
a SpringerOpen Journal

Mohamed et al. SpringerPlus 2013, 2:511
http://www.springerplus.com/content/2/1/511
RESEARCH Open Access
A study of an adaptive replication framework for
orchestrated composite web services
Marwa F Mohamed1*, Hany F ElYamany1 and Hamed M Nassar2
Abstract

Replication is considered one of the most important techniques to improve the Quality of Services (QoS) of
published Web Services. It has achieved impressive success in managing resource sharing and usage in order to
moderate the energy consumed in IT environments. For a robust and successful replication process, attention
should be paid to suitable time as well as the constraints and capabilities in which the process runs. The replication
process is time-consuming since outsourcing some new replicas into other hosts is lengthy. Furthermore,
nowadays, most of the business processes that might be implemented over the Web are composed of multiple
Web services working together in two main styles: Orchestration and Choreography. Accomplishing a replication
over such business processes is another challenge due to the complexity and flexibility involved. In this paper, we
present an adaptive replication framework for regular and orchestrated composite Web services. The suggested
framework includes a number of components for detecting unexpected and unhappy events that might occur
when consuming the original published web services including failure or overloading. It also includes a specific
replication controller to manage the replication process and select the best host that would encapsulate a new
replica. In addition, it includes a component for predicting the incoming load in order to decrease the time needed
for outsourcing new replicas, enhancing the performance greatly. A simulation environment has been created to
measure the performance of the suggested framework. The results indicate that adaptive replication with prediction
scenario is the best option for enhancing the performance of the replication process in an online business
environment.

Keywords: Service-Oriented Architecture (SOA); Replication; Composite web service; Orchestration; QoS; Load
balancing
Introduction
Software architecture is a set of structures that aims to
understand the software capabilities and efficiency. Basic-
ally, it defines and structures a software system into inter-
related and well-established components (Len et al. 2003;
May et al. 2009). Service-Oriented Architecture (SOA) is
a particular architectural style to decompose the software
system into a set of reusable, scalable, interoperable and
business-encapsulated components, typically called Web
services (Thomas 2005). Web services (WS) are pub-
lished, described, discovered and accessed using several
standard protocols including WSDL for service descrip-
tion, SOAP for intercommunication, HTTP for binding
* Correspondence: marwa_fikry@ci.suez.edu.eg
1Computer Science Department, Faculty of Computers and Informatics, Suez
Canal University, 41522, Ismailia, Egypt
Full list of author information is available at the end of the article

© 2013 Mohamed et al.; licensee Springer. This
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
data over networks, and UDDI for service registration
and discovery (Papazoglou 2007).
In the last decade, the number of web services has

increased steadily and the Business-to-Business (B2B)
(Albert Napier et al. 2005) applications that demand them
have proportionally increased. Nowadays, the global mar-
ket advocates web services vendors to integrate and work
together under specific rules and constraints to implement
complex business transactions that fulfill all customers’
requirements. This type of web service integration and
combination is called web service composition. In particu-
lar, there are a couple ways to composite web services:
orchestration and choreography (Abdaldhem et al. 2009).
In orchestration, a central component, called orchestrator,
controls the communication and interaction among the
different running web services in an SOA environment.
The invoked web services may not know that it is involved
is an open access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:marwa_fikry@ci.suez.edu.eg
http://creativecommons.org/licenses/by/2.0

Mohamed et al. SpringerPlus 2013, 2:511 Page 2 of 18
http://www.springerplus.com/content/2/1/511
in a composite process. Choreography, by contrast,
has no central component, and the web services cer-
tainly recognize that they are involved in a compos-
ition process and therefore, can exchange messages
directly among themselves.
WS providers are obligated to enhance the perform-

ance and availability of the exposed web service in the
market to quickly and effectively respond to all incoming
requests. Due to the huge number of messages that a
WS may receive in a short time, the WS can fail or be-
come intensively loaded, adversely affecting performance
and availability. The replication technology which means
providing multiple resources, e.g. software or hardware
components (Maamar et al. 2008), is considered one of
the best solutions that would help WS providers to im-
prove the performance and availability of their published
WSs (Maamar et al. 2008). The availability ensures that
the web service is ready for immediate customer con-
sumption (W3C Working Group Note 2003). For example
if a single service becomes overloaded or fails, other copies
will be initiated in order to answer the customer requests.
Performance is concerned mainly with decreasing the re-
sponse time of the incoming requests, through balancing
the requests among the available replicas.
The replication process clearly requires extra space

and extra processing time. Thus, it should be established
in a way that it can reduce the number of deployed rep-
licas and continuously remove unused ones. Two im-
portant factors should be monitored when checking the
status of running replicas: ‘service load’ and ‘service pre-
diction load’. Of course, when the service is overloaded
it requires other copies to balance the load and hence, it
might consume unexpected large number of resources.
So it is necessary to monitor and predict the incoming
load as well as the involved resource utilization.
A web service might be available and unloaded, in

which case the consumer would try to access it with no
response. This possibly occurs in the case of composite
services, where the target web service may be dependent
on other unavailable or overloaded web services. There-
fore, the replication process should consider all web ser-
vices either those invoked alone or those involved in a
composition process. Also, it should consider the inter-
actions and dependencies among the original web ser-
vices and their replicas in addition to the other involved
web services in the composition process.
In this paper, we discuss and develop an adaptive

replication framework for automatically monitoring and
replicating basic or composite web services when they
fail or become overloaded. The suggested framework
conducts composition by orchestration, where a com-
ponent, called the orchestrator, controls the compos-
ition activity. The framework adaptively improves the
availability of the published services. It also dynamically
enhances the performance of the running web services
during runtime. Furthermore, it predicts the load of
the main running services. Finally, it provides system
scalability through facilitating the addition of extra web
services or resources as required by the established
environment.
The rest of the paper is organized as follows. Section

2 shows the related work. Section 3 introduces a full
description of the suggested adaptive replication frame-
work. Section 4 explains the workflow of the proposed
framework. Section 5 shows Implementation and Per-
formance. Finally, conclusion and future work are
presented in section 6.

Related work
The replication process has been classified in several
ways according to the involved components and their
characteristics including requests, replicas and hosts. For
instance, which QoS parameters should be considered to
select a particular server in order to host a new replica
when the original web service is failed or being over-
loaded. The work in (Salas et al. 2006) partitioned the rep-
lication process, with respect to the interaction among
replicas and requests, into three types: active, passive and
semi-active. In the active type, the consumer broadcasts
his/her requests to all available replicas. The one which
manipulates the request first would respond to that re-
quest and interact with the consumer directly. In the pas-
sive type, one of the available replicas would be elected to
be the primary replica to communicate with incoming
requests and be responsible for updating all other available
replicas of the data interchanged and the operations
carried out with the consumers. Another primary replica
will be determined if the original one fails. Unlike the
active and passive types, the semi-active type allows all
available replicas to process the incoming requests simul-
taneously. In the meantime, a master replica is specified to
manage and control the communications among the con-
sumers and replicas.
The proposed research in (May et al. 2009) studied the

replication process and suggested three other strategies:
parallel, serial and composite strategies. The parallel strat-
egy works just like the active type in (Salas et al. 2006).
However, in the serial strategy, the consumer is notified,
by an ordered list, of all available replicas which can ma-
nipulate the incoming request as needed. Therefore, the
consumer communicates with the first replica in the de-
fined list; if the selected replica fails or does not answer
the request during a certain period of time, the consumer
selects the next replica in the list and starts binding with
it. Finally, the composite strategy is a combination of the
two mentioned strategies, aiming to improve the inter-
action between the consumers and the available replicas,
taking the network traffic status into consideration.

Mohamed et al. SpringerPlus 2013, 2:511 Page 3 of 18
http://www.springerplus.com/content/2/1/511
The suggested study in (Zheng and Lyu 2008) expands
the replication types in (Salas et al. 2006) into nine strat-
egies, by considering other constraints including time re-
dundancy that might have an impact on the replication
process. They can be considered as a combination of the
active and passive replication types. For example, the
time redundancy constraint enables the consumer to tol-
erate faults by sending several requests to a specific rep-
lica when it encounters failure or overloading till he/she
obtains an answer in a reasonable period of time.
In (Liu et al. 2011), a Genetic Algorithm (GA) is pro-

posed to produce a near-optimal replication scheme via
a Directed Acyclic Graph (DAG), which is used to dis-
cover all possible replication schemas.
In this work, an adaptive replication framework is sug-

gested to allow a consumer to pass requests to a specific
replica in the same way as in the passive replication case.
However, when the target replica fails or becomes
overloaded, the framework replicates the original service
into another server during runtime and then forwards
the consumer’s requests to the new replica automatic-
ally. Notably, the suggested framework considers only
replicating the target services without replicating the in-
coming requests.
One of the main aims of replication is to provide avail-

ability as discussed in (Wenbing 2007; Liang and Bin
2010; Ooi et al. 2012). In addition, it also improves the
performance of the entire system that the different Web
services operate on (Keidl et al. 2003; You et al. 2009;
Björkqvist et al. 2012).
In paper (Wenbing 2007), a fault tolerant framework is

designed and implemented for managing replication. The
suggested framework dynamically supports switching be-
tween replication and non-replication operation modes
depending on the Web service status and in particular its
availability and reliability.
A framework has been proposed in (Liang and Bin

2010) for accomplishing a changeable-location replica at
runtime. Fundamentally, the suggested framework estab-
lishes an adaptive re-selection of a higher priority service
when the main service or host fails. The service priority
order is organized based on considering some QoS con-
straints including the network availability as well as the
host machine performance, in addition to the execution
time and reliability of the services. The main disadvan-
tage of this framework is that it does not consider any
other crucial metrics within the replica re-selection
process such as the service or host load.
In (Ooi et al. 2012), a dynamic replication framework

is proposed for enhancing the services availability and
performance using a hybrid set of artificial intelligence
techniques including Neural Networks (NN) and Fuzzy
logics. A simulation environment to study the suggested
framework with respect to different circumstances such
as placing and removing the involved resources dynam-
ically, is presented there. However, the work does not
address the replication process in a composite service
environment.
The framework in (Keidl et al. 2003) is designed to en-

hance the performance of the published Web services.
Basically, it studies a dynamic Web service selection and
replication processes at runtime, particularly when the
host becomes unavailable or overloaded. However, it
does not address the hosts’ selection strategies. More-
over, it only replicates the regular or basic services, not
the composite services.
The framework suggested in (You et al. 2009) aims to

improve the QoS parameters of the composite services
by deploying multiple replicas on the idle servers to
overcome the main server problems such as failure or
overloading. Two main components have been defined:
Longest Delay Service Component Selection (LDCS) for
services failure monitoring and Maximum Available
Capacity Path (MACP) for investigating the involved
servers. When LDCS detects that a particular service is
bottlenecked or overloaded, the framework selects an-
other server for hosting a new replica from some specific
available servers utilizing MACP.
The authors in (Björkqvist et al. 2012) introduce a pol-

icy for detecting the number of replicas required for
accomplishing a specific composition process. The pol-
icy reduces the operational cost and minimizes the re-
sponse time of the running composition applications.
The number of required replicas is determined on the
basis of the predicted workload. The main drawback of
the work proposed in (You et al. 2009; Björkqvist et al.
2012) is that both do not discuss the case when the fail-
ure occurs on the host side.
The work in (Mohamed-K and Mohamed-H 2012) is

similar to the work in (Mohamed et al. 2012); however,
instead of using linear aggression for predicting the load,
it uses they deployed a generalized time series tech-
nique, without providing details about that algorithm.
Several researchers restrict the replication management

process to just selecting the optimal web server for hosting
the needed replica, as is the case in (Mehmet et al. 1998;
Silva and Mendonca 2004; Björkqvist et al. 2012). The
work in (Mehmet et al. 1998) explains six server selection
algorithms like Fixed, Ping, Hops, Parallel, Probabilistic
and Refresh. The research in (Silva and Mendonca 2004)
demonstrates five server selection policies as Random
Selection, Parallel Invocation, HTTPing (or Probe), Best
Last, and Best Median. Finally, the authors in (Björkqvist
et al. 2012) used two replicas selection algorithms, namely
Distributed Shortest Queue Selection (D-SQ) and Distrib-
uted Round Robin Selection (D-RR).
The authors in (Marco 2001) classify the sever selection

algorithms into three applied policies: static, statistical,

Mohamed et al. SpringerPlus 2013, 2:511 Page 4 of 18
http://www.springerplus.com/content/2/1/511
and dynamic. In the static policy, the server selection is
based on such resource parameters as the number of
hops, connection bandwidth, and server architecture. The
statistical policy considers the competition among the
servers depending on pervious collected performance
metrics such as latencies and bandwidths. Finally, the dy-
namic or runtime policy elects the optimal server based
on the current network status in addition to the server
conditions such as server workload and response times. In
the present paper, we use a similar technique to the last
policy dynamic selection algorithm (Marco 2001) in which
the server selection process is dynamically established dur-
ing runtime by considering some QoS parameters such as
availability and performance.

The adaptive replication framework
This section explains the main components of the adap-
tive replication framework which is structured for hand-
ling and managing the basic and composite Web
services running in a SOA environment. In an earlier
work (Mohamed et al. 2012), we proposed and briefly
described an adaptive replication framework for dynam-
ically replicating a single web service, the basic type,
when a service approaches failure or overloading. In the
present work, the proposed framework is designed for
monitoring and replicating the running basic or com-
posite web services when it fails or becomes overloaded.
In particular, the suggested framework conducts only
the orchestration composite type in which a compo-
nent, the orchestrator, controls the composition process
among a set of s basic web services integrated together
for implementing a certain business process. In other
words, the orchestration composite type would be con-
sidered as a generalization of the basic type as there is
no mutual dependency among the invoked web services
in a composite business process.
The proposed adaptive framework improves the

availability of the published web services through
reacting to failures on the servers of the consumed
services. The adaptation is realized by automatically
replicating the failed services on another server.
Then, the incoming requests would be transparently
redirected to that server. Remarkably, the requests of
a consumer will not be replicated; they will just be
forwarded to the free replicas. The framework en-
hances the performance of the published services by
using a centralized dynamic load balancing process
(Alakeel 2010). The dynamic load balancing process
is needed to make request balancing decisions at
runtime. And the load balancing process, being cen-
tralized, will execute the utilized load balancing algo-
rithm, e.g. the Round-Robin algorithm (Silberschatz
et al. 2010), as a single service, called Load balancer.
For example, if the server that publishes a particular
web service becomes overloaded at some point in
time, the suggested replication framework will make
the required decision immediately to replicate the
published web service on another server and balance
the incoming requests between the original and the
copied services.

The proposed adaptive replication framework
Figure 1 shows the suggested adaptive replication frame-
work. It includes three layers: the clients or Web service
consumers, the replication middleware and the server
layer (Mohamed et al. 2012).
The Server layer:

1. The Main Server (MS) is located at the replication
middleware layer, and is responsible for managing
the incoming client requests to the consumed
services, and then passing them to the suitable
secondary servers that host the required services.

2. The Secondary Servers (SSs) are located in the
Server layer, and are responsible for processing the
client requests and then passing the results to the
main server. The number of secondary servers that
process client requests is not fixed but changes
over the time depending on the current loads.
The main server forwards requests to a single
replica when the original server load is less than
a predefined threshold set by the service provider;
otherwise it balances the requests between two
replicas.

The main server components
A- A number of sensors are used to observe changes that
might occur in the secondary servers. These sensors are:

1. Failure sensor: checks the status (available or failed)
of secondary servers. It sends ping requests to each
secondary server periodically (typically, every 20
seconds). If the server does not respond, the server
status will be changed to fail.

2. Performance sensor: collects information about the
secondary servers such as the capacity of memory
and hard disk in addition to the processor type. In
the secondary server reservation phase, the
framework sends automatically two web services to
each secondary server: the first collects capability
information, such as hard disk size, memory size
and processor type, and the second collects the CPU
load on the server.

3. Load sensor: gathers the CPU usage of the
secondary servers periodically (typically, every 20
seconds). Like the Failure sensor, it stores the
information in the Replica_InformationDB database
as depicted in Figure 1.

Figure 1 The adaptive replication framework.

Mohamed et al. SpringerPlus 2013, 2:511 Page 5 of 18
http://www.springerplus.com/content/2/1/511
B- A Selector analyzes the sensors outputs. Con-
sequently, it sorts the available Secondary servers
descendingly, from best to worst, according to the fol-
lowing performance metrics:

� Server Status, which includes the following two
components:

1- Availability: if a failure sensor detects a fault on a

secondary server, the server will be deleted from
the selection list.

2- Type (Permanent or temporary): a server is
temporary if it is, for example, rented or cannot
be used for a specific period of time; otherwise
the server is permanent.

� Server Load, which includes the following three
components:
1- The current average CPU usage of the available

secondary servers for the last minute. Naturally,
low-load servers get a higher rank than heavy
load servers.

2- Future load on the available secondary servers,
which can be predicated using linear regression
analysis (Montgomery and Runger 2007). Logically,
servers with low predicted loads get a higher rank
than those with heavy predicted loads.

3- Scheduling of secondary servers. Obviously, a
server that has a free schedule is better than one
that does not.

� Server capabilities, which includes the following
component:
1- Capabilities of the secondary servers such as the
processor type, memory capacity and hard disk
capacity. In our simulation, all secondary servers
have the same capabilities, so this factor is
ignored in the calculations.
The selection process is mainly accomplished by calcu-
lating a value equal to the sum of the pervious listed pa-
rameters by utilizing Equation 1.

S ¼ Rs þ Rl þ Rc ð1Þ

Where Rs is a number describing the server status
(e.g. Available_permanent= 2, Available_rented = 1 and
Failed = −1), Rl is a scaling number representing the ser-
ver load and Rc is a normalized number identifying the
server capabilities. The server with the highest value is
selected first, then the second, and so on.
C- Dispatcher: It acts as a mediator between the con-

sumers and the secondary servers; it accomplishes the
following roles:

1- Responder: exchanges and organizes message traffic
between the consumers and Secondary servers.

2- Load balancer: applies the dynamic load balancing
process (Alakeel 2010), which is basically
implemented through executing three stages:
Information, Transfer, and Location (Alakeel 2010).
The Information stage is for collecting data including
the running and administration data relating to the

Figure 2 Example of web services composition with orchestration.

Mohamed et al. SpringerPlus 2013, 2:511 Page 6 of 18
http://www.springerplus.com/content/2/1/511
deployed SOA environment and that accomplished
via several sensors such as load, performance, and
failure. The main function of the Transfer stage is to
transfer decisions issued when some changes have
been detected such as a server failure. Finally, the
Figure 3 Example of web services composition with orchestration.
Location stage is assigned for the alternative servers
selection process which would be performed based on
a hybrid set of QoS metrics, including the server
availability, performance and load. Finally, it balances
the load of the incoming requests.

Figure 4 The sequence diagram of the static scenario.

Mohamed et al. SpringerPlus 2013, 2:511 Page 7 of 18
http://www.springerplus.com/content/2/1/511
3- Orchestrator: the dispatcher acts as an orchestrator
or coordinator in the case of the composite web
services. It controls the communication and
interaction among the WSs constituting a particular
business process. For example an orchestrator
invokes WS1, WS2 and WS3, then passes the
outcomes ‘A, B and C’ to WS4 in order to allow
WS4 to accomplish its task as seen in Figure 2.

Note that when WS2 which is involved in a specific
composite process is overloaded, the dispatcher or the
Orchestrator, in this case, acts as the Load balancer to
Figure 5 The dispatcher algorithm for a basic web service.
control and distribute the incoming messages among the
replicas shown in Figure 3. More details about the rep-
licas management process within the WSs composite
case are given in the following section.
D- Replicator: It checks the server availability and

performance, assumed in this work to be every 20
seconds. Once it detects that a server stopped work-
ing, it replicates the web services files on a secondary
server automatically. Hence, the load sensor obtains
the server load periodically, and then the average load
of secondary servers is updated. The replicator checks
this update and also ensures the server availability to

Mohamed et al. SpringerPlus 2013, 2:511 Page 8 of 18
http://www.springerplus.com/content/2/1/511
take the appropriate action. Generally, two approaches
have been used to control access to replicated resources
on the Internet: the server side and client side ap-
proaches (Silva and Mendonca 2004). The Server side
approach is utilized in cases where server holding rep-
licas are connecting and communicating together phys-
ically or under the same administration, as is the case in
server clusters.
The second approach basically considers the client’s

characteristics and preferences to access the needed
replicas. Thus, the client side approach is mostly suit-
able in cases where replicas are geographically dis-
persed. In the adaptive replication framework proposed
in the present work, the server side approach is utilized
for controlling and managing the replication process
where the clients access the replicas through sending
requests and receiving responses.
E- Cleaner: It examines the usage status of all second-

ary servers and their embedded WSs. In other words, it
checks the secondary servers that have inactive replicas
which have not received any messages during a certain
period, assumed to be every 60 seconds. Therefore, it
deletes the inactive web services from the secondary
servers and changes the status of the servers to be “un-
used” if it does not have any active replicas.

Workflow of the adaptive replication framework
The workflow of the suggested replication framework
can be divided into two phases: Reservation and
Runtime. The Reservation phase is for collecting
Figure 6 The sequence diagram of the dispatcher scenario.
information about the involved Secondary servers
and the running web services. The Runtime phase is
for invoking the replication process during runtime
according to particular QoS metrics including per-
formance and availability.

Reservation
In this phase, the Main server records and maintains the
basic information about Secondary servers and web ser-
vices such as server name and IP in addition to the web
service name and URL.
At the beginning, the servers are registered manually

and then monitored dynamically by the failure sensor.
Periodically, Equation 1 is recalculated by the selector to
update the servers’ selection list.

Secondary servers reservation
The server reservation phase includes saving the basic
information about the available Secondary servers in
Replica_InformationDB. The information look likes

� Name, IP addresses, FTP information (i.e. FTP
Name, username and password). That information is
needed in order to transfer the copied WSs to the
selected secondary servers.

� Status (permanent or temporary), and if it is a
temporary server, the date and timestamp of the
renting period will be registered.

� Schedule list: it registers the date of the possible
activities that may make a server loaded.

Mohamed et al. SpringerPlus 2013, 2:511 Page 9 of 18
http://www.springerplus.com/content/2/1/511
Web service reservation
The Web services reservation phase includes saving
the basic information about the web service on the
Replica_InformationDB. The information look likes:

� Web service Name
� Initial position of the web service ‘secondary server IP’.
� Web service file: it used by replicator when the

master replica fails or becomes overloaded.

Runtime
There are three scenarios for implementing the replica-
tion process:

� Static scenario: there is no replication, only one
service executes the consumer request.

� Adaptive scenario: in this scenario, the replication is
done automatically when the service fails or overloaded.

� Adaptive with prediction scenario: is the same as the
previous scenario except that it is including the
prediction load capability.

Of course, some other scenarios might be located
between the main discussed in this work including
the regular load balancing scenario. In such a scenario,
the servers and the embedded replicas are fixed and the
Figure 7 The dispatcher algorithm for composite web services.
incoming requests are distributed and manipulated
among them whether the detected load is high or low.
In this work, we are only interested in the dynamic en-
vironment in which the load, servers and replicas
change periodically.
A full comparison between these scenarios is demon-

strated in the Implementation and Performance section.

The static scenario
In this scenario, the dispatcher determines some server(s)
to process the client requests. If the server(s) and the
hosted web services are working properly, no action would
be taken. Figure 4 explains how this scenario works.

� A client sends a request to the Dispatcher.
� The dispatcher forwards the request to the

secondary server(s) for processing.
� The secondary server(s) processes the client

requests and sends the response to the Dispatcher.
� The dispatcher sends the response back to the client.

The adaptive scenario
The functionalities of the Dispatcher, Replicator and cleaner
within the adaptive scenario are demonstrated below.

� A client sends a request to the dispatcher.

Mohamed et al. SpringerPlus 2013, 2:511 Page 10 of 18
http://www.springerplus.com/content/2/1/511
� The dispatcher reads the number of replicas and
server IPs used from the Replica_InformationDB
database. If the number of replicas is 1, the dispatcher
forwards the request to a single secondary server. If
there multiple copies of the same service, the
dispatcher balances the client request and other
incoming requests between these replicas using the
round robin algorithm.

� The Secondary server(s) processes the incoming
request (s) and sends the response to the dispatcher.
Then the dispatcher sends the response back to the
client. The algorithm in Figure 5 shows how the
dispatcher works. Also, the sequence diagram in
Figure 6 summarizes the main dispatcher
functionalities.
Figure 8 The replicator algorithm for a basic web service.
As seen in Figure 6, the dispatcher uses the informa-
tion stored in Replica_InformationDB to decide when it
should replicate a loaded service and then balance the
load between the original service and its replica(s). The
replicator is the responsible component for specifying
the replication time, as explained later. In this frame-
work, the three components: dispatcher, replicator and
cleaner work in parallel.
In the case of composite web services, the dispatcher

acts as an orchestrator to coordinate the different web ser-
vices that are involved in the WSs composition process.
First, the orchestrator reads the information available
about all the WSs registered in Replica_InformationDB.
Second, it calls and collects the outputs from WSs as
shown in Figure 2. Finally, it forwards these outputs to a

Figure 9 The sequence diagram of the replicator scenario.

Mohamed et al. SpringerPlus 2013, 2:511 Page 11 of 18
http://www.springerplus.com/content/2/1/511
specific WS in order to accomplish its task. The algorithm
in Figure 7 formalizes the preceding steps.
The replicator checks the used secondary server(s) every

20 sec. If the secondary server fails, the replicator calls the
selector to choose the best available secondary server (s).
Then it replicates the original web service on the selected
server(s). Also, it updates Replica_InformationDB by the
writing the new IP address of replica(s).
The algorithm in Figure 8 formalizes how the replica-

tor works. Also, the sequence diagram in Figure 9 sum-
marizes the main replicator functionalities.
In the composition case, the replicator checks the

availability and performance of the WSs involved in
Figure 10 The replicator algorithm for composite web services.
implementing the composition process. It should be
noted that in the orchestration composite case, none of
the involved WSs calls any of the others. However, the
Orchestrator is the component which manages the
communications among those WSs and consequently
their replicas as well. In other words, the invoked web
services are fully operated and controlled through a re-
lationship loosely coupled with the central Orchestrator.
The orchestration composite replication in this case

would be considered repetition n times of the Basic rep-
lication process with respect to the n loaded or failed
WSs embedded in establishing the orchestration com-
posite case as shown in Figure 10.

Figure 11 The cleaner algorithm for basic web services.

Mohamed et al. SpringerPlus 2013, 2:511 Page 12 of 18
http://www.springerplus.com/content/2/1/511
After checking the status (i.e. active or inactive) of
the existing replicas, the cleaner removes all un-
needed replicas. The inactive replica is the WS that
has no longer in call by the consumer or any other
components. To investigate that, the following state-
ment is applied:
IF currentTime > LastUpdateOfServerIP + ProcessingTime
THEN Replica_Status = Inactive
Else Replica_Status = Active
Where LastUpdateOfServerIP is the last time in which

the Replicator changes the status of the host server for
that replica from ‘used’ to ‘unused’. The ProcessingTime
is the period needed by the host server to process con-
sumers’ requests.
The algorithm in Figure 11 formalizes how the clean-

er works in basic web services case. Also, the sequence
diagram in Figure 12 summarizes the main cleaner
functionalities.
Figure 12 The sequence diagram of the Cleaner scenario.
In the composition case, the cleaner deletes all inactive
replicas ‘WSs’ involved in the composition process. The
algorithm in Figure 13 shows the steps that the cleaner
follows to delete the inactive replicas within the compos-
ition case.

Adaptive with load prediction scenario
In this scenario, the dispatcher, selector and cleaner
mechanisms for basic and composite WSs work as
explained in the adaptive scenario. However, a predic-
tion utility is added to the replicator in order to predict
the incoming load in a specific day using the following
factors:

� Linear regression can be used to explain the relation
between x (the load of the current day) and y (the
load of the next day) by using Equations 2, 3 and 4.
Notably, it might be known that the server load

Figure 13 The cleaner algorithm for composite web services.

Mohamed et al. SpringerPlus 2013, 2:511 Page 13 of 18
http://www.springerplus.com/content/2/1/511
follows a nonlinear statistical model (Montgomery
and Runger 2007).

β1 ¼ ∑
i
xi−�xð Þ yi−�yð Þ=∑

i
xi−�xð Þ2 ð2Þ

β0 ¼ �y þ β1�x ð3Þ
y ¼ β0 þ β1

1
x

� �
þ ε ð4Þ

Where �x and �y denote average. These equations will
be verified by an example in the following section. The
algorithm in Figure 14 demonstrates the way in which
the replicator works.
Figure 14 The replicator algorithm for basic web services.
Implementation and performance
In (Mohamed et al. 2012), we introduced a case study for
demonstrating the Basic replication workflow. Hence, it
would be worthy to only focus here on the scenario of the
Composite WSs replication. In this section, we will discuss
a case study for showing the Composite replication work-
flow in order to evaluate the proposed framework.
The composite replication case study is described as

follows. In our University, at the beginning of each
academic year, the students often access the University
home page, hence the interconnected University servers,
to know whether they have been accepted in the

Figure 15 The orchestrated composite dormitories web services.

Mohamed et al. SpringerPlus 2013, 2:511 Page 14 of 18
http://www.springerplus.com/content/2/1/511
dormitories. A student is accepted if and only if he/she
satisfies the following conditions:

� The grade in the previous year must be C or higher.
� The tuition fees have been fully paid.
� The medical examination shows no infectious

diseases.

In this scenario, at least three different web services are
running to handle the above conditions; they are deployed
on different web servers which are established as follows:

� The academic server located in each faculty where
the student registered. This server manages
regulations A and B through a published web service
named ‘academic_WS’.

� The medical server located inside the University
hospital in which the student establishes his annual
medical examination. This server conducts
Figure 16 The orchestrated composite dormitories web services with
regulation C by a particular web service called
‘medical_WS’.

� The Dormitories server located in the main
University Dormitory in which the previous
regulations (A, B and C) are passing to in order to
check the acceptance status of each registered
student through consuming the Dormitories web
service defined as ‘Dormitories_ws’.

The University server is responsible for controlling
and monitoring the interaction among the previously
mentioned servers as depicted in Figure 15.
Each student is usually asked to submit his/her national

ID or University ID, and then a specific data verification
process will be accomplished through the suggested
replication framework. First, the dispatcher invokes the
‘academic_WS’ to check the status of regulations A and B;
the tuition fees and academic report of each registered
student. Then, the dispatcher calls the ‘Medical_WS’ to
a replica.

Table 1 The history average load of the target academic server

Day Saturday 1 - 5 Sunday 2 - 5 Monday 3 - 5 Tuesday 4 - 5 Wednesday 5 - 5 Thursday6 - 5 Friday 7 - 5

The academic server
average load

62 80 50 45 72 52 39

Day Saturday 8 - 5 Sunday 9 - 5 Monday 10 - 5 Tuesday 11 - 5 Wednesday 12 - 5 Thursday 13 - 5 Friday 14 - 5

The academic sever
average load

67 69 55 50 85 45 30

Mohamed et al. SpringerPlus 2013, 2:511 Page 15 of 18
http://www.springerplus.com/content/2/1/511
verify regulation C, the student health report. Then, the
dispatcher passes all outcomes of the running web services
to the ‘Dormitories_WS’ in order to determine whether the
student would be accepted or rejected.
In the Static scenario ‘without Replication’: If any of

the published web services, such as ‘academic_WS’, or of
the host servers, such as the academic servers fails, the
student will not get a response. Furthermore, if any of
the host servers is overloaded, the student has to wait
longer to get a response because, in that case, no load
balancing technique is supported.
The Adaptive Replication scenario: The University ser-

ver manages the web services replication process. If it
detects the failure of a web service or a host server,
the framework automatically replicates the consumed
service on another server (i.e. a Secondary server) lo-
cated inside the University campus based upon certain
Service-Level Agreements (SLAs) including their per-
formance and availability. Moreover, if the University
server detects the overloading of a web service or host
server, the framework automatically replicates the con-
sumed service on another server then uses the Round
Robin load balancing algorithm (Silberschatz et al. 2010)
to balance the requests on the replicas.
Adaptive with a load prediction scenario: Adding to the

previous case, a prediction utility using linear regression is
employed in order to save the replica deployment time. In
this experiment, we assume that the academic server is
overloaded by the incoming requests, so the replicator
transfers the academic_WS to another academic server
located in the University campus (i.e. located in another
faculty inside the campus) and balances the incoming re-
quests between the two servers as shown in Figure 16.
Table 2 The load prediction calculation of the target academ

x y xy x2 y2

1 62 80 4960 3844 6400

2 50 45 2250 2500 2025

3 72 52 3744 5184 2704

4 39 67 2613 1521 4489

5 69 55 3795 4761 3025

6 50 85 4250 2500 7225

7 45 30 1350 2025 900

Total 387 414 22962 22335 26768
The following example explains how the server load
prediction works. The Load sensor collects the historical
data about the load of all available servers in the cam-
pus, for two weeks. This data is saved in a particular
database virtualized as a queue that is updated daily,
with the newest value added at the tail of the queue and
the oldest value removed from the head (As a shifting
process). This shown in Table 1, where the odd days
(i.e. 1st, 3rd May and… etc.) are expressed as x with re-
spect to the mentioned equations in Section 4 and the
even days (i.e. 2nd, 4th May and… etc.) are presented as
y with respect to the same equations in Section 4.
If the load of the target academic server for the day

comes directly after the two monitored weeks (i.e. Satur-
day, May 15th) it is measured and expressed as x= 60 re-
quests then the predicted load of the academic server
for the day after (i.e. May 16th) which is presented as y
as will be calculated.
Remarkably, we assume the load will be predicted daily

because it is more suitable for our case study. For ex-
ample, at the beginning of the academic year, the
Dormitories server will understandably become over-
loaded during the entire day.
Table 2 involves the needed values to calculate β1, β0

and y as explained in section 4.3 using the Equations 2-4

β1 ¼ :074

β0 ¼ 54:8

y ¼ 54:8þ :074=60 ¼ 54:8

The following experiments were conducted to evaluate
the performance of the framework using the previous
scenarios (static, adaptive and adaptive with load
ic server

x−�x y−�y x−�xð Þ y−�yð Þ x−�xð Þ2
6.714286 20.86 140.0408163 45.08163265

−5.28571 −14.14 74.75510204 27.93877551

16.71429 −7.143 −119.3877551 279.3673469

−16.2857 7.857 −127.9591837 265.2244898

13.71429 −4.143 −56.81632653 188.0816327

−5.28571 25.86 −136.6734694 27.93877551

−10.2857 −29.14 299.755102 105.7959184

73.71428571 939.4285714

Table 3 The capabilities of simulation servers

Capabilities MS SSs DNS

HD 40 GB 40 GB 40 GB

CPU Intel® core ™ Num of core using by VMware 1

Memory 500 MB 384 MB 384 MB

OS Microsoft windows server 2003

Language PHP scripting language -

Mohamed et al. SpringerPlus 2013, 2:511 Page 16 of 18
http://www.springerplus.com/content/2/1/511
prediction). The test environment in VMware simulation
consists of 6 servers: 1 MS, 5 SSs and 1 DNS. The DNS
server is used also as a secondary server. The capabilities
of these servers are established in Table 3. All suggested
secondary servers are academic servers running inside
the University.
The experiments were conducted using ApacheBench

Version 2.0.40-dev <$Revision: 1.146 $>apache-2.0 by
passing parameter such as:

� The number of requests that are passed to the
University web page. In this experiment, the
requests are passed to the dispatcher component,
which is located on the University server.

� The concurrency level is the number of concurrent
requests passed to the web page at the same time.
For example, if we want to run 1000 requests and
the concurrency level is 10, then the requests will be
sent over 100 times. Of course, there is positive
correlation between concurrency level and server
load, in the sense that when the concurrency level
increases, the server load also increases.
Figure 17 The response time of running 1500 requests.
� The web page URL required for testing ‘Dispatcher
web page’.

� Number of periods required to be tested and the
time in seconds between these periods.

The experiment is accomplished by passing a number of
requests equal to (150, 300, 450 and 600) representing the
number of target students who would like to submit in
Dormitories. Also passed are their concurrency levels (1,
3, 6, 9 and 12) indicating the number of students who sub-
mit their requests simultaneously. Then, the response time
and throughput are calculated at each concurrency level.
At level 1, say, the response time is calculated by summing
the response time values resulting from passing (150, 300,
450 and 600(. At the other levels the response time will be
calculated similarly.
Figure 17 demonstrates the charts for the above experi-

ment with the three different scenarios: static, adaptive and
adaptive with prediction. As shown in Figure 17, the con-
currency levels (1and 3) reflect the low load of requests, the
concurrency level (6) reflects the average load of requests,
and also (9 and 12) reflect the high load of requests; de-
pending on the used server capabilities.
The performance order of the previous approaches

shown in Figures 17 and 18 from best to worst is adap-
tive with load prediction property, adaptive replication
and static approaches. Note that when the concurrency
level is increased above 3 requests per second “low load
case”, the gap between static and adaptive is increased,
whereas the gap between adaptive and adaptive with
prediction is decreased. When the concurrency level
equals 1, i.e. a request passing at a time, the response

Mohamed et al. SpringerPlus 2013, 2:511 Page 17 of 18
http://www.springerplus.com/content/2/1/511
time and throughput of the three techniques approach
the same value. In this case, there is no need to balance
the incoming requests and typically the adaptive sce-
nario would act as the static one by forwarding requests
to a single replica.
If the concurrency level is 3 or 6, the adaptive replication

technique pass more requests to a single replica, so that the
average load takes longer time to reach to the threshed (as-
sumed 75%). Thus, it becomes nearer to static and far from
adaptive with load prediction property.
When the concurrency level is 9 or 12, the adaptive

replication technique balances the requests on the two
replicas because the average load reaches the threshed
quickly (75%). So it becomes nearer to adaptive with
load prediction property and far from static approach.

Conclusions and future work
In this paper, an adaptive replication framework for basic
and composite web services is introduced and described.
The framework aims to improve the web services avail-
ability. It also minimizes the response time through
supporting an adaptive replication of the consumed web
services, considering the environment changes that
might occur at the service provider side such as failure
or overloading. In particular, the suggested framework
studies the orchestration composite type through man-
aging the interconnection among some regular web ser-
vices and replicates the poorly-operated service.
Moreover, the framework includes a particular utility

for predicting the future load on the servers hosting the
original copies of the web services. The prediction helps
Figure 18 The throughput of running 1500 requests.
decrease the time of outsourcing the replicas on other
available servers.
A case study of accomplishing the replication process

for an orchestrated composite web service is presented.
The associated experiments study the proposed frame-
work in three different scenarios: static ‘without replica-
tion’, adaptive and adaptive with load prediction
property, and measure the response time and through-
put. The shown outcomes prove that the framework
operates most efficiently when it runs with the adaptive
with prediction property mode.
For the future, we plan to apply the adaptive repli-

cation framework on choreographically composite web
services, where no central component controls the inter-
action between Web services, but rather the Web ex-
changes messages directly among them.
Furthermore, we aim to apply a partially adaptive rep-

lication over the published coarse granular web services,
where a service encapsulates different business processes
or operations. We believe that it would be better to rep-
licate the service operations which often have a high
load in the form of a standalone web service to guaran-
tee the privacy of the main service as well as to enhance
the interoperability and granularity of the composite ser-
vice process
Moreover, we plan to utilize other prediction load algo-

rithms by accomplishing another robust statistical predic-
tion technique for managing properly all types of data sets,
including linear and nonlinear sets. Likewise, we are willing
to improve the server selection techniques through consid-
ering the consumer requirement preferences.

Mohamed et al. SpringerPlus 2013, 2:511 Page 18 of 18
http://www.springerplus.com/content/2/1/511
Finally, we plan to apply the adaptive replication on
another distributed system including a cloud computing
platform.

Competing interests
The authors have no competing interests.

Authors’ contributions
MFM constructed and implemented the proposed framework as well as
wrote the preliminary version of the manuscript. HFE enhanced the structure
of the suggested framework, supervised and reviewed the implementation
process and wrote the final version of the manuscript. HMN reviewed and
drafted the final version of the manuscript. All authors read and approved
the final manuscript.

Author details
1Computer Science Department, Faculty of Computers and Informatics, Suez
Canal University, 41522, Ismailia, Egypt. 2Electrical and Computer Engineering
Department, Beirut Arab University, Beirut, Lebanon.

Received: 14 April 2013 Accepted: 1 October 2013
Published: 5 October 2013

References
Abdaldhem A, Patrik F, Jacques P (2009) Web services orchestration and

composition: case study of web services composition. Internal working
paper; Department of Informatics, University of Fribourg, Fribourg, Canton of
Fribourg, Switzerland

Alakeel AM (2010) A guide to dynamic load balancing in distributed computer
systems. International Journal of Computer Science and Network Security
(IJCSNS) 10(6):153–160

Albert Napier H, Rivers ON, Wagner SW, Napier JB (2005) Creating a winning
E-business (2nd edition). Course Technology

Björkqvist M, Chen LY, Binder W (2012) Dynamic replication in service-oriented
systems, 12th IEEE/ACM international symposium on cluster, cloud and grid
computing. Ottawa, Canada

Keidl M, Seltzsam S, Kemper A (2003) Reliable web service execution and
deployment in dynamic environments, In 4thInternational workshop on
technologies for E-services (TES). Springer, Germany, Berlin

Len B, Paul C, Rick K (2003) Software architecture in practice (2nd edition).
Addison-Wesley Professional, United States

Liang G, Bin Z (2010) A modeling approach on self-adaptive composite services.
In: International conference on multimedia information networking and
security. Nanjing, Jiangsu China

Liu A, Li Q, Huang L (2011) Quality driven web services replication using directed
acyclic graph coding, In WISE’11 proceedings of the 12th international
conference on web information system engineering. Springer-Verlag Berlin,
Heidelberg

Maamar Z, Sheng QZ, Benslimane D (2008) Sustaining web services high-
availability using communities: the third international conference on
availability. Reliability and Security, Barcelona

Marco B (2001) A simulation analysis of dynamic server selection algorithms for
replicated web services. In: proc. of the 9th int. symp. on modeling, analysis
and simulation of computer and telecommunication systems (MASCOTS
2001). IEEE-CS Press, Cincinnati, OH

May NR, Schmidt HW, Thomas IE (2009) Service redundancy strategies in service-
oriented architectures: in software engineering and advanced application.
IEEE Comp. Soc, Patras, Greece

Mehmet S, Yuri B, Peter S, Radek V (1998) Selection algorithms for replicated web
servers. In Proc. of the Workshop on Internet Server Performance,
SIGMETRICS, USA

Mohamed MF, El Yamany HF, Hussien MK, Yhiea NM, Nassar HM (2012) An
adaptive replication framework for improving the QoS of web services.
CLOSER 2012 - 2nd international conference on cloud computing and
services science, Portugal

Mohamed-K H, Mohamed-H M (2012) A framework for adaptive QoS of web
services using replication. International Journal of Computer Science &
Communication Networks 2(2):288–294

Montgomery DC, Runger GC (2007) Applied statistics and probability for
engineers(4th edition). John Wiley & Sons, Inc., USA
Ooi B-Y, Chan H-Y, Cheah Y-N (2012) Dynamic service placement and replication
framework to enhance service availability using team formation algorithm.
Journal of systems and Software 85(9):2048–2062

Papazoglou M (2007) Web services: principles and technology. Pearson Education
Limited, England

Salas J, Perez-sorrosal F, Patiño-martínez M, Jiménez-peris R (2006) WS-replication:
a framework for highly available web services, In 15th international
conference on the world wide web. Edinburgh, Scotland

Silberschatz A, Galvin P, Gagne G (2010) Operating system concepts (8th edition).
John Wiley & Sons, Asia

Silva JA, Mendonca ND (2004) Dynamic invocation of replicated web services. In:
In the proceedings of the WebMedia & LA-web 2004 joint conference 10th
Brazilian symposium on multimedia and the web 2nd latin American web
congress (LA-webmedia’04). Ribeirao, Preto, Brazil

Thomas E (2005) Service-oriented architecture (SOA): concepts, technology, and
design. Prentice Hall, United States

W3C Working Group Note (2003) QoS for web services: requirements and
possible approaches. http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/.
Accessed September 28, 2012

Wenbing Z (2007) A lightweight fault tolerance framework for web services, In
web intelligence. IEEE Comp. Soc, Fremont, CA

You K, Qian Z, Tang B, Lu S, Chen D (2009) Qos-aware replication in service
composition. International Journal of Software and Informatics 3(4):465–482

Zheng Z, Lyu MR (2008) A distributed replication strategy evaluation and
selection framework for fault tolerant web services: in IEEE international
conference on web services. Beijing, China

doi:10.1186/2193-1801-2-511
Cite this article as: Mohamed et al.: A study of an adaptive replication
framework for orchestrated composite web services. SpringerPlus
2013 2:511.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

	Abstract
	Introduction
	Related work
	The adaptive replication framework
	The proposed adaptive replication framework
	The main server components

	Workflow of the adaptive replication framework
	Reservation
	Secondary servers reservation
	Web service reservation

	Runtime
	The static scenario
	The adaptive scenario
	Adaptive with load prediction scenario

	Implementation and performance
	Conclusions and future work
	Competing interests
	Authors’ contributions
	Author details
	References

