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Abstract

Background: Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound
datasets and the availability of such is vital for drug discovery protocols. This paper presents an assessment of the
“drug-likeness” and pharmacokinetic profile of > 2,400 compounds of natural origin, currently available in the
recently published StreptomeDB database.

Methods: The evaluation of “drug-likeness” was performed on the basis of Lipinski’s “Rule of Five”, while 46
computed physicochemical properties or molecular descriptors were used to predict the absorption, distribution,
metabolism, elimination and toxicity (ADMET) of the compounds.

Results: This survey demonstrated that, of the computed molecular descriptors, about 28% of the compounds
within the StreptomeDB database were compliant, having properties which fell within the range of ADMET
properties of 95% of currently known drugs, while about 44% of the compounds had ≤ 2 violations. Moreover,
about 50% of the compounds within the corresponding “drug-like” subset showed compliance, while >83% of the
“drug-like” compounds had ≤ 2 violations.

Conclusions: In addition to the previously verified range of measured biological activities, the compounds in the
StreptomeDB database show interesting DMPK profiles and hence could represent an important starting point for
hit/lead discovery from natural sources. The generated data are available and could be highly useful for natural
product lead generation programs.
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Background
Many drugs often fail to enter the market as a result of
poor pharmacokinetic profiles (Darvas et al. 2002).
Thus, it has become imperative nowadays to design
lead compounds which can be easily orally absorbed,
easily transported to their desired site of action, not
easily metabolised into toxic metabolic products before
reaching the targeted site of action and easily elimi-
nated from the body before accumulating in sufficient
amounts that may produce adverse side effects. The
sum of the above mentioned properties is often referred
to as ADME (absorption, distribution, metabolism and
elimination) properties, or better still ADMET, ADME/
Correspondence: ntiekfidele@gmail.com
1Chemical and Bioactivity Information Centre, Department of Chemistry,
Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
2Department of Pharmaceutical Sciences, Martin-Luther University of Halle-
Wittenberg, Wolfgang-Langenbeck Str. 4, 06120, Halle (Saale), Germany
Full list of author information is available at the end of the article

© 2013 Ntie-Kang; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
T or ADMETox (when considerations are given to
toxicity issues). The inclusion of pharmacokinetic con-
siderations at earlier stages of drug discovery programs
(Hodgson 2001; Navia and Chaturvedi 1996) using
computer-based methods is becoming increasingly
popular (Lipinski et al. 1997; Lombardo et al. 2003;
Gleeson et al. 2011). The rationale behind in silico
approaches are the relatively lower cost and the time
factor involved, when compared to standard experi-
mental approaches for ADMET profiling (DiMasi et al.
2003; Darvas et al. 2002). As an example, it only takes a
minute in an in silico model to screen 20,000 mole-
cules, but takes 20 weeks in the “wet” laboratory to do
the same exercise (Hodgson 2001).
Due to the accumulated ADMET data in the late

1990s, many pharmaceutical companies are now using
computational models that, in some cases, are replacing
the “wet” screens (Hodgson 2001). This paradigm shift
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has therefore spurred up the development of several
theoretical methods for the prediction of ADMET
parameters. A host of these theoretical models have been
implemented in a number of software programs cur-
rently available for drug discovery protocols (OCHEM
platform; Lhasa 2010; Schrödinger 2011a; Cruciani et al.
2000), even though some of the predictions are often
disappointing (Tetko et al. 2006). The software tools
currently used to predict the ADMET properties of po-
tential drug candidates often make use of quantitative
structure-activity relationships, QSAR (Tetko et al. 2006;
Hansch et al. 2004) or knowledge-base methods (Greene
et al. 1999; Button et al. 2003; Cronin 2003). A promis-
ing lead compound may therefore be defined as one which
combines potency with an attractive ADMET profile. As
such, compounds with uninteresting predicted ADMET
profiles may be completely dismissed from the list of po-
tential drug candidates early enough (even if these prove
to be highly potent). Otherwise, the DMPK properties are
“fine-tuned” in order to improve their chances of making
it to clinical trials (Hou and Wang 2008).
In this paper, we assess the pharmacokinetic profile of

the recently published StreptomeDB database (Lucas
et al. 2013) using an in silico method. A number of
computed molecular descriptors, currently implemented
in a wide range of software, have been used as indicators
of the pharmacokinetic properties of a large proportion
of currently known drugs.

Methods
Data source and initial treatment of chemical structures
The 2,444 3D structures of the compounds in the
StreptomeDB database were downloaded from the official
webpage of the Pharmaceutical Bioinformatics group
of the University of Freiburg (http://www.pharmaceu-
tical-bioinformatics.de/streptomedb/). These were initially
treated with LigPrep (Schrödinger 2011b). The implemen-
tation was carried out with the graphical user interface
(GUI) of the Maestro software package (Schrödinger
2011c), using the OPLS forcefield (Shivakumar et al. 2010;
Jorgensen et al. 1996; Jorgensen and Tirado-Rives 1988).
Protonation states at biologically relevant pH were cor-
rectly assigned (group I metals in simple salts were dis-
connected, strong acids were deprotonated, strong bases
protonated, while topological duplicates and explicit hy-
drogens were added). All molecular modelling was carried
out on a Linux workstation with a 3.5 GHz Intel Core2
Duo processor.

Calculation of ADMET-related descriptors
A set of ADMET-related properties (a total of 46 mole-
cular descriptors) were calculated by using the QikProp
program (Schrödinger 2011d) running in normal mode.
QikProp generates physically relevant descriptors, and
uses them to perform ADMET predictions. An overall
ADME-compliance score – drug-likeness parameter (indi-
cated by #stars), was used to assess the pharmacokinetic
profiles of the compounds within the StreptomeDB li-
brary. The #stars parameter indicates the number of prop-
erty descriptors computed by QikProp that fall outside the
optimum range of values for 95% of known drugs. The
methods implemented were developed by Jorgensen and
Duffy (Jorgensen and Duffy 2002; Duffy and Jorgensen
2000; Jorgensen and Duffy 2000) and among the calcu-
lated descriptors are: the total solvent-accessible molecular
surface, Smol in Å2 (probe radius 1.4 Å) (range for 95% of
drugs: 300–1000 Å2); the hydrophobic portion of the
solvent-accessible molecular surface, Smol,hfob in Å2 (probe
radius 1.4 Å) (range for 95% of drugs: 0–750 Å2); the total
volume of molecule enclosed by solvent-accessible mo-
lecular surface, Vmol in Å3 (probe radius 1.4 Å) (range for
95% of drugs: 500–2000 Å3); the logarithm of aqueous
solubility, log Swat (range for 95% of drugs: -6.0 to 0.5)
(Jorgensen and Duffy 2002; Jorgensen and Duffy 2000);
the logarithm of predicted binding constant to human
serum albumin, logKHSA (range for 95% of drugs: -1.5 to
1.2) (Colmenarejo et al. 2001); the logarithm of predicted
blood/brain barrier partition coefficient, log B/B (range for
95% of drugs: -3.0 to 1.0) (Luco 1999; Kelder et al. 1999;
Ajay et al. 1999); the predicted apparent Caco-2 cell mem-
brane permeability (BIPcaco − 2) in Boehringer–Ingelheim
scale, in nm s-1 (range for 95% of drugs: < 5 low, > 100
high) (Yazdanian et al. 1998; Irvine et al. 1999; Stenberg
et al. 2001); the predicted apparent Madin-Darby canine
kidney (MDCK) cell permeability in nm s-1 (< 25 poor, >
500 great) (Irvine et al. 1999); the index of cohesion inter-
action in solids, Indcoh, calculated from the number of
hydrogen bond acceptors (HBA), donors (HBD) and the
surface area accessible to the solvent, SASA (Smol) by the
relation Indcoh ¼ HBA� ffiffiffiffiffiffiffiffiffiffi

HBD
p

=Smol (0.00 to 0.05 for
95% of drugs) (Jorgensen and Duffy 2000); the globularity
descriptor, Glob = (4πr2)/Smol, where r is the radius of the
sphere whose volume is equal to the molecular volume
(0.75 to 0.95 for 95% of drugs); the predicted polarizability,
QPpolrz (13.0 to 70.0 for 95% of drugs); the predicted IC50

value for blockage of HERG K+ channels, logHERG (con-
cern < −5) (Cavalli et al. 2002; De Ponti et al. 2001); the
predicted skin permeability, logKp (−8.0 to −1.0 for 95%
of drugs) (Potts and Guy 1992; Potts and Guy 1995); and
the number of likely metabolic reactions, #metab (range
for 95% of drugs: 1–8).
Results and discussion
Drug-likeness assessment
The “drug-likeness” test was carried out using Lipinski’s
“Rule of Five”, ro5 (Lipinski et al. 1997). The distributions
of the compound molecular weights (MW), calculated
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lipophilicity (log P), number of hydrogen bond acceptors
(HBA) and number of hydrogen bond donors (HBD) were
used to assess the “drug-likeness” of StreptomeDB. It is
noteworthy that natural products exhibit a wide range of
flexibility, from rigid conformationally constrained mole-
cules to very flexible compounds. Thus, the number of
rotatable bonds (NRB) within the StreptomeDB library
was used as an additional criterion to test for the
favourable drug metabolism and pharmacokinetics
(DMPK) outcomes. It was observed that 47.5% of the
compounds within StreptomeDB showed no Lipinski
violations and 77.3% showed ≤ 2 violations (Figure 1),
while the peak of the distribution of the NRB was
between 1 and 2 (Figure 2E). Moreover, the analysis
of the distributions of MW (truncated at MW=
1000 Da for the sake of clarity), showed a peak value
between 301 and 400 Da (Figure 2A), with a curve
similar to those previously reported for other “drug-
like” NP libraries in the literature (Ntie-Kang et al.
2013; Quinn et al. 2008; Feher and Schmidt 2003)
and about 42% of MW > 500 Da. The distribution of
the log P values showed a Gaussian shaped curve
with a peak centred at 2.5 log P units (Figure 2C).
However, some of the compounds had exceptionally
large log P values (truncated at 10 log P units for the
sake of clarity), which went up to > 19 units. This may
be explained by the fact that the training database/
Figure 1 Distributions of violations of Lipinski’s ro5 and Jorgensen’s
algorithm used to calculate log P may not suit the types
and combinations of functional groups found in natural
products (Quinn et al. 2008). It should however be noted
that, inspite of this limitation, 85.3% of the compounds
from StreptomeDB had log P values < 5 units. The peaks
of the HBA and HBD were respectively at 5 acceptors and
2 donors and both curves fell off rapidly to maximum
numbers of 57 and 38 respectively (truncated at 40 HBA
and 10 HBD respectively, Figure 2B and 2D). It was also
noted that ~40% of the compounds in StreptomeDB had
HBA > 10 and only ~24% had HBD > 5. Additionally, the
pairwise comparison displaying the mutual relationship
between the molecular weight versus the calculated log P,
HBA, HBD and NRB are specified in Figure 3A-D, re-
spectively. The plots show that the regions with the
highest population densities fall within the “Lipinski re-
gion of interest” (MW< 500, -2 < log P < 5, HBA < 10 and
HBD < 5), and for which NRB < 5.

Overall DMPK compliance of the SreptomeDB library
The 24 most relevant molecular descriptors calculated
by QikProp are used to determine the #star parameter
(Schrödinger 2011d). A plot of the #stars parameter (on
x-axis) against the corresponding counts (on y-axis) in
the StreptomeDB is plotted within the same set of axes
with those of the “drug-like”, “lead-like”, and “fragment-
like” standard subsets, as shown in Figure 4. The criteria
ro3 within the StreptomeDB database.



Figure 2 Distributions of features that determine “drug-likeness” in StreptomeDB. (A) MW, (B) HBD, (C) log P, (D) HBA, (E) NRB.
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for the respective standard subsets were defined as
(MW< 500; log P < 5; HBD ≤ 5; HBA ≤ 10) (Lipinski
et al. 1997), (150 ≤MW ≤ 350; log P ≤ 4; HBD ≤ 3;
HBA ≤ 6) (Teague et al. 1999; Oprea 2002; Schneider
2002) and (MW ≤ 250; -2 ≤ log P ≤ 3; HBD < 3; HBA < 6;
Figure 3 Scatter diagrams showing pair wise distribution of “drug-liken
against HBD and (D) MW against NRB.
NRB < 3) (Verdonk et al. 2003). The ADMET descrip-
tors for some 316 compounds in the total library were
not computed by QikProp. This could be due to technical
difficulties with running the software, due to errors in
the input structures downloaded from the StreptomeDB
ess” descriptors. (A) MW against log P, (B) MW against HBA, (C) MW



Figure 4 Distribution curves for #stars within the StreptomeDB library, along with the standard “drug-like”, “lead-like” and “fragment-like”
subsets. Blue = StreptomeDB library, red = “drug-like” subset, green = “lead-like” subset and violet = “fragment-like” subset.
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website. Of the remaining 2,128 compounds, 27.2%
showed #star = 0, while 53.8% had #star ≤ 2. Among
the 925 compounds of the “drug-like” subset whose
pharmacokinetic properties were predicted, 49.7%
had pharmacokinetic descriptors within the acceptable
range for 95% of known drugs, while 83.5% showed
#stars ≤ 2. The “lead-like” and “fragment-like” subsets
Table 1 Summary of average pharmacokinetic property distri
with the various subsets

Library name aLib. size bNo. compl. cMW (Da)

StreptomeDB 2,444 577 485

Drug-like 925 459 262

Lead-like 326 207 230

Fragment-like 127 40 151

Library name hLogB/B iBIPcaco-2 (nm s-1) jSmol (Å
2) kS

StreptomeDB −2.25 522 748

Drug-like −1.01 734 490

Lead-like −0.72 986 460

Fragment-like −0.31 1275 343

Library name oMDCK pIndcoh
qGlob rQ

StreptomeDB 368 0.028 0.82

Drug-like 545 0.015 0.88

Lead-like 638 0.010 0.88

Fragment-like 896 0.008 0.93
aSize or number of compounds in library; bNumber of compounds with #star = 0; cM
coefficient between n-octanol and water phases (range for 95% of drugs: -2 to 6); e

2–20); fNumber of hydrogen bonds donated by the molecule (range for 95% of dru
hLogarithm of predicted blood/brain barrier partition coefficient (range for 95% of d
Boehringer–Ingelheim scale, in nm/s (range for 95% of drugs: < 5 low, > 100 high);
95% of drugs: 300–1000 Å2); kHydrophobic portion of the solvent-accessible molecu
lTotal volume of molecule enclosed by solvent-accessible molecular surface, in Å3 (p
aqueous solubility (range for 95% of drugs: -6.0 to 0.5); nLogarithm of predicted bin
oPredicted apparent MDCK cell permeability in nm/sec (< 25 poor, > 500 great); pIn
descriptor (0.75 to 0.95 for 95% of drugs); rPredicted polarizability (13.0 to 70.0 for 9
< −5); tPredicted skin permeability (−8.0 to −1.0 for 95% of drugs); uNumber of likel
were respectively 63.5% and 31.5% compliant for all
of the 24 most relevant computed descriptors. The
average values for 19 selected computed descriptors
have been shown in Table 1 for all 4 compound
libraries. The average values indicate a high prob-
ability of finding drug leads within the StreptomeDB
compound library.
butions of the total StreptomeDB library in comparison

dLogP eHBA fHBD gNRB

1.30 11.69 3.47 11.46

1.19 5.27 1.92 4.78

1.61 3.96 1.46 3.68

0.96 2.99 1.07 1.28

mol,hfob (Å2) lVmol (Å
3) mLogSwat (S in mol L-1) nLogKHSA

417 1426 −3.20 −0.48

213 840 −2.42 −0.37

179 768 −2.50 −0.29

112 536 −1.14 −0.63

Ppolrz (Å
3) sLogHERG tLogKp

u#metab

44.53 −3.90 −4.76 6.62

25.44 −3.33 −3.93 3.48

23.56 −3.59 −3.28 2.75

15.59 −2.45 −2.98 1.45

olar weight (range for 95% of drugs: 130–725 Da); dLogarithm of partitioning
Number of hydrogen bonds accepted by the molecule (range for 95% of drugs:
gs: 0–6).; gNumber of rotatable bonds (range for 95% of drugs: 0–15);
rugs: -3.0 to 1.0); iPredicted apparent Caco-2 cell membrane permeability in
jTotal solvent-accessible molecular surface, in Å2 (probe radius 1.4 Å) (range for
lar surface, in Å2 (probe radius 1.4 Å) (range for 95% of drugs: 0–750 (Å2);
robe radius 1.4 Å) (range for 95% of drugs: 500–2000 Å3); mLogarithm of
ding constant to human serum albumin (range for 95% of drugs: -1.5 to 1.2);
dex of cohesion interaction in solids (0.0 to 0.05 for 95% of drugs); qGlobularity
5% of drugs); sPredicted IC50 value for blockage of HERG K+ channels (concern
y metabolic reactions (range for 95% of drugs: 1–8).
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Bioavailability prediction
According to Jorgensen’s ro3, if a compound complies to
all or some of the rules (log Swat > −5.7, BIPcaco − 2 >
22 nm/s and # Primary Metabolites < 7), then it is more
likely to be orally available (Jorgensen and Duffy 2000;
Jorgensen and Duffy 2002; Schrödinger 2011d). The
bioavailability of a compound depends on the processes
of absorption and liver first-pass metabolism (Van de
Waterbeemd and Gifford 2003). Absorption in turn de-
pends on the solubility and permeability of the com-
pound, as well as interactions with transporters and
metabolizing enzymes in the gut wall. The computed
parameters used to assess oral absorption are the pre-
dicted aqueous solubility, log Swat, the conformation-
independent predicted aqueous solubility, CI log Swat,
the predicted qualitative human oral absorption, the
predicted % human oral absorption and compliance to
Jorgensen’s famous “Rule of Three” (ro3). The solubility
calculation procedure implemented depends on the
similarity property space between the given molecule
and its most similar analogue within the experimental
training set used to develop the model implemented in
QikProp, i.e., if the similarity is < 0.9, then the QikProp
predicted value is taken, otherwise, the predicted prop-
erty, Ppred , is adjusted such that:

Ppred ¼ SPexp þ 1−Sð ÞPQP ð1Þ

where S is the similarity, and Pexp and PQP are the respect-
ive experimental and QikProp predictions for the most
similar molecule within the training set. In equation (1), if
S = 1, then the predicted property is equal to the measured
experimental property of the training set compound. The
distribution curves for two of the three determinants for
the ro3 (log Swat and BIPcaco − 2) are shown in Figure 5. In
general 37.3% of the StreptomeDB library was compliant
to the ro3, while the respective % compliances for the vari-
ous subsets were 72.7%, 92.3% and 97.6% for the “drug-
like”, “lead-like” and “fragment-like” libraries. Among the
individual computed parameters, the most remarkable
was log Swat, which was met by 85.1% of the compounds
Figure 5 Distribution curves for compliance to Jorgensen’s “Rule of Thr
against count. Colour codes are as defined in Figure 4.
within the StreptomeDB library. This property showed a
Gaussian distribution for the “drug-like” and “lead-like”
subsets. Only 39.9% of the compounds fell within the
respected range for the BIPcaco − 2 criterion. The predicted
apparent Caco-2 cell permeability, BIPcaco − 2 (in nm s-1),
model the permeability of the gut-blood barrier (for non-
active transport), even though this parameter is not often
correctly predicted computationally (Veber et al. 2002).
The histograms of the predicted qualitative human oral
absorption parameter (in the scale 1 = low, 2 =medium
and 3 = high) are shown in Figure 6. It was observed
26.6% of the compounds in the total StreptomeDB were
predicted to have high human oral absorption. The pre-
dicted% human oral absorption (on 0 to 100% scale)
shows a similar trend, 10.9% of the compounds being pre-
dicted to be absorbed at 100% and 15.9% of the com-
pounds predicted to be absorbed at > 90%.
A molecule’s size, as well as its capacity to make

hydrogen bonds, its overall lipophilicity and its shape
and flexibility are important properties to consider when
determining permeability. Molecular flexibility has been
seen as a parameter which is dependent on the number
of rotatable bonds (NRB), a property which influences
bioavailability in rats (Veber et al. 2002). The results for
distribution of the NRB for this dataset revealed that the
compounds within the StreptomeDB library show some
degree of conformational flexibility, the peak value for
the NRB being between 1 and 2, while the average values
is 11.46 (Table 1). The large gap between the peak and
average value could be explained by the presence of very
huge NPs within the dataset, containing as many as 72 ro-
tatable single bonds (truncated at 40 RBs in Figure 2E).

Prediction of blood–brain barrier (BBB) penetration
Too polar drugs do not cross the BBB. The blood/brain
partition coefficients (log B/B) were computed and used
as a predictor for access to the central nervous system
(CNS). The predicted CNS activity was computed on a −2
(inactive) to +2 (active) scale and showed that only 2.47%
of the compounds in StreptomeDB could be active in the
CNS (predicted CNS activity > 1). A distribution of log
ee” (A) calculated log Swat against count, (B) predicted BIPcaco − 2



Figure 6 Histograms showing the distribution of human oral absorption predictions.
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B/B (Figure 7) shows a right-slanted Gaussian-shaped
curve with a peak at −1.5 log B/B units for the total li-
brary, and −0.5 log B/B units for the standard subsets,
with 73.7% of the compounds in StreptomeDB falling
within the recommended range for the predicted brain/
blood partition coefficient (−3.0 to 1.2). Madin-Darby
canine kidney (MDCK) monolayers, are widely used to
make oral absorption estimates, the reason being that
these cells also express transporter proteins, but only
express very low levels of metabolizing enzymes (Veber
et al. 2002). They are also used as an additional criterion
to predict BBB penetration. Thus, our calculated apparent
MDCK cell permeability could be considered to be a good
mimic for the BBB (for non-active transport). It was
Figure 7 Plot of the physico-chemical descriptor used to predict BBB
lower limit of binned data, e.g. 0 is equivalent to 0.0 to 1.0. Colour codes a
estimated that only about 35% of the compounds had ap-
parent MDCK cell permeabilities falling within the
recommended range of 25–500 nm s-1 for 95% of known
drugs. This situation knew no improvements in the “drug-
like” and “lead-like” subsets.

Prediction of dermal penetration
This factor is important for drugs administered through
the skin. The distribution of computed skin permeability
parameter, log Kp, showed smooth Gaussian-shaped
graphs centred at −4.5 log Kp units for the total database,
at −3.5 log Kp units for the “drug-like” subset and −2.5
log Kp units for the “lead-like” and “fragment-like”
subsets (Figure 8), with ~88% of the compounds in the
penetration. Predicted log B/B against count. The x-axis label is the
re as defined in Figure 4.



Figure 8 Distribution curves for the predicted skin penetration parameter. Colour codes are as defined in Figure 4.
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StreptomeDB database falling within the recommended
range for 95% of known drugs. The predicted maximum
transdermal transport rates, Jm (in μ cm-2 hr-1), were
computed from the aqueous solubility (Swat) and skin
permeability (Kp), using the relation (2):

Jm ¼ Kp �MW � Swat ð2Þ

This parameter showed variations from 0 to about
86,100 μ cm-2 hr-1, with only about 2.7% of the com-
pounds in StreptomeDB having predicted value of Jm >
100 μ cm-2 hr-1.

Prediction of plasma-protein binding
The efficiency of a drug may be affected by the degree to
which it binds to the proteins within blood plasma. It is
Figure 9 Distribution curves for predicted plasma-protein binding. Co
noteworthy that binding of drugs to plasma proteins
(like human serum albumin, lipoprotein, glycoprotein, α,
β‚ and γ globulins) greatly reduces the quantity of the
drug in general blood circulation and hence the less
bound a drug is, the more efficiently it can traverse cell
membranes or diffuse. The predicted plasma-protein
binding has been estimated by the prediction of binding
to human serum albumin; the log KHSA parameter
(recommended range is −1.5 to 1.5 for 95% of known
drugs). Figure 9 shows the variation of this calculated
parameter within the StreptomeDB dataset, as well as
for the standard subsets. This equally gave smooth
Gaussian-shaped curves centred on −0.5 log KHSA units
for all the datasets. In addition, our calculations reveal
that > 86% of the compounds within the StreptomeDB li-
brary are compliant to this parameter, indicating that a
lour codes are as defined in Figure 4.



Figure 10 Graphs showing the distribution of the predicted number of metabolic reactions. Colour codes are as defined in Figure 4.
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majority of the compounds are likely to circulate freely
within the blood stream and hence have access to the
target site.

Metabolism prediction
An estimated number of possible metabolic reactions
has also been predicted by QikProp and used to deter-
mine whether the molecules can easily gain access to the
target site after entering the blood stream. The average
estimated number of possible metabolic reactions for the
StreptomeDB library is between 5 and 6, while those of
the standard subsets are respectively between 6 and 7,
between 3 and 4 and between 1 and 2 for the “drug-
like”, “lead-like” and “fragment-like” libraries (Table 1).
Even though some of the compounds are likely to
undergo as many as up to 30 metabolic reactions due to
Figure 11 A plot of predicted logHERG values for StreptomeDB and s
the complexity of some of the secondary metabolites
within the database (Figure 8), ~68% of the compounds
are predicted to undergo the recommended number of
metabolic steps (1 to 8 reactions), with the situation im-
proving to ~92% and almost 100% in the “drug-like” and
“lead-like” subsets respectively. From Figure 10, it can be
observed that the total, “drug-like”, “lead-like”, and “frag-
ment-like” libraries both show respective peak values at
5, 4, 3 and 2 metabolic steps.

Prediction of blockage of human ether-a-go-go-related
gene potassium (HERG K+) channel
Human ether-a-go-go related gene (HERG) encodes a
potassium ion (K+) channel that is implicated in the fatal
arrhythmia known as torsade de pointes or the long QT
syndrome (Hedley et al. 2009). The HERG K+ channel,
tandard subsets. Colour codes are as defined in Figure 4.
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which is best known for its contribution to the electrical
activity of the heart that coordinates the heart's beating,
appears to be the molecular target responsible for the
cardiac toxicity of a wide range of therapeutic drugs
(Vandenberg et al. 2001). HERG has also been associated
with modulating the functions of some cells of the
nervous system and with establishing and maintaining
cancer-like features in leukemic cells (Chiesa et al.
1997). Thus, HERG K+ channel blockers are potentially
toxic and the predicted IC50 values often provide reason-
able predictions for cardiac toxicity of drugs in the early
stages of drug discovery (Aronov 2005). In this work,
the estimated or predicted IC50 values for blockage of
this channel have been used to model the process in
silico. The recommended range for predicted log IC50

values for blockage of HERG K+ channels (logHERG)
is > −5. A distribution curve for the variation of the
predicted logHERG is shown in Figure 11, which is a
left-slanted Gaussian-shaped curve, with a peak at −5.5
logHERG units for the total library, as well as for the
“drug-like” and “lead-like” subsets. It was observed that
in general, this parameter is predicted to fall within the
recommended range for about 66% of the compounds
within the StreptomeDB dataset, ~87% for the “drug-
like” subset and ~86% for the “lead-like” subset.

Usefulness of the compound library
The treated 3D structures of the compounds, as well as
their physico-chemical properties that were used to eva-
luate the “drug-likeness” and DMPK profile, can be freely
downloaded as additional files accompanying this publica-
tion (Additional file 1, Additional file 2, Additional file 3,
Additional file 4 and Additional file 5). The computed
properties included in the attached files could be a useful
guide in compound selection during virtual screening
campaigns and hence help users carefully select which
compounds to further develop in a drug discovery pro-
gram which begins with the StreptomeDB database.

Conclusions
Modern drug discovery programs usually involve the
search for small molecule leads with attractive phar-
macokinetic profiles. The presence of such within the
material in the additional files accompanying this publi-
cation (for non commercial use) is of major importance
and therefore renders the database attractive, in addition
to the already known properties – “drug-likeness”, “lead-
likeness”, “fragment-likeness” and diversity (Lucas et al.
2013). This is an indication that the 3D structures of
naturally occurring compounds within StreptomeDB
could be a good starting point for docking, neural
networking and pharmacophore-based virtual screening
campaigns, thus rendering StreptomeDB a useful asset
for the drug discovery community.
Additional files

Additional file 1: Prepared 3D structures of compounds currently
included in StreptomeDB with calculated “drug-likeness” descriptors.

Additional file 2: 3D structures of the “drug-like” subset derived
from the StreptomeDB library.

Additional file 3: 3D structures of the “lead-like” subset derived
from the StreptomeDB library.

Additional file 4: 3D structures of the “fragment-like” subset
derived from the StreptomeDB library.

Additional file 5: 3D structures of the total StreptomeDB dataset
with calculated pharmacokinetic descriptors.
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