
mathematician Heron.

Selection criteria of S1, S2, S3 and S4 peaks: The area
of individual peak is calculated using Heron’s triangular
formula. The triangles are formed by connecting the
extreme points of the peaks. Let us consider the minima
and maximum points for ith peak are Limin1, Limin2, and
Limax, respectively. The length of each side of the triangle
associated with ith peak are calculated as follows:

∣∣ai∣∣ =
√
[EH(Limax) − EH(Limin 1)]

2

∣∣bi∣∣ =
√
[EH(Limax) − EH(Limin 2)]

2

∣∣ci∣∣ =
√
[EH(Limin 2) − EH(Limin 1)]

2

(14)

where ci is the base , ai is the left lateral side and bi is the
right lateral side of the triangle. The three angles of the
triangle are defined by the following equation

αi = ∠ai ci = arccos
(

(ai)2 + (ci)2 − (bi)2

2ai ci

)

β i = ∠bi ci = arccos
(

(bi)2 + (ci)2 − (ai)2

2bi ci

)

γ i = ∠ai bi = arccos
(

(ai)2 + (bi)2 − (ci)2

2ai bi

)
(15)

where αi, β i and γ i are the angles between the three sides.
The lengths of the three sides of the triangle are unequal
in magnitude and the angles in between them are also
unequal in degree. Hence this triangle satisfies the crite-
rion of scalene triangle. The area �i of the ith triangle is
calculated as

�i =
√
Si(Si − ai)(Si − bi)(Si − ci) (16)

Si = ai + bi + ci

2
(17)


 =
P∑
j=1

Ljmin +
Q∑
j=1

Ljmax (18)

where i indicates the number of triangle and lies in the
range defined by 1 � i � 
 − 2 × Q, P and Q are the
total number of minima andmaximum points in the enve-
lope, respectively. The area of heart sound components
is higher than that of the artifacts or low frequency lung
sound components because heart sound components have
a high peak amplitudes as shown in Figure 1(b). The heart
sound components S1, S2, S3 and S4 are identified by
comparing the area of the peak with an adaptive threshold
value that is calculated from the variance σ of the area vec-
tor A =[A1,A2,A3, . . . ,AQ]T , where Ar(r = 1, 2, . . . ,Q)

indicates the area of individual peak in corrupted LS.
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The heart sound peaks PHS are selected using the
Algorithm 1.

Algorithm 1 Calculate PHS

Require: Z = Q, σ = 1

−2×Q

∑
−2×Q
m=1 (�m − μ)2,μ =

1

−2×Q

∑
−2×Q
m=1 (�m), j = 1 {σ and μ are the variance

and mean of the area vector A}
for k = 1 to Z do

if �k ≥ σ then
PHS(j) ← k

else {�k < σ }
PHS(j) ← 0
j ← j + 1

end if
end for

Boundary estimation of S1, S2, S3 and S4 peaks
The primary HS components (S1 and S2) extend on both
sides of its peak position as shown in Figure 1(e) for a
finite length due to the time gap between the closures
and openings of the heart valves (Pourazad 2004) but the
third (S3) and fourth (S4) HS components extend due to
the relaxation of the ventricle and atrium heart cham-
bers (Webster 1998; Balasubramaniam and Nedumaran
2010). To estimate the HS boundary, peak location identi-
fication is needed. The peak locations are detected using
Algorithm 1, and after that their boundary BHP are calcu-
lated by using Algorithm 2.

Algorithm 2 Calculate BHP
Require: Lmin =[ 1, 2, .....,P] ,NHP = PHS {NHP is the total

number of HS peaks}
for p = 1 to NHP do

for q = Lmin(PHS(p)) to Lmin(PHS(p) + 1) do
BHP(q) ← 1

end for
end for

Experimental data sets and implementation issues
Subjects and data acquisition
The lung sound signals are recorded from the normal as
well as abnormal male and female subjects using a sin-
gle channel stethoscope based data acquisition system
as described in (Mondal et al. 2011). The data acquisi-
tion system has been constructed by making a circuit
using active devices (Transistors. Operational Ampli-
fiers) and passive elements (Resistors, Capacitors and
Inductors) fitted to a stethoscope to capture the LS using
the diaphragm mode. The LS data are recorded from dif-
ferent auscultation locations over the body surface (e.g.,

left mid clavicular area, 2nd intercostal and third inter-
costal spaces) of the patients in the sitting position and
under relaxing mood conditions. The recordings are not
associated with any particular age group. The recorded
data are arranged in 16 bit, PCM, Mono audio format
and stored as *.wav files at sampling frequency of 8 kHz.
The pathological LS are recorded from 8 female and 20
male subjects with different types of pulmonary dysfunc-
tions: Chronic Obstructive Pulmonary Diseases (COPDs),
Interstitial Lung Disease (ILD) and asthma. The patho-
logical HS are recorded from 10 female and 22 male
subjects with various valvular heart diseases. On the
other hand, the normal LS are recorded from 5 male
healthy subjects and normal HS from 3 female and 5
male subjects. The pulmonary sound records are col-
lected from various resources: Institute of Pulmocare and
Research, Kolkata, Audio & Biosignal Processing labora-
tory, IIT Kharagpur, India and also from R.A.L.E. dataset
available at:www.rate.cal. The cardiac sound data are col-
lected from the two institutes mentioned above and also
from the Maulana Azad Medical Institute, Delhi, India.
The abnormal lung sounds include wheezes, crackles
and squawks sounds and abnormal heart sounds include
late systolic murmur, pulmonary stenosis, early systolic
murmur, ejection click, aortic insufficiency, pan systolic
murmur, etc.

Synthetic data
The synthesized mixed lung sound data at different flow
rates are generated by a convoluting mixture producing
technique as described in (Ghaderi et al. 2011). The con-
volutive mixtures are simulated by imposing the filtered
heart sound components FSHS(t) onto the filtered lung
sound components FSLS(t) as given next.

Table 1 The values of norms for different flow rates

TLS THS TM Range of Norm TF

of ap

> 3.10 High

Normal Normal Normal 0.81-3.10 Medium

0.10-0.80 Low

> 3.30 High

Normal Abnormal Abnormal 0.91-3.30 Medium

0.10-0.90 Low

> 3.28 High

Abnormal Normal Abnormal 1.59-3.28 Medium

0.10-1.58 Low

> 3.35 High

Abnormal Abnormal Abnormal 1.97-3.35 Medium

0.10-1.96 Low

TLS: Types of Lung Sounds; THS: Types of Heart Sounds; TM: Types of Mixtures;
TF: Type of Flow.

www.rate.cal.
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Figure 3 Localization results of S1, S2 and S3 HS components. (a) A high flow simulated mixed signal of heart and lung sounds. (b) Heart
sound consists of S1, S2 and S3 components. (c) Output of HHA method (black curve corresponding to mixed sound data and red curve for heart
sound region) and (d) depict the output of SSA method (black curve corresponding to mixed sound and red curve for heart sound segment).

SCM(t) = FSLS(t) + FSHS(t) (19)

FSLS(t) =
3∑

p=0
apSLS(t − p) (20)

FSHS(t) =
3∑

q=0
bqSLS(t − q) (21)

where ap and bq are the vectors of lung sound and
heart sound filter coefficients, respectively. These are four
dimensional vectors, i.e., ap =[ ap0, ap1, ap2, ap3]T and

bq =[ bq0, bq1, bq2, bq3]T . The heart sound filter coefficient
vector bq is normalized to one, i.e.,

∥∥bq∥∥ = 1. These filter
coefficients are generated randomly.
The high, medium and low flow rates mixed signal are

synthesized by varying the amplitude ratios of the heart
and lung sound signals. In this study, four types of mix-
tures at three different flow rates are examined. The range
of the norm of the lung sound filter coefficients vector ap
corresponding to different flow rates for various types of
mixtures are given in Table 1. The classifications of flow
rates have been done empirically by a pulmonologist.
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Figure 4 Localization results of S1, S2 and S4 HS components. (a) A high flow simulated mixed signal of heart and lung sounds. (b) Heart
sound consists of S1, S2 and S4 components. (c) Output of HHA method (black curve corresponding to mixed sound data and red curve for heart
sound region) and (d) depict the output of SSA method (black curve corresponding to mixed sound and red curve for heart sound segment).

Implementation platform
The whole analysis is implemented on an ACER-PC with
3.29 GHz Intel core 2 quad CPU and 3.49 GB of RAM. The
MATLAB (R2008a, The Mathworks, Inc., Natick, MA)
tool is used for conducting the all experiments.

Results and discussion
The efficiency of the proposed method is measured by
evaluating the results in terms of false positive rate (FPR),
false negative rate (FNR), accuracy (ACC), detection error
rate (DER), and execution time (ET), and compared with
the SSA method. These performance measuring units are
calculated by the following equations:

FNR(%) = FN
(TP + FN)

× 100 (22)

FPR(%) = FP
(TN + FP)

× 100 (23)

ACC(%) = (TP + TN)

(TN + TP + FP + FN)
× 100 (24)

DER(%) = (FP + FN)

(TN + TP + FP + FN)
× 100 (25)

False negative (FN) occurs when HS segment is
missed and false positive (FP) occurs due to misiden-
tification of non HS as HS. On the other hand, true
negative (TN) and true positive (TP) occur when HS
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Figure 5 Results of different heart sound localization methods for real recorded lung sound data. (a) High flow real LS signal, (b) shows the
output of HHA method and (c) displays the result of the SSA method.

segment and LS segment are correctly detected. All
the experiments are conducted on the same database
mentioned in Section “Experimental data sets and
implementation issues” with the proposed and SSA
method.

Graphical interpretation of the results
The effectiveness of the proposed method is evaluated
qualitatively through a visual display of the results and
compared with the baseline method (SSA). Figure 3 shows
a graphical representation of the results for a simulated
high flow mixed LS signal [Figure 3(a)] along with a
reference HS signal which consists of S1, S2 and S3
components [Figure 3(b)] and the outputs of these two
methods [Figures 3(c-d)]. On the other hand, Figure 4
shows a graphical representation of the results for a sim-
ulated high flow mixed LS signal [Figure 4(a)] along with
a reference HS signal which consists of S1, S2 and S4
components as shown in Figure 4(b) and the outputs of

these two methods are depicted in Figures 4(c-d). In spite
of these two figures, a pictorial illustration of the results
for a real time recorded high flow mixed LS signal is
shown in Figure 5 (a) along with the outputs of the two
referred methods [Figures 5(b-c)]. From Figures 3(c-d)
and Figures 4(c-d), it is seen that the proposed method
detects the HS segments more correctly than the SSA
method. The baselinemethod is incompetent to detect the
third (S3) heart sound component as shown in Figure 3(d).
In contrast to the baseline method, the proposed method
(HHA) is competent to detect the S1, S2, S3 and S4 com-
ponents of heart sounds as shown in Figure 3(c) and
Figure 4(c). From the Figures 3(d), 4(d) and 5(c), it is
observed that some part of HS included segment is not
estimated and some non HS segment is detected as HS
by SSA technique. On the basis of visual inspection, it is
seen that the proposed method estimates HS boundary
which is relatively larger in size than the reference HS
boundary, but SSA method estimates HS boundary which
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Table 2 Performance of the different HS localizationmethods, HHA and SSA for the synthetic mixtures of normal HS and
normal LS at three different flow rates

TF Method Error (%) ACC DER ET

FNR FPR (%) (%) (Sec)

L HHA 0.0 ± 0.0 1.05 ± 0.04 99.15 ± 0.03 0.83 ± 0.03 0.38 ± 0.01

L SSA 24.63 ± 0.18 0.0 ± 0.0 96.05 ± 0.02 3.94 ± 0.02 1.39 ± 0.01

M HHA 0.00 ± 0.0 2.42 ± 0.34 98.00 ± 0.27 1.99 ± 0.27 0.38 ± 0.01

M SSA 28.10 ± 0.18 0.0 ± 0.0 95.49 ± 0.03 4.49 ± 0.03 1.39 ± 0.01

H HHA 0.0 ± 0.0 5.46 ± 0.31 95.63 ± 0.23 4.35 ± 0.23 0.38 ± 0.01

H SSA 34.90 ± 0.14 0.0 ± 0.0 94.40 ± 0.05 5.59 ± 0.05 1.39 ± 0.01

TF: Types of Flows; FNR: False Negative Rate; FPR: False Positive Rate; ACC: Accuracy; DER: Detection Error Rate; ET: Execution Time.

Table 3 Performance of the different HS localizationmethods, HHA and SSA for the synthetic mixtures of normal HS and
abnormal LS at three different flow rates

TF Method Error (%) ACC DER ET

FNR FPR (%) (%) (Sec)

L HHA 0.0 ± 0.0 1.85 ± 0.30 98.46 ± 0.25 1.53 ± 0.25 0.38 ± 0.01

L SSA 25.80 ± 0.49 0.0 ± 0.0 95.86 ± 0.08 4.13 ± 0.08 1.39 ± 0.01

M HHA 0.00 ± 0.0 2.86 ± 0.31 97.49 ± 0.14 2.49 ± 0.14 0.38 ± 0.01

M SSA 31.85 ± 0.07 0.0 ± 0.0 94.88 ± 0.15 5.10 ± 0.15 1.39 ± 0.01

H HHA 0.0 ± 0.0 7.11 ± 0.08 94.41 ± 0.26 5.57 ± 0.26 0.38 ± 0.01

H SSA 37.09 ± 1.94 2.27 ± 1.66 92.11 ± 2.74 7.88 ± 2.74 1.39 ± 0.01

TF: Types of Flows; FNR: False Negative Rate; FPR: False Positive Rate; ACC: Accuracy; DER: Detection Error Rate; ET: Execution Time.

Table 4 Performance of the different HS localizationmethods, HHA and SSA for the synthetic mixtures of abnormal HS
and normal LS at three different flow rates

TF Method Error (%) ACC DER ET

FNR FPR (%) (%) (Sec)

L HHA 0.0 ± 0.0 3.05 ± 0.32 97.92 ± 0.21 2.06 ± 0.21 0.38 ± 0.01

L SSA 25.92 ± 0.59 0.0 ± 0.0 91.06 ± 0.20 8.92 ± 0.20 1.39 ± 0.01

M HHA 0.00 ± 0.0 4.94 ± 0.47 96.73 ± 0.30 3.25 ± 0.30 0.38 ± 0.01

M SSA 32.98 ± 1.76 0.0 ± 0.0 88.63 ± 0.60 11.36 ± 0.60 1.39 ± 0.01

H HHA 0.0 ± 0.0 14.07 ± 1.25 91.57 ± 0.65 8.41 ± 0.65 0.38 ± 0.01

H SSA 44.27 ± 3.30 2.64 ± 1.84 81.38 ± 0.92 18.59 ± 0.92 1.39 ± 0.01

TF: Types of Flows; FNR: False Negative Rate; FPR: False Positive Rate; ACC: Accuracy; DER: Detection Error Rate; ET: Execution Time.

Table 5 Performance of the different HS localizationmethods, HHA and SSA for the synthetic mixtures of abnormal HS
and abnormal LS at three different flow rates

TF Method Error (%) ACC DER ET

FNR FPR (%) (%) (Sec)

L HHA 0.0 ± 0.0 4.43 ± 0.60 97.01 ± 0.30 2.97 ± 0.30 0.38 ± 0.01

L SSA 27.15 ± 1.26 0.0 ± 0.0 90.42 ± 0.47 9.56 ± 0.47 1.39 ± 0.01

M HHA 0.00 ± 0.0 6.81 ± 0.39 95.59 ± 0.23 4.39 ± 0.23 0.38 ± 0.01

M SSA 34.83 ± 0.95 0.83 ± 0.20 87.44 ± 0.25 12.54 ± 0.25 1.39 ± 0.01

H HHA 0.0 ± 0.0 16.37 ± 0.72 90.40 ± 0.35 9.58 ± 0.35 0.38 ± 0.01

H SSA 45.34 ± 0.64 3.97 ± 0.76 79.25 ± 1.69 20.73 ± 1.69 1.39 ± 0.01

TF: Types of Flows; FNR: False Negative Rate; FPR: False Positive Rate; ACC: Accuracy; DER: Detection Error Rate; ET: Execution Time.
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Table 6 Performance of the different HS localizationmethods, HHA and SSA for the real time recorded lung sounds at
three different flow rates

TF Method Error (%) ACC DER ET

FNR FPR (%) (%) (Sec)

L HHA 0.0 ± 0.0 2.50 ± 0.33 98.15 ± 0.21 1.83 ± 0.21 0.23 ± 0.01

L SSA 25.84 ± 0.99 0.69 ± 0.47 95.42 ± 0.78 4.56 ± 0.78 1.45 ± 0.01

M HHA 0.0 ± 0.0 5.83 ± 0.10 95.59 ± 0.33 4.40 ± 0.33 0.23 ± 0.01

M SSA 29.19 ± 0.52 1.24 ± 0.97 92.96 ± 0.87 7.03 ± 0.89 1.45 ± 0.01

H HHA 0.0 ± 0.0 11.66 ± 0.80 93.05 ± 0.59 6.94 ± 0.59 0.23 ± 0.01

H SSA 36.25 ± 0.61 1.53 ± 1.44 90.40 ± 1.68 9.59 ± 1.68 1.45 ± 0.01

TF: Types of Flows; FNR: False Negative Rate; FPR: False Positive Rate; ACC: Accuracy; DER: Detection Error Rate; ET: Execution Time.

is relatively less in size than the reference HS boundary.
The performance of the proposed method is measured
by comparing its output HS boundary with the reference
HS boundary. In this study, the boundary of reference HS
signal is calculated by three expert physicians based on
auditory test and visual inspection of spectrogram and
waveform of the reference HS signal.

Quantitative evaluation of the results
A quantitative comparisons of these two methods are
given in Tables 2, 3, 4, 5, 6. Tables 2, 3, 4, 5, present the
results for normal and pathological simulated data and
Table 6 gives results for real recorded data. The FNR,
ACC, and DER of the proposed method are significantly
better than the SSA method for various types of mixture
(Tables 2, 3, 4, 5,) and real LS data (Table 6) at different

flow rates. Moreover, the proposed method is faster than
the SSA method. On the other hand, SSA method is bet-
ter in term of FPR. However, the performance of any heart
sound reduction technique which follows a preprocessing
step of HS localization, depends on a correct estimation
of HS segments. So, it is more important to estimate the
segment that contains HS information than the detection
of non HS segment as HS segment. The FNR value of
SSA method and FPR value of the proposed method are
greater for pathological HS signal than the normal HS sig-
nal due to the presence of murmur in cardiac sound signal.
The performance of the two methods degrades gradually
with increase of flow rate because of the superimposition
of LS over HS. The SSA method gives a higher valued
FNR for medium and high flow pathological signals. To
overcome these difficulties, two modifications have been

5 10 15 20 25 30 35
0

10

20

30

40

50

60

Cut off frequency (fc)

F
N

R
 / 

F
P

R

FPR

FNR

Figure 6 The variation of FNR and FPR values with cut off frequency fc for a typical normal artificial mixed lung sound.
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Figure 7 The effect of cut off frequency fc on the calculation of extrema points.

done with SSA technique: (1) first two principal compo-
nents are chosen to reconstruct the HS dominated time
series because the eigenvalue spectra have a bending point
at the 2nd pair and (2) the threshold value and cutoff fre-
quency of high pass filter mentioned in (Ghaderi et al.
2011) are reduced.

Effect of cut off frequency (fc) on the performance of the
proposedmethod
In this experiment cutoff frequency fc of LPF used for the
smoothing of the envelope signal, is set in the range of
7–25 Hz. In fact the performance of the method is directly
influenced by fc. The FNR increases and FPR decrease
with increasing fc as shown in Figure 6. The reason for
increment of FNR and decrement of FPR for high fc is the
shifting of minima points toward the maximum points.
This occurs because of the presence of high frequency
components in the filtered envelope signal as shown
in Figure 7. In other words the estimated HS bound-
ary is smaller than the actual HS boundary. The actual
HS boundary is validated through several tests: auditory,
visual inspection, spectrogram analysis, and WaveSurfer
toolkit. The efficiency of the proposed method may be
improved to a higher degree by deriving an optimum
fc value based on an adaptive filter. This issue may be
addressed in a future work. The analysis of the results
shows that the performance of HS localization algorithms
is affected by flow rates and by pathological states. In spite
of these shortcomings, the proposed method is superior
than other technique in all aspects except FPR.

Conclusion
A new HS localization algorithm is proposed in this work.
This method is developed by using the Hilbert transform
for envelope detection and Heron’s formula for area cal-
culation. Here, HS segments are estimated by comparing
their area with an adaptive threshold value. The perfor-
mance of the method is compared with the SSA method
described in (Ghaderi et al. 2011). The results are obtained
by implementing the proposed and SSA method on sim-
ulated and real recorded LS data. In this study, different
flow rate and various pathological conditions are consid-
ered. The results for simulated and real data show that the
proposed method superior in terms of FNR, ACC, DER,
and ET. However, the SSAmethod is better in term of FPR.
The proposed technique gives a false negative rate of zero
for all cases under all conditions and is faster. Hence, it
is expected to have a high impact in real-life applications
that interpret lung sounds.
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