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Abstract

The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First
method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization
algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement
behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used
also for training ANNS. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO
and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse
problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution

reveals that fault model parameters are agree quite well with the known results. A more agreement has been found
between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.
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Introduction

Optimization has been an active area of research for
several decades. As many real-world optimization
problems become more complex, better optimization
algorithms were needed. In all optimization problems
the goal is to find the minimum or maximum of the
objective function. Thus, unconstrained optimization
problems can be formulated as minimization or
maximization of D dimensional function:

Min (or max) f(x),x = (x1,%2,%3, ...,%p) (1)

where D is the number of parameters to be optimized.
Many population based algorithms were proposed for
solving unconstrained optimization problems. Genetic
algorithms (GA), particle swarm optimization (PSO), are
most popular optimization algorithms which employ a
population of individuals to solve the problem on hand.
The success or failure of a population based algorithms
depends on its ability to establish proper trade-off between
exploration and exploitation. A poor balance between
exploration and exploitation may result in a weak
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optimization method which may suffer from premature
convergence, trapping in a local optima and stagna-
tion. PSO algorithm is another example of population
based algorithms (Ardito et al. 2005). PSO is a sto-
chastic optimization technique which is well adapted
to the optimization of nonlinear functions in multidi-
mensional space and it has been applied to several
real-world problems (Boehner et al. 2007; Khan and
Sahai 2012).

The gravity method was the first geophysical tech-
nique to be used in oil and gas exploration. Despite
being eclipsed by seismology, it has continued to be
an important and sometimes crucial constraint in a
number of exploration areas. In oil exploration the
gravity method is particularly applicable in salt prov-
inces, over thrust and foothills belts, underexplored
basins, and targets of interest that underlie high-vel-
ocity zones. The gravity method is used frequently in
mining applications to map subsurface geology and to
directly calculate ore reserves for some massive sul-
fide ore-bodies. There is also a modest increase in the
use of gravity techniques in specialized investigations
for shallow targets. Also it has application in agricul-
ture and archeology. Data reduction, filtering, and
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Gravity anomoly

Figure 1 Fault model illustrating various parameters used in work, and shape of expected gravity anomaly.

visualization, together with low-cost, powerful per-
sonal computers and color graphics, have transformed
the interpretation of gravity data. Also in gravity
methods, Euler and Werner deconvolution depth and
edge -estimation techniques can help define the lateral
location and depth of isolated faults and boundaries
from gravity data. Complex geology with overlapping
anomalies arising from different depths can, however,
limit the effectiveness of deconvolution fault-detection
results (Nabighian et al. 2005; Toushmalani 2010b;
Toushmalani 2010c; Toushmalani 2010d; Toushmalani
2011).

The outline of this paper is as follows. In first section we
discussed the gravity field of a fault, Section Levenberg-
Marquardt describes the algorithms of PSO and LM.
Section Particle Swarm Optimization (PSO) presents
application of Levenberg-Marquardt backpropaction
algorithm, and a particle swarm algorithm in solving
inverse problem of a fault. Most importantly the
parameters for the algorithms are given for the indi-
vidual tests. Section Application of PSO and LM
optimization in inverse problem solving presents con-
clusions and final comments.

Appplication to the gravity field of a fault

A fault structure can be approximated by two Semi-
infinite horizontal sheets, one displaced vertically from the
other. The general situation of a fault is presented in
Figure 1, together with the shape of the Expected anomaly
which is described by the formula 2 (Telford et al. 1976):

g = 2k6t[rr + tan™ { (x/h; + cot (a)}-tan™ {(x/hy + cot (a)}]
(2)

K=6.672e-3
6=density contrast

t=thickness of sheet

h; ,=depth of each side to the middle of the sheet
a=fault angle (Thanassoulas et al. 1987; Telford et al.
1976; Toushmalani 2010a; Toushmalani 2013).

Levenberg-Marquardt
The Levenberg-Marquardt algorithm (LM) (Juutinen
and Saariluoma 2007) is an approximation to the New-
ton method (cf. Figure 2) used also for training ANNS.
The Newton method approximates the error of the net-
work with a second order expression, which contrasts to
the Backpropagation algorithm that does it with a first
order expression. LM updates the ANN weights as follows:

aw=[u + 3" ) (w)] " VEw) (3)

Where ' (w) is the Jacobian matrix of the error vector &’
(w) evaluated in w, and I is the identity matrix. The vector
error €’ (w) is the error of the network for pattern p, that is,
fw) =1 - d’(w).

The parameter p is increased or decreased at each
step. If the error is reduced, then p is divided by a factor
f3, and it is multiplied by 8 in other case. Levenberg -
Marquardt performs the steps detailed in Figure 3. It
calculates the network output, the error vectors, and the
Jacobian matrix for each pattern. Then, it computes Aw
using (3) and recalculates the error with w + Aw as net-
work weights. If the error has decreased, p is divided by
[, the new weights are maintained, and the process
starts again; otherwise, p is multiplied by 8, Aw is calcu-
lated with a new value, and it iterates again (Khan and
Sahai 2012).

Particle swarm optimization (PSO)
The PSO algorithm was first introduced by Eberhart
and Kennedy (Council of Ministers of Education 1998
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Figure 2 Flow chart of Levenberg-Marquardt.

Initialize Weights;
While not stop-Criterion do
Calculates C? (W) for each pattern
ey =35 =1eP(W)eP (W)
Calculates JP(w)for each pattern
Repeat
Calculates Aw
ez =Yy =1 eP(w+Aw) e? (w + Aw)
If e; < e, then
u=puxp
End If
Untile; < e,
p=u/p
W=w+ Aw
End While

Figure 3 Pseudocode of Levenberg-Marquardt algorithm.
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Figure 4 Particles movement in PSO.
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Report; ISO 9241 1998; Chiu et al. 2005; Hannula 2006).
Instead of using evolutionary operators to manipulate
the individuals, like in other evolutionary computational
algorithms, each individual in PSO flies in the search
space with a velocity which is dynamically adjusted
according to its own flying experience and its compan-
ion s’ flying experience. Each individual is treated as a
volume-less particle (a point) in the D-dimensional
search space (cf. Figure 4) (Khan and Sahai 2012).

The ith particle is represented as X; = (x il,x i2 , ..., x;p).
The best previous position (the position giving the best
fitness value) of the ith particle is recorded and represented
asP;=(pil,pi2,...,pip). The index of best particle among
all the particles in the population is represented by the
symbol gb representing global best. The index of the best
position for each particle in the population is represented
by the symbol ib representing the individual’s best. The rate
of the position change (velocity) for particle i is represented
as V; to the following equation: (v;1,v;3 , ..., Vip). The parti-
cles are manipulated according to the following equations:

.....

(4)

The algorithm can be summarized as follows:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.
Step 7.
Step 8.

Initialize position and velocity of all the
particles randomly in the N dimension space.
Evaluate the fitness value of each particle, and
update the global optimum position.
According to changing of the gathering degree
and the steady degree of particle swarm,
determine whether all the particles are
re-initialized or not.

Determine the individual best fitness value.
Compare the p; of every individual with its
current fitness value. If the current fitness value
is better, assign the current fitness value to p;.
Determine the current best fitness value in the
entire population. If the current best fitness
value is better than the pg, assign the current
best fitness value to p,.

For each particle, update particle velocity,
Update particle position.

Repeat Step 2—7 until a stop criterion is
satisfied or a predefined number of iterations
are completed (Khan and Sahai 2012;
Toushmalani 2013).
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The particle swarm flowchart is shown on Figure 5.

Application of PSO and LM optimization in inverse
problem solving
Using Equation (1), the theoretical anomaly which cor-
responds to a fault with t =500 m, h; =6000 m (left),
h 2=2000 m, a=30°, and 6 =1, is presented as a con-
tinuous line in Figure 2. To test the program, the theor-
etical anomaly of Figure 2 is digitized every 5000 m
(Table 1), and a “bad” initial model with parameters
h1=3000 m, h2=1600 m, t=700 m, and a=30°" is
entered (Thanassoulas et al. 1987). Table 1 shows Grav-
ity anomaly for inversion.

During the iterations the density contrast is kept as a
fixed parameter, assuming that its value has been estimated
previously. The parameters which are optimized are:

a) the thickness of the sheet,

b) the left distance to the middle of the sheet,

¢) the right distance to the middle of the sheet, and
d) the angle of the fault.

Table 2. Parameters of obtained solution with Levenberg-
Marquardt (Thanassoulas et al. 1987).

Thickness of fault: 500 m

Fault angle (a): 60°

Depth to bottom of the fault (h1): 5780 m
Depth to top of the fault (h2): 1753 m

-. Parameters of obtained solution with PSO:

Table 1 Gravity anomaly for inversion

Gravity anomaly (mgal) x-coordinate (m)

—224 —15000

-347 —10000

-5.60 —5000

0 0

202 5000
161 10000
1.27 15000
1.04 20000
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Table 2 Parameters of obtained solution

Calculated gravity Calculated gravity Observed gravity

with LM with PSO

-223 -223 —224

—348 —347 —347

—5.84 -5.60 —5.60

0 0 0

215 2 202
1.67 1.63 161
1.30 1.29 1.27
1.06 1.05 1.04
2.5% 0.5% RMS

Thickness of fault: 501.44 849 m;

Fault angle (a): 1.0 5*p - p =189-180 =9,

Depth to bottom of the fault (h1): 6000 m;

Depth to top of the fault (h2): 2001.6431 m;
(Toushmalani 2013). Table 2 shows Parameters of
obtained solution.

The mean squared error function was used as the
training error. The term root mean square error (RMSE)
is the square root of mean squared error (MSE). RMSE
measures the differences between values predicted by a
hypothetical model and the observed values. In other
words, it measures the quality of the fit between the
actual data and the predicted model. RMSE is one of the
most frequently used measures of the goodness of fit of
generalized regression models.

Conclusion

The parameters which are optimized with these methods
are: (a) the thickness of the sheet, (b) the left distance to
the middle of the sheet, (c) the right distance to the middle
of the sheet, and (d) the angle of the fault. Inverse solution
reveals that fault model parameters are agree quite well
with the known results. A more agreement has been found
between the predicted model anomaly and the observed
gravity anomaly in PSO Method rather than LM method.
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