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Abstract

In this study, material flow from decentralized supermarkets to stations in mixed model assembly lines using tow
(tugger) trains is investigated. Train routing, scheduling, and loading problems are investigated in parallel to
minimize the number of trains, variability in loading and in routes lengths, and line-side inventory holding costs.
The general framework for solving these problems in parallel contains analytical equations, Dynamic Programming
(DP), and Mixed Integer Programming (MIP). Matlab in conjunction with LP-solve software was used to formulate
the problem. An example was presented to explain the idea. Results which were obtained in very short CPU time
showed the effect of using time buffer among routes on the feasible space and on the optimal solution. Results
also showed the effect of the objective, concerning reducing the variability in loading, on the results of routing,
scheduling, and loading. Moreover, results showed the importance of considering the maximum line-side inventory
beside the capacity of the train in the same time in finding the optimal solution.
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Introduction
One of the most important types of waste in any manufac-
turing facility is material handling, especially in the case if
there are a lot of different product models. If these prod-
uct models are assembled on the same production line
with very low setup time, Mixed Model Assembly Lines
(MMAL) are used. This environment requires very vari-
able feeding of parts at different stations where the num-
ber of parts required by each station in a short period is
relatively low compared to the pallet size supplied by trad-
itional transporters such as forklifts (Baudin 2004). Usu-
ally areas beside stations are scarce and not enough to
hold a lot of inventory. Another strategy in which as-
sembly workers can get parts in small bins very close to
them is milk run system in which a group of stations is
fed by the same tugger or tow train in the same route
where each station gets its demand of parts for a certain
period (Droste & Deuse 2011).
Sometimes, the feeding process using tugger trains is

based on using Kanban system to “tell” the material hand-
ler (train driver) how many bins he should deliver in each
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route he makes at each station he visits (Ciemnoczolowski
& Bozer 2013). However in other cases, the exact demand
during the shift is exactly known before the beginning of
the shift based on a predetermined sequence of product
models where each model has a certain demand of parts
at each station on which it is assembled (Golz et al. 2011).
In this study the second case is assumed.
Usually, milk run train makes its routes from a central

warehouse to different stations. However, sometimes as-
sembly lines are very long, and the distance from the
central warehouse to some of the stations is too long. In
this case, another strategy is used in which there are
scattered inventory areas which are used to feed the sta-
tions near them. Usually in the practice, every 20 to 30
stations are supplied by the same decentralized inven-
tory called Supermarket (Battini et al. 2010; Emde &
Boysen 2012a; Emde et al. 2012; Emde & Boysen 2012b).
Managing milk run trains offers a challenge for re-

searchers because the variability in the system is usually
high where in some times the loaded quantity by the train
is near its full capacity while in other times the loaded
quantity is low. Another factor is considering the line-side
inventory where the area beside stations must not be
crowded by a lot of bins which hinder other activities and
increase the holding costs, and this contradicts with the
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principle of Just in Time (JIT) for which milk run system
is designed.
In this study, the feeding process using milk run tugger

train from decentralized supermarkets to MMAL stations
will be studied. The problems of scheduling, routing, and
loading of tuggers will be examined. Minimizing inventory
costs, reducing the variability in the system in loading and
in routes lengths, and reducing the resources needed (ma-
terial handlers) will be the objective of the study. An ex-
ample will be presented to explain the methodology. The
main concentration of the methodology of this study, be-
side the analytical equations, is to utilize, organize, and
modify the existing models found in the literature in a sys-
tematic way to achieve the objectives of the study.
The following sections will be organized as follows:

Section “Literature review” presents the literature review
concerning the decision problems regarding material flow
in MMAL in the case of using decentralized supermarket
system. Section “Methodology and example” presents the
methodology consisting of the major steps, and presents an
example. Section “Results and analysis” presents the results
and the analysis of results. Finally Section “Conclusion”
will present conclusion and recommendation for future
research.

Literature review
In a study by (Choi & Lee 2002), the feeding system was
classified to be dynamic and static. In static part feeding
system, the hourly consumption rate of parts is deter-
mined every day morning, and usually it does not change
during the day. The dynamic part feeding system esti-
mates the parts consumption amounts dynamically con-
sidering the actual production progress and directs the
feeding orders dynamically to feeders. In our study, we
strict ourselves to the first type of feeding. A study by
(Caputo & Pelagagge 2011) investigated three feeding po-
lices namely, kitting, just in time kanban-based continu-
ous supply and line storage. However our study deals with
a fourth policy, namely in-plant milk run which combines
several advantages of the above three polices and gets rid
of most of their disadvantages such as extra work of kit
preparation and large inventory space requirements.
The planning and control of in-house logistics concept in-

volves several interrelated decision problems such as (Emde &
Boysen 2012a; Emde et al. 2012; Emde & Boysen 2012b):

i. Decide on the number and location of decentralized
supermarkets.

ii. Determine the number of tow trains per
supermarket and assign line segments
to them.

iii. Determine each tow train’s fixed delivery schedule.
iv. Decide on the bins to be loaded per tour of a tow

train.
Before investigating the first decision (i) in the above
list, an important problem in the system is storage
centralization/decentralization decision where the manage-
ment has to decide if a central warehouse or decentralized
inventory system will be used. For example, (Battini et al.
2010) considered investigating this decision where they
studied the usage of supermarkets. Sometimes supermar-
kets are used to perform other tasks, however in this
study we will only consider supermarkets as scattered
decentralized storage areas serving as intermediate
store to feed nearby stations. Some advantages of that
is fast and frequent delivery of parts and freight con-
solidation by being supplied by industrial trucks. How-
ever, supermarkets consume space on the factory floor,
which is scant and expensive (Emde & Boysen 2012b).
For this decision also, a cost model was presented in a
study by Sargent et al. (1995) where the model can be used
to determine if further consideration should be given to
decentralized storage in a facility currently utilizing central-
ized storage. The cost model examines the trade-off be-
tween the savings in material handling flow costs due to
moving from centralized to decentralized storage and the
additional costs associated with implementing and utilizing
decentralized storage for a designated period of time. In
a study by Battini et al. (2009), the level of inventory
centralization and decentralization was investigated.
According to the same study, different kinds of decen-
tralization strategies can be studied, like stocking directly in
the assembly station, stocking next to one station, or one
stocking area for all assembly stations on the line. The main
factors to determine which system to use are demand fre-
quency for each component, average demand rate, average
cost, size of the parts, available area next to the assembly
stations, and batch size of components. The degree of
inventory centralization/ decentralization in our study was
predetermined where we have several supermarkets feeding
every assembly line. So this stage is assumed to be input to
the study. Satoglu et al. (Satoglu & Sahin 2012) evalua-
ted the conversion from central storage to decentralized
storages in cellular manufacturing environments using
activity-based costing. Furthermore, (Alizon et al. 2009)
investigated the flow of materials from several internal
warehouses to supply the same assembly workshop. More-
over, in a study by (Hanson & Finnsgård 2012), a case study
was presented in which the material feeding was organized
by using three drop zones which were close to three as-
sembly lines. These drop zones get the material from the
AS/RS system. Then materials were transported from the
drop zones to the different stations in the assembly lines.
The second (ii), third (iii), and fourth (iv) decisions in-

vestigate scheduling, routing, and loading problems which
are the main focus of this study. Routing problem has spe-
cial conditions in the system we study since the routing is
only about determining the part of the assembly line that
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will be served by the same train. This is because in
decentralized supermarket system, we have several
small inventories scattered along the assembly line, and
each one of these supermarkets can have several trains.
So every train will supply a small segment of the long
assembly line. So, traditional routing problems are not
applied in this case (Emde et al. 2012). The scheduling
problem investigated in this study is also special where
we assume fixed time periods for each rout of the train.
So the main two decisions here are to determine the
length of this service period and also the starting time
of the first route.
In the literature surveyed, the routing and scheduling were

related to each other. Some studies assumed that routing is
input and they investigated the scheduling problem. On the
other hand, some studies assumed that the periods are the
input, and they investigated the routing problem. However,
other studies such as (Emde & Boysen 2012a) studied the
routing and scheduling together. According to (Kilic et al.
2012), the periods in train routes scheduling can be fixed or
variable. Emde & Boysen (2012a) showed that the variable
periods are optimal for reducing inventory costs. However
and from the point of view of lean manufacturing, it is bet-
ter to standardize the system by fixing the periods. Some
studies even considered fixed periods as a must to call the
system as milkrun such as (Bozer and Ciemnoczolowski
2013). Moreover, (Hanson and Finnsgård 2012) presented a
real case study in which the time period of the tugger train
was constant. Satoglu and Sahin 2012 developed a mathem-
atical model and a heuristic approach where the routes are
constructed and the service period is determined for the de-
sign of an internal milk run material supply system. The ser-
vice period was also investigated in other studies such as
Domingo et al. (2007) and Álvarez et al. (2009).
Golz et al. 2011 studied the routing, scheduling, and load-

ing problems for centralized supermarket systems to de-
crease the number of tow trains. In the area of decentralized
supermarket system, little research was performed on the
problems in the above list. Battini et al. 2010 and Emde and
Boysen 2012b studied the problems of determining the
number and locations of supermarkets. Emde and Boysen
2012a investigated the scheduling and routing problems to-
gether in parallel to minimize the line-side inventory holding
costs. Assuming given routes as input, (Emde et al. 2012) in-
vestigated the loading problem to minimize the holding
costs of line-side inventory in the case that there are bottle-
neck periods (routes) in which the demand of the stations
served by the same train exceeds the capacity of the train. In
this case, some bins must be delivered in previous non-
bottleneck routes. In this study “early loading” will be used
to define this case. Early loading must be controlled in a
good way to minimize inventory holding costs. In a study by
(Faccio et al. 2013), the fleet size (which is part of routing
problem) and kanban number were investigated in static
and dynamic steps of analysis. However, that study assumes
using one supermarket feeding a group of assembly lines. In
our study, we assume that the supermarket feeds only a
group of stations in the same assembly line.
According to the best of the knowledge of the authors,

there is no any previous work that combined routing,
scheduling and loading problems and solved them in par-
allel in the same model. However, these problems are in-
terrelated. So this study fills in that gap by investigating all
the problems together in parallel, and minimizes inventory
costs, variability in the system, and the number of trains.
The biggest advantage of investigating the three problems
together comes from the possibility of adding the objective
of reducing the variability in loading. Without combining
the three problems together, this objective cannot be
achieved. Another advantage is to further decrease the
total inventory holding costs especially in the case of
using early loading. In previous studies, the maximum
possible decrease in inventory holding costs is limited
by the predetermined routing, which was considered as
input and cannot be changed.
Moreover, the study investigates finding the optimal ser-

vice period of the train in a different way in which this
period is fixed, and can be determined analytically taking
into consideration constrictions such as maximum line-side
inventory, train capacity, and traveling time plus loading
and unloading times. Doing so is important to simplify the
system especially for the material handler.

Methodology and example
The same assumption about the deterministic nature of
demand of parts and assembly times which are found in
(Emde and Boysen 2012a) will be adopted also in this
study. To explain the methodology, an example is shown
where there are 20 stations supplied by parts using tug-
ger trains. The 20 stations are assumed to assemble only
4 types of product models (1, 2, 3, and 4). Table 1 shows
the parts needed by each model on each station. It is as-
sumed here that each station needs the same types of
parts for all the four models. However, the parts are dif-
ferent from a station to another.
For simplicity, the sequence of assembling the four models

was chosen to be 1→ 2→ 3→ 4. However it can be any
other sequence. The sequence is assumed to be an input for
the study and finding another sequence will not be investi-
gated. In this study and as in the study by (Emde and
Boysen 2012a), we will use the cycle time, which is the time
required to assemble one product model at any station, as
the time unit.
In the first cycle of work, the first model is assembled on

the first machine consuming two parts as it is obvious in
Table 2a which shows it in the first 10 cycles in the shift
and for the first 9 stations. In the second cycle, the first
model is not assembled on the second machine since it



Table 1 The needed number of parts required to
assemble each model at each station

Stations
Model

Stations
Model

1 2 3 4 1 2 3 4

1 2 1 11 1 3 1

2 2 1 12 1 1

3 1 2 13 1 1

4 1 3 1 14 1 2 2

5 1 3 15 1 1

6 1 1 16 2

7 1 1 17 1 1

8 1 2 18 1 3

9 3 1 1 19 1 2

10 1 1 20 1 2 1
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does not require any part. Also in the same cycle the sec-
ond model is not assembled on the first machine. In the
third cycle, the third model is assembled on the first ma-
chine consuming only one part. In the same third cycle,
the first model is assembled on the third machine consum-
ing one part. This mechanism is followed for all the work
cycles during the shift.
After that and assuming that the capacity of the bins

transported by the train is always 5 parts for all the
types of parts, the demand of bins is calculated as in
Table 2b for the first 10 cycles and for the first 9 sta-
tions. For example at the first station, we need at the
first cycle two parts, so we need a bin at this cycle. The
bin must come one cycle earlier, which is cycle 0. The
three remaining parts in the bin can satisfy the demand
for the third cycle and also for the fifth cycle. However
in the seventh cycle, we need a new bin. This way is
followed for all the cycles and stations.
Table 2 The needed quantity of materials required at each cy

Station
Cycle

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2

2 2 1 2 1

3 1 2 1 2

4 1 3 1 1 3 1

5 1 3 1

6 1 1 1

7 1 1

8 1 2

9 3

a. Demand in parts unit
We assume in this study that the tugger is capable of
delivering the needed bins to a station after feeding the
previous one in duration of one cycle. So, for example,
for a certain time period, the tugger, after delivering all the
needed bins to the first station, can deliver the other
needed bins to the second station in the same period in
duration of one cycle. However, this time is variable and
depends on the number of delivered bins. Because of that,
the decision maker may consider using three different
types of buffers: safety stock, time buffer among routes,
and line-side empty inventory buffer. So if the needed bins
arrive too late, the safety stock is useful to replenish the
stations until the next arrival of the train. Moreover, for
this delay not to affect the next routes of the train, the time
buffer among routes is useful in this case. However, time
buffer should not be too long because this will decrease
the feasible solution space as will be explained later. On
the other hand, if the arrival of bins is too early, empty
space in the line-side inventory can be useful.
Study procedures and objectives
In this study, the three previously mentioned problems:
routing, scheduling, and loading will be investigated to-
gether in parallel to minimize number of trains, inventory
costs, and system variability as shown in the right side of
Figure 1. The three problems and their interrelationships
which will be explained later are shown in Figure 2. During
working on these problems, four limitations, which are
tugger train capacity, line-side inventory limit, time buffers,
and routing time, as shown in the corners of Figure 2 are
considered
To achieve the objectives, the general procedures of the

study are shown in Figure 1 where we have 5 major steps.
The first step was explained above in the example. The rest
of the steps are explained in the next part of the study.
cle at each station

Station
Cycle

1 2 3 4 5 6 7 8 9 10

1 1 1

2 1 1

3 1 1

4 1 1

5 1

6 1

7 1

8 1

9 1

b. Demand in bins unit



Objectives: minimizing:

1. Number of trains

2. Inventory costs

Normal loading
Early loading

3. System variability

Route length
Train loading

1 3
2

1. Compute demand per cycle 
(number of bins)

2. Period length and initial 
feasible space 

3. Compute minimum number 
of trains

4. A new feasible space based 
on optimal number of trains

5. Finding optimal solution

General Procedures

Analytical equations

Dynamic Programming

Dynamic Programming

Figure 1 Study major steps and objectives.
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Period length determination
In this study, it is assumed that routing is fixed, that is,
if a tugger train feeds in the first route the first 5 sta-
tions for example, the same train will also feed the same
five stations in every next route. It is also assumed in
this study that the periods are the same during the shift,
that is, the train feeds some certain stations every 30 mi-
nutes for example. This 30-minutes period remains the
entire shift. Therefore, if the train makes its first route
in just 20 minutes, it must wait another 10 minutes until
it starts the next route. However, the period length for
each train may be different from that for other trains.
To determine the period length, at first, the tugger

train has a certain capacity that cannot be exceeded.
Inventory cost and CV

Tugger train capacity

Time buffer among routes

RLoading
N

F
r

O
r

Early loading 
decision

Early start
decision

Early loading

Normal 
loading

Figure 2 Study general problems, their interrelationships, and constr
Another restriction is the maximum allowed line-side
inventory beside stations. These two restrictions push
the period not to be too long. On the other hand, the
period must account for the time needed for the train to
move from the decentralized supermarket to the sta-
tions, from a station to the next one, and from the sta-
tions back to the supermarket including all the times of
loading and unloading of empty and full bins. To find
the period length for each group of stations supplied by
the same train, at first the maximum possible period
length for the train with a route (cell) from station si to
station sj including the station s is computed. To do that
at first, the minimum number of routes is computed
based on the maximum line-side inventory (MLSI) and
Scheduling

Line-side inventory limit

Route time

Feasible space

Period lengths

First routes 
start

outing

o. of 
trains

easible 
outing

ptimal
outing

Period ranges

ictions.
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the train capacity. Minimum Number of Routes for the cell
(si, sj), MNR (si, sj), can be calculated based on Equation 1

MNR si; sj
� � ¼ max max MNRS sð Þ; shift demand for cell si; sj

� �
train capacity

� �� �

ð1Þ
Where the Minimum Number of Routes for Station s,

MNRS(s), which is computed based on MLSI, can be es-
timated using Equation (2)

MNR sð Þ ¼ shiftd demand of station s
MLSI

� �
; ∀ station s ∈ cells si; sj

� �
ð2Þ

Where [X] is the lower rounded integer value for the
variable X, and [X] is the upper rounded integer value
for the variable X. The MLSI needed for a certain station
is based on the maximum delivered number of bins at
that station at any route. It is assumed in this study that
any bin from which some parts were consumed by the
station is not considered in the calculation of the line-
side inventory.
The MAXimum Period Length, MAXPL (si, sj) can be

estimated using Equation (3)

MAXPL si; sj
� � ¼ number of cycles in the shift

MNR si; sj
� �

ð3Þ
The MINimum Period Length, MINPL (si, sj), is com-

puted based on the time buffer, the Routing Time Inside
the cell (si, sj), RTI (si, sj), and Routing Time Outside the
Cell (RTOC) as in Equation (4)

MINPL si; sj
� � ¼ RTI si; sj

� �þ RTOC
þ timebuffer ð4Þ

In the example above, RTI (si, sj) is estimated to be sj-si +1
since the loading and unloading of bins are assumed to take
1 cycle for every station inside the cell. RTOC was assumed
to be the same for all cells and equal to 2.
The feasible Period Length Range (PLR) can be com-

puted using Equation (5)

PLR si; sj
� � ¼ MAXPL si; sj

� �
−MINPL si; sj

� �
; 0

� �
ð5Þ

In the case that PLR (si, sj) equals zero, the solution is
not feasible. So based on the previous constrictions,
there can be no cell starting from station si to station sj.
After finding the feasible space, the optimal period length

for the cell (si, sj) is set to be the minimum since it gives
minimum inventory costs, and this coincides with the
principle of JIT in which frequent small replenishments of
materials are done. So the maximum period length shown
above was only computed to find the feasible solution
space.
As stated before, in this study, the scheduling problem

consists of two parts: finding the value of period length,
and finding the point of time at which the first move-
ment of the train is started. So far, we did the first part,
but the second part is interrelated to the loading prob-
lem, as will be shown later.

Number of trains and new feasible solution space
In this study, we assume that the most important objective
is minimizing the number of trains. So the first step is to
find the minimum possible number of trains regardless of
the other two objectives. Dynamic Programming (DP) is
used to find this number. As shown in the study by (Emde
and Boysen 2012a), DP in routing problem can be formu-
lated as in Figure 3 which was programmed by Matlab
software which does not accept zero indexing in which
the index is zero. Therefore, 1 is added to zero. The idea
of dynamic programming model is not to try all the pos-
sible combinations in the feasible solution space, and this
is to save time. So, in an intermediate step, if we know the
optimal solution (routing) for a group of stations (from 1
to j-1), then in a next step if we need to find the optimal
routing for the same group of stations, there is no need to
repeat the solution since the model “memorizes” the best
solution found before. In this case, the time needed to find
the final solution is minimized.
The variable N was added to find the number of tugger

trains. Because we want the number of trains to be close
to the minimum possible value which is one train, the
function to be minimized here is set to represent the dif-
ference between the total number of stations (S) and the
cell length. This function can be written as in Equation (6)

function to be minimized ¼ S− j−ið Þ ð6Þ

Where, the value (j-i) represents the real cell length
containing the stations from i to j-1.
Based on the found minimum number of trains, a new

and smaller feasible solution space is found. To do that,
DP will be used again for every possible cell based on the
previous feasible space. For each feasible cell (si, sj), DP is
tried, where the function to be minimized now is (total
number of stations-(j-i) + cost(i,j-1)). cost matrix contains
high values, for example 1000, except for cost(si, sj), it con-
tains very low value, for example 1. By this way, the cell
(si, sj) is very “attractive” to be chosen by the model in the
optimal routing. However, there is another factor (number
of stations-(j-i)) which prohibits any cell that causes the
number of trains to be more than the optimal one found
before. For every point (i, j-1), the optimal solution is
found and the active cells are determined in the solution.
After doing that for all the points of the feasible solution



G(0+1)=0;
S=No_Stations;

for j= 2:S+1
G(j)=9999999;
nn(j)=0;

end
for j=2:S+1

for i= 1:j-1 
if feasible(i,j-1)==1 
if function_to_be_minimized+G(i)<G(j)

p(j)=i;
G(j)= function_to_be_minimized+G(i);
N(j)=N (i)+1;

end
end

end
end

tuggers=   N(S+1);

Figure 3 DP in routing problem.
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space found before using Equation (5), all the active cells
are put in the new feasible space. This step is done to
minimize the computation time in the next step in which
the final optimal solution is found.
Figure 4 represents the general framework of the last

step found in Figure 1. In this step the other types of
objectives are considered. At first, the Average Route
Length (ARL) is computed by dividing the number of
stations by the number of tuggers. We want cell lengths
in the final solution not to be very far away from ARL.
So this represents the first type of variability in the sys-
tem. The second type is the variability in loading. The
loaded quantity by each train should be almost the
same during the whole shift. To measure that, the Coef-
ficient of Variation (CV), of the quantity loaded by the
train during the shift, is computed. This value is com-
puted for all the feasible cells. However, if this variabil-
ity in demand is so high to the level that in some routes
the needed quantity is more than the capacity of the
train, the loaded quantity does not need to be equal to
the demand all the time. So we must do early loading
for some of the needed bins in previous non-bottleneck
routes before these bins are needed. However, this will
increase the inventory holding costs. In this study, a
simple rule is followed: if increasing one type of costs
will decrease two types of costs, we should do it, as
shown in the lower right part of Figure 1. Early loading
of bins will increase the inventory holding costs, but it
will give us the chance to decrease the number of trains
and also to decrease the variability in the system.
However sometimes even early loading is not enough to

minimize the needed capacity of trains. This can happen if
the first route demand is more than the capacity of the
train. Therefore, the train can adopt early start. So, early
start is needed to define the time of the beginning of the
first route. Until now, that time was one cycle before the
demand of stations. For example, if the first station needs
parts at cycle number one, the needed parts must be deliv-
ered one cycle before (cycle number zero). In early start
and to decrease the demand of the first route, we add the
possibility for the train to start its movement several cy-
cles before the first time the parts are needed. The de-
mand of the stations in every route including the first one
will be changed. The first route will cover a period that is
equal to usual period length minus the early start period.
Another factor is that the decision maker may not want
the number of routes to be increased. In this case, the last
route will cover a period that is longer than the usual pe-
riods before. The methodology to find the early start is try-
ing different early start periods from zero to the first
feasible one. The feasibility is checked by constriction (7).
If it is true for all routes, then feasibility is achieved. After
finding the start point, the loading problem is investigated.

XS
s¼1

dst≤ ¼ tK ∀t ¼ 1…T ð7Þ

Where,
T Total number of routes
S Number of stations
K Capacity of the train
dst Demand bins of the station s for the route t



Early start
determination

Early loading

Compute:
CV
Start
Early loading 
inventory

Initial demand per route
without early loading

Compute CV 
Start = 0
Early loading inventory = 0

Demand in 
some routes >K

Feasible with 
early loading?

Yes No

Yes 

No

Compute total inventory = early loading 
inventory + normal loading inventory

Optimal solution

Mixed Integer 
Programming

Dynamic Programming

Figure 4 General Framework for the last step in the study.

Alnahhal and Noche SpringerPlus 2013, 2:415 Page 8 of 12
http://www.springerplus.com/content/2/1/415
Loading problem
Loading problem was formulated by (Emde et al. 2012).
The constraints were as follows

XS
s¼1

xst≤ ¼ K ∀t ¼ 1;…;T ð8Þ

Xt

t0¼1

xst0≤
Xt

t0¼1

dst0 ∀t ¼ 1;…; T ; s ¼ 1; ::::S

ð9Þ
xst ∈ IN0 ∀t ¼ 1;…; T ; s ¼ 1; ::::S

ð10Þ
And there were two objectives as follows:

Minimize f sum ¼
XT
t¼1

XS
s¼1

Xt

t0¼1

xst0− dst0ð Þ ð11Þ

Minimize f sum ¼ max
Xt

t0¼1

xst0−dst0ð Þ jt ¼ 1;…; T ; s ¼ 1;…; S

( )

ð12Þ
Where, xst is the delivered number of bins at station s

in the route t.
Constraint (8) guarantees that the capacity of the tow
train will not be exceeded. Constraint (9) guarantees that
for every route, the accumulated number of delivered bins
to a station is at least equal to the accumulated demands
by this station until the current period (route). Constraint
(10) defines the positive integer number of bins that can
be delivered to different stations. The objective function
(11) aims at minimizing the difference between the needed
demand and delivered number of bins. Furthermore, the
maximum amount of bins stashed at any one station
should be minimal, therefore, there is another objective
(12) which minimizes the maximum difference between
the numbers of delivered bins and the demand of the bins.
Emde et al. (2012) used a new heuristic to solve the prob-
lem to find the value of fmax. However, there is another
simpler but slower way to solve it by adding a new con-
straint (13) instead of the second objective, and also by
adding the variable z to the first objective.Xt

t0¼1

xst0− dst0ð Þ ≤ z ∀t ¼ 1;…; T; s ¼ 1;…;S

ð13Þ
The results of the new model is exactly as that found by

the heuristic defined in Emde et al. (2012) since the value
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of z equals fmax. To formulate all the problems together in
the same program, Matlab software in conjunction with
LP-solve software was used.
Further investigation in this loading model can be

considered. For example constriction (14) can be added

K−
XS
s¼1

xst ≤v ∀t ¼ 1;…;T ð14Þ

The variable v is added to the objective function. This
constraint is to minimize the maximum difference between
the train capacity and the loaded quantity. This will de-
crease the variability in the loading since it pushes the low-
est loaded quantity to be higher. However, this can increase
inventory costs since it increases the early loaded quantity.
Another important factor is MLSI. For example,

Tables 3a and b shows the data of an example presented
in the study by Emde et al. (2012) and was used for
explaining loading problem where the maximum deliv-
ered number of bins, 13, was for the 4th station in the
3rd route. There is, however, another alternative optima
with the same objective function value but with lower
maximum loaded quantity, 11, in Table 3c. So if MLSI is
only 11 units, the second solution is the feasible one. As
a matter of fact, there are a lot of alternative optima for
this example. To take that into consideration, another
constraint can be added as in constriction (15)

XT
t¼1

XS
s¼1

xst ≤MLSI ð15Þ

Another dimension that can be added to the model is
minimizing the frequency of fmax. For example in Table 3b
and c even if the objective function values are the same,
the frequency of fmax is different. Of course, the less times
fmax appears, the better the results are. This can be done
by adding two constraints (16) and (17)

y1st ≤ z−
Xt

t0¼1

xst0−dst0ð Þ ∀t ¼ 1;…; T ; s ¼ 1;…; S

ð16Þ
y1st þ y2st ¼ 1 ∀t ¼ 1;…; T ; s ¼ 1;…; S

ð17Þ
The value y2st equals 1 if fmax appears at station s and

in the route t. So the value ∑T
t¼1∑

S
s¼1y2st must then be
Table 3 Alternative optima for loading problem

dst 1 2 3 4 5 xst 1

1 0 7 0 8 0 1 4

2 0 7 0 8 10 2 4

3 6 0 10 3 10 3 6

4 6 0 15 0 10 4 6

a. Demand per station and route b. Op
added to the objective function. For this objective not to
affect the original objectives defined by Emde et al. (2012),
this value must have a very small weight compared to the
two original objectives.
The decision maker may want to further investigate the

fmax value by reducing the maximum number the fmax

values appear for the same station at successive routes by
adding the objective (18)

minimize Pmax ¼max t0−t00 þ 1ð Þ
Yt0
t0 0¼t

Y2st0 jt ¼ 1;…;T ; t0 ¼ t…T ; s ¼ 1;…; S

( )

ð18Þ
This can be accomplished by adding a new constraint

(19) and by adding the variable length in the objective
function.

t0− t00 þ 1ð Þ
Yt0
t0 0¼t

Y2st0≤ length t ¼ 1;…;T ; t0…T ; s ¼ 1;…; S

ð19Þ
However, this will make the problem too complicated

and make it difficult to solve. Another factor that the de-
cision maker may consider is the number of stops of the
tugger train. For example in the solution in Table 3b the
number of zeros was three but in the other solution in
Table 3c the number of zeros is just one. The more
zeros, the less number of stops of the train. This may be
useful to reduce the “traffic jam” of tugger trains espe-
cially in the case of using narrow aisles in the facility.
This can be done by adding a new constraint (20) and
adding the value ∑T

t¼1∑
S
s¼1yst in the objective function.

However, this objective contradicts the objective of min-
imizing the maximum line-side inventory. The decision
maker can decide if he wants to add such an objective
or not according to the situation on the ground.

xst ≤Myst ∀t ¼ 1;…;T ; s ¼ 1;…; S

ð20Þ

Optimal solution
DP is used one more time to find the final solution. The
function to be minimized contains all the types of costs
except the number of trains since it was already consid-
ered before in finding the second feasible space. So the
2 3 4 5 xst 1 2 3 4 5

7 0 4 0 1 4 6 1 4 0

7 0 8 6 2 4 6 1 8 6

4 7 6 6 3 6 4 7 6 6

2 13 2 8 4 6 4 11 2 8

timal solution c. Alternative optima



Table 4 Feasible space and optimal solution when time
buffer is 1 cycle

Stations 5 6 7 13 14 20 Stations 7 14 20

1 1 1 1 1 (10, 0)

6 1 6

7 1 7

8 1 1 8 (10, 0)

14 1 14

15 1 15 (9, 0)

a. Feasible space b. Optimal solution
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function to be minimized for the cell from station i to
station j-1 is as in Equation (21)

function to be minimized ¼ w1 ARL−jþ ij j
þ w2 CV þ w3Total INV costs

ð21Þ

Where wi is the weight of objective i, and total_INV_costs
represents the normal loading inventory holding costs plus
early loading inventory holding costs. The values of the
weights can be estimated according to the judgment of the
decision maker. Because the early loading inventory is in
the system for routes time but the normal loading inven-
tory is in the system only for cycles time, the last one is di-
vided by period length to transform it to routes time unit.
At first, it is computed by multiplying the amount of
needed inventory in each cycle and for each station by the
time period from that cycle to the time of delivering that
inventory beside the station, and this is the same way
followed by Emde et al. (2012). So in Table 2b and assum-
ing that the first 5 stations form a cell with period length
of 7, and we want to compute the holding costs for nor-
mal loading for the third station and for only the first
route, the train comes and unloads two bins in the second
cycle. In the third cycle, station 3 will start consuming the
first bin immediately so its inventory cost is zero. The in-
ventory cost for the second bin is 5 since it will wait
5 cycles until it is started to be consumed. The early
loading inventory is computed based on the objective
function value introduced in (11) and (12). The method
above about computing normal loading inventory cost
is also applied for bins that are consumed in the current
route but delivered in previous routes since these bins
will also wait for few cycles in the current route beside,
of course, the waiting from route to route.

Interrelations among problems
As it is obvious in Figure 2, to do routing problem, feas-
ible range of period length must be defined first, and this
is part of scheduling problem. Moreover, to define early
start which is part of scheduling problem, loading problem
must be considered. However, loading problem cannot be
done without knowing the period lengths found in sched-
uling problem. Furthermore, the optimal routing needs in-
formation about the values of the objective function from
loading problem (inventory costs and CV), and also the
minimum possible number of trains which must be found
based on the feasible range found in scheduling problem.
All that reveals the importance of investigating the three
problems together in parallel.

Results and analysis
At first, the weight of the objective function in Equation
(21) was set to be 100 for the CV value since it is usually
very small and we want for this value to affect the solu-
tion. Each one in the other two parts in the objective
function was given a weight of 1. The time buffer among
routes was set to be 1 cycle. All the problems were run
together and needed just few seconds on a normal per-
sonal computer.
The results of the example are in Table 4 where the feas-

ible space is in Table 4a. The value of 1 is for the active
cells in the feasible space. For example the final solution
must have a cell containing the first 5, 6 or 7 stations. In
the optimal solution, there are three trains, and one of
them supplies the stations from 1 to 7, the second one
supplies the stations from 8 to 14, and the last one sup-
plies the rest of the stations. The scheduling results are
shown in Table 4b expressed in the form (x, y) where x is
the period length and y is the early start. There was no
early loading at all in the optimal solution. We will, how-
ever, have early loading in the third cell if the weight of
CV value is increased to be 102, and the results will con-
tain three cells, where the first one contains the stations
from 1 to 6, the second cell contains the stations from 7
to 13, and the third cell contains the remaining stations.
These changes in results show the effect of the objective,
which decreases the variability in loading, on the routing,
scheduling, and loading results. The effect on routing is
not in the number of trains but in the cells formation.
Table 5 shows the results when the time buffer is set to

be zero where the value of the objective function is de-
creased from 487.3 to 452.1 and the feasible space is in-
creased to contain more cells. Furthermore, the last cell
from station 13 to 20 has early loading and also early start
of 1 cycle. The first route is too short compared to the
other two ones. To fix this problem, the weight w1 in
Equation (21) must be increased. If it is set to be 21 for ex-
ample, the new solution will contain a cell from station 1
to 6, another cell contains stations from 7 to 12, and the
last one contains the remaining stations. However, if this
weight is increased to be 67, the first cell will be from sta-
tion 1 to 7, the second cell will be from station 8 to 13,
and the last cell will contain the remaining stations.



Table 5 Feasible space and optimal solution when time buffer is 0

Stations 4 5 6 7 8 12 13 14 15 16 20 Stations 4 12 20

1 1 1 1 1 1 1 (6, 0)

5 1 5 (10, 0)

6 1 1 6

7 1 1 7

8 1 1 1 8

9 1 1 1 1 1 9

13 1 13 (10, -1)

14 1 14

15 1 15

16 1 16

17 1 17

a. Feasible space b. Optimal solution
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Table 6 shows several trials in which the K and MLSI
values were changed to get the optimal objective func-
tion value and the number of needed trains. The 4th trial
represents the current status. If we decrease the K value
to be 10, we will need 4 trains. It is noted that no matter
how much we increase the K value more than 16, it can-
not affect the results. This is because of the fixed value
of MLSI. So to get lower number of trains, the MLSI
value must be increased as in the 10th trial. This result is
important since it shows that it is not very helpful to get
tow trains with high capacities if the maximum line-side
inventory cannot be increased.

Conclusion
In this study the routing, scheduling, and loading prob-
lems of the tow train were investigated together in parallel
to decrease the number of trains, variability in loading and
in route lengths, and inventory holding costs in normal
and in early loading. This was done using analytical equa-
tions, DP, and MIP techniques. Constrictions related to
Table 6 Effect of K and MLSI values on the results

Trial K MLSI Number of trains O.F. value

1 17 3 3 474.96

2 16 3 3 474.96

3 15 3 3 452.12

4 14 3 3 452.12

5 13 3 3 526.17

6 12 3 3 592.30

7 11 3 3 600.93

8 10 3 4 548.33

9 14 4 3 452.12

10 21 4 2 630.67
tugger capacity, line-side inventory maximum limit, routes
time, and time buffer among routes were taken into con-
sideration. Beside the time buffer, safety stock and empty
space capacity for line-side inventory can be used. Further
investigation about loading problem was presented using
MIP.
This study presents a systematic way to manage ma-

terial flow using milk run trains containing the three
problems of routing, scheduling, and loading. It also
shows the importance of studying the three problems
together since they are interrelated, and to minimize
the total inventory holding costs to the minimum pos-
sible value and to take into account decreasing the vari-
ability in the loaded quantities. It also shows the effect
of time buffer on the feasible solution space. Moreover,
it shows the importance of considering the maximum
line-side inventory and the capacity of the train in the
same time, where getting tugger trains with so high
capacities does not enhance the system if the line-side
inventory is still limited to small amounts. It also shows
the importance of the objective regarding decreasing
the variability in loaded quantities since it affects all
the results of routing, scheduling, and loading.
In this study there are some limitations. At first, the

study assumes that the exact number of product models
and their sequence is known before the beginning of the
shift. Moreover, the study is applicable only if the man-
agement decided not to use kanban system. Further-
more, the supermarket system is assumed. This means
that the study is not applicable if central warehouse is
used instead of supermarket system.
In future research, a comparison between kanban sys-

tem and the system in this study can be made to investi-
gate when it is advisable to use kanban system. Also, it
is recommended in future research to investigate such
problems in real case studies.
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