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Abstract

liquidity management.

aspects of Inventory Theory are also present.

Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified
and have put pressure on banks to diversity and improve their liquidity sources.

While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to
deposit funding, the management of an inventory of cash holdings within the banks’ branches is also a relevant issue
as any significant improvement in cash management at the bank distribution channels may have a positive effect in
reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks’ branches,
very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This
model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in

The methodology we propose is based on the definition of some stochastic processes combined with renewal
processes, which capture the random elements of the cash flow, before applying suitable optimization programmes
to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some
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Introduction and links with the related literature
Along with risk, liquidity management represents the
main rationale for the existence of banks in the classical
financial intermediation theory (see, for example, (Allen F
and Santomero AM 1998) or (Allen F and Gale D 2004). In
the standard framework, the basic management challenge
as far as liquidity is concerned is how to cover depositors’
random consumption needs and how to set the subse-
quent deposit insurance mechanisms for these depositors,
(Diamond DW and Dybvig P 1983).

During the financial crisis that started in 2007, bank
liquidity has become a major issue in a context of uncer-
tainty and instability. Liquidity tensions have made banks
develop several strategies to retain depositors and to man-
age liquidity as efficiently as possible to avoid financial
fragility that, overall, makes the whole financial system
weaker (Diamond DW and Rajan RC 2011).

Several studies have dealt with the implications of
wholesale debt markets of retail deposit markets on lig-
uidity tensions as well as on the possible policy actions to
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solve such market-related liquidity shortages (as shown,
inter alia, by (Fecht F et al. 2011) or (Loutskina E 2011).
Since the notion of liquidity management comprises all
short- and medium-term cash flows no matter whether
they are accounting-based or cash, in this paper we focus
on possible improvements in optimization of cash inven-
tories within banks and, in particular, on how to improve
cash management inventories at branch level, as the scope
of this paper deals essentially with the cash part in ATMt’s
and for the cash desks.

Although there are significant potential efficiency
improvements in liquidity from branch-level cash man-
agement, there are only a few studies dealing with these
issues, as most of the banking models in the financial lit-
erature assume the standard allocation models of cash
from central hubs to branches as given. A relevant excep-
tion is the work of Pokutta and Schmaltz (Pokutta S and
Schmaltz C 2011) who study how to improve the optimal
allocation of cash at large banking groups. They compare
the alternatives of a central liquidity hub and the case of
many decentralized branches. They provide an analytical
solution for a 2-branch model and show that a liquid-
ity center can be interpreted as an option on immediate
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liquidity where the value can be interpreted as the price
of information. Importantly, Pokutta and Schmaltz derive
the threshold above which it is advantageous to open a lig-
uidity center and show that it is a function of the volatility
and the characteristic of the banking network.

Other studies have also dealt with liquidity management
not just at the bank level but as a general feature of firm
management. In this front, some papers have made use of
stochastic and inventory theory to propose some models
of firms’ cash management. Among these approaches, the
closest to our empirical aims is Ferstl and Weissensteiner
(Ferstl R and Weissensteiner A 2008). They consider a
cash management problem where a company with a given
financial endowment and given future cash flows mini-
mizes the Conditional Value at Risk of final wealth using
a lower bound for the expected terminal wealth. Fer-
stl and Weissensteiner use a multi-stage stochastic linear
program (SLP) where a company can choose between
a riskless asset (cash), several default- and option-free
bonds, and an equity investment, and rebalances the port-
folio at every stage. They explicitly estimate a function for
the market price of risk and change the underlying prob-
ability measure and simulate scenarios for equity returns
with moment-matching by an extension of the interest
rate scenario tree.

Our paper uses optimization theory as well as stochastic
calculus to develop a model of managing an inventory of
bank cash holdings that provides benefits as compared to
the standard branch cash management models. Although
the introduction of Automatic Teller Machines and other
technological innovations has reduced cash management
costs, there is still a pressing need to optimize resources,
imposed by the high competition among bank institutions
in the present scenario of economic and financial crisis. In
this sense, this paper makes a proposal for the optimiza-
tion of cash at branch level. In the banking world, several
companies offer such services of optimization to banks
and retails companies. These solutions are based on Infor-
mation Technology (IT) which built internal cash cycles
as a special form of supply chain: cash should be either
made available at the right time in the right quantity or to
be returned to the cash cycle. However, although the solu-
tions offered by this kind of companies appear as effective
in minimizing costs associated with cash flows, they are
too expensive to be implemented in branches. The real-
ity is that all branches (small, medium or big sized) do not
use such kind of IT methods to optimize their cash, which
probably remain reserved to the management of big cash
centers of the bank companies (if so).

Thus, this paper represents a concrete programme of
optimization of the bank cash for all branches. This pro-
gram consists of some precise, simple formulae which
could be implemented in branches at a set of instructions
from the bank company. Among the major virtues of the
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program that we propose are that these formulae are very
easy to implement and practically cost-free.

Specifically, we propose to substitute the old procedures
the branches use (and abuse), based on their historical
data, by mathematical formulae. These old methods use
previous data in similar circumstances (similar day, sim-
ilar month, working day or saint day) as a process of
trial and error for the present day, being this one the
unique reference in the daily decision-making on cash
flow. Moreover, this exercise of historical data implicitly
carries a human error of valuation, since most of the pro-
cess is based on the valuation of the person in charge
of the branch, who decides, after consulting the previous
information, which quantity it must demand for (if equal,
higher o lower to that of the historical data). On the con-
trary, the mathematical tools that we have used, which
combine optimization programmes with stochastic calcu-
lus as well as some aspects of Inventory Theory, conform
a rigorous and powerful weapon to reduce cash inventory
as well as to optimize the use of fixed assets.

This problem can be related with a classic issue: the
transaction demand for the cash, which began with Bau-
mol (Baumol WJ 1952) and Tobin (Tobin J 1956), and
more recently with Alvarez and Lippi (Alvarez F, Lippi
F 2009). The transaction demand for the cash consists
of managing an inventory of cash holdings: the decision
maker holds two distinct types of assets, one asset which
bears interest at a given rate, and a noninterest bearing
asset where periodic receipts of deposit and expenditures
are made. Transfers of funds between the two accounts are
permissible but at a cost (transfer cost).

There are also other costs of different nature involved:
the opportunity costs derived from the fact that funds
into the noninterest bearing asset are losing money while
they are not into the interest bearing portfolio. Apart from
the opportunity costs associated with cash inventories,
there are many others: personnel costs, investments costs,
material and clearing costs, insurance and logistic costs
for transport and handling, (Miller M and Orr D 1966).

The structure of this paper is as follows: section “The
mathematical model” is devoted to describing in math-
ematical terms the functioning of the cash flow of any
branch, by separating the different types of deposits and
expenditures and modeling them. In this section, we also
choose the variables and we design a proper objective
function which captures all the costs involved in the cash
movements. In section “The random deposits and expen-
ditures’, we catch the random elements of the model, such
as number of branch users or number and quantities of
cash movements (deposits and withdrawals), by defining
suitable Poisson (compound) processes. In addition, we
extract some useful properties to be used in later sections.

Section “Instructions from the bankts company to its
branches” contains the precise instructions that the bank



Garcia Cabello SpringerPlus 2013, 2:334
http://www.springerplus.com/content/2/1/334

company must impose to its branches in order to opti-
mize its liquid capital resources. These instructions are
given in the shape of mathematical formulae to calcu-
late the required amounts of cash and they substitute the
old methods based on historical data. In addition, in this
section we also examine the standard deviation as the
measure of the committed mistake in the approximation
process, to make a first approach on deciding for which
kind of branches work more effectively the proposals
made in this paper.

In section “The underlying optimization problem’, we
deeply analyze and resolve the key optimization prob-
lem of this paper as we determine the required amounts
of cash of any branch, taking into account the particular
features (needs) of any of them.

Section “Comparative statics” is devoted to comparative
statics examples on some parameters of the model, to help
understand under which conditions these efficiency gains
will be larger or smaller. Finally, in section “Conclusions’,
the set of all found conclusions in section “Comparative
statics” is summarized and interpreted into economical
terms, depending on the values of the different estimators
(parameters) that we previously defined.

The mathematical model

Our intention is to construct a mathematical model that
comprises the whole economic setting of cash moves
(in the scenario of the bank branches).

Different approaches to the problem can be made in
order to optimize the bank cash handling: in the first
place, a global approach, modeling the situation of a
bankt's company viewed a solid piece of the puzzle. In this
case, we have to consider the set of international rules as
constrains to the optimization program. This course of
action is very complicated because the cash movements
are not on the surface. In fact, the cash funds are strongly
tied up as they are invested in many other bank products.

As for the present paper, we have chosen to consider
any bankt's company as a institution composed by several
pieces in contrast with the unique and solid piece of the
global point of view. The pieces which conform a bankt’s
company are its branches: hence, we will carry out the
optimization process across all the branches.

Then, let us start with a few words on the functioning of
the branches. In their labor of attention to the users, any
branch must have a quantity of ready money, which comes
in part from the cash central, as well as from the deposits
made by the individual users or companies.

Periodically, the branch adjusts its cash to its necessities
-deposits and expenses- avoiding generating a quantity of
dormant money. After this adjustment, both of the follow-
ing possibilities may take place: the branch has generated
a surplus of cash or, on the contrary, the branch needs an
injection of money.
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In both cases, the branch needs help from its cash cen-
tral (the closest one): in the first case, the branch requires
that an armoured van evacuates the surplus of money. In
the second one, that of the branch needing more cash, the
cash central should move money to the branch, by means
of an armoured van as well. In any case, these cash move-
ments from the cash central to the branches take place
after a concrete demand of money from branches to the
cash central. Later on, we specify how it works in the real
world.

As for the demand of money from branches to the
central office, this often occurs with a forecast of funds
according to a concrete demand. This is the case, for
instance, of users who want to cancel a deposit and to
recover their money. Hence, the branch can anticipate this
expenditure, in time and in quantity. This argument of
anticipation of the bank in some cases is based on the
real normative of some bank companies, who require that
clients announce the physical withdrawal one day before
such that the bank has twelve hours to demand the funds
from its headquarter.

The above example suggests that there are two types of
expenditures: those which can be anticipated and those of
a strictly random nature. The same classification can be
established in the case of deposits. Thus, we refer to both
the above types as expected and unexpected expenditures
and deposits.

Turning again into the movement of money from the
cash central, this event implicitly carries a cost that
we analyze deeply in later sections. Mainly, it con-
sists of a logistic cost for transport and handling, due
to the costs generated by renting a security company
(which includes costs for security personnel and costs
for transport in armoured vans). There is involved as
well an opportunity cost, derived from the fact that funds
into the non interest bearing asset are loosing money
while they are not in the interest bearing portfolio.
One of the targets of this paper is, then, to minimize
the different costs implicated in the currency manage-
ment while keeping the customer satisfaction as high
as usual.

Dynamics of the funds of a branch
In order to build a realistic (mathematical) model, let us
recall the movements of the cash flow of the branches.
For simplicity, we will assume that the bank capital can
be separated into two products: cash funds and the rest
of bank goods, even those with high capacity of turning
out to be in ready money without loss of their value. This
hypothesis can seem naive, but it allows us to be focused
only in the liquid assets of the bank company.
As we mentioned before, each branch of any bank com-
pany has to assume several periodic expenses, some of
them are predictable while many others are not. This
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implies that an entry of money must exist, available when
necessary, from the closest cash central. This channel of
entry of money is complemented with the daily deposits
that the individual users or companies make.

The cash central sends cash to the branch after a con-
crete request from the branch. This request is done after
adjusting both the programmed expenses and those which
are of random nature, with the own expected deposits and
the cash available in the branch at this moment. All this
process is done with the target of not generating a surplus
of money.

In the real world, the criterion with which such a
request is done is purely based on the historical data
of the branch. This expresses that the branch compares
such a day as today with a similar day of the past. The
concept of “similar day” means a day of chosen sim-
ilar characteristics: working day versus saint day, day
at the beginning of the week versus day at the week-
end, etc. The branch, having identified such a simi-
lar day, examines the success or failure of the quantity
required for such a day of the past and does its request
after valuating if doing so in an equal, higher or lower
quantity.

As it is the banks company who makes this optimization
process, it establishes some mechanism of control on the
branches to restrict these movements of entries and exits
of money.

1. A first mechanism of control to optimize its
resources is set by the bankt's company by fixing a
certain number of periodic stops: branches call stop
to each of the armoured van stops next to the branch.
Each branch has a certain number of stops available
which might or might not be required. Let us recall
that stops occur after a request of the branch, and
due to both possibilities: caused by the existence of a
surplus of cash or, on the contrary, caused by the
absence of cash to cover all the branches necessities.

2. The branch will know that there is not enough cash
when they will not be able to cover all the
programmed (or unexpected) expenses. However,
the existence of a surplus of ready money can be
established only with a comparative to a reference,
which allows us to introduce the second mechanism
of control on behalf of the bankt's company.

Such reference to set how much money exceeds in
this branch consists of an upper bound C, (maximum
of cash), which is fixed by the bankt's company for
each branch, attending some parameters, particularly,
the volume of the branch turnover which, as we will
see later, can be identified with the size of the branch.
In comparison with Cy, if the branch liquid funds
exceeds this margin or not, the branch will know if it
must require or not one stop to evacuate the surplus.
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Although we will return to this point later, let us observe
now that in addition, and depending on the internal
normative of each bank company, the bank can decide
(or not) to add a bit more over C, for precautionary
motives (i.e., for prevention) in order to fulfill the clients
demand up to a certain confidence level. Since such pre-
cautionary “bit more” will be fixed for each bank company
in attendance of their internal rules of functioning, we
calculate along this paper the optimum C, for minimiz-
ing the bank costs assuming that this precautionay “bit
more” is external to C, and hence, it is not included in
C,. Then, once we have finished our task of determining
the optimal amount C, for minimizing bank costs for any
bank company, each bank could (or not) add more o less
precautionary amount, following its internal normative.

Development of the model: election of variables and
function of costs

The main purpose of this paper is to optimize the bank
cash, as we said before, across the optimization of the
funds of any of its branches. The final objective of this
optimization process is, thinking as if we were the bankt’s
company, to provide to the branches with some precise
instructions under the shape of formulae, which will be
deduced in later sections. These instructions will con-
stitute a set of simple formulae, with no cost in their
implementation in practice. These features conform the
more valuable advantages of our approach compared with
other techniques for different bank branches. In short, the
method that we propose is

e easy to implement, what means among other things
that there is no need of additional formation for the
branch staff to manage this, which would represent
an extra cost and

e almost cost-free, since it can be implemented simply
as a set of new instructions from the bank to their
branches.

Let us start by choosing the variables of our model: the
first one is the total amount of money that the branch
demands from its cash central, Cy. The requirements for
Co are that it should

® be enough to cover both expected and unexpected
expenditures of the branch and
e minimize the costs function of the bankt's company.

A formula to calculate an accurate Cy for each monetary
circumstances of each branch, will be deduced later on.
Let us note that a negative Cp should mean that there is a
surplus of cash in the branch.

From the bankts company point of view, the
second variable to be considered is the upper bound
(the maximum) of cash resources that the bankt's
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company fixes for each branch as a reference to determine
if a surplus of cash exists in there. Let C, be the maxi-
mum point of the cash level which the bankt's company
will allow in its branches. This variable depends on some
other endogenous variables, such as the geographic loca-
tion or size of the branch. However, for simplicity, we
reject these features of C, to center our attention on the
main requisite on C; of minimizing costs to the bankts
company.

Thus, we assume that the cash balance in the bank
branch is allowed to fluctuate until it reaches the upper
bound, C,. Once the branch exceeds the quantity C,, it
must demand from the cash central one stop to evacuate
the surplus of money.

After having selected the variables, let us continue with
the banks objective function. For this, we follow the stan-
dard practice in inventory theory by assuming that the
bank seeks to minimize the long-run average cost of man-
aging the cash balance under some policy of simple form.
On this basic function, we will add later some modifica-
tions, specific to our particular case.

On the two variables, Cy and C,, we will make use of the
following bankt’s objective function £(Cp, C;) as starting
point to construct the final function of costs. £(Cp, C;) is
defined as

A Co+ C;
Y +v
(CO - Cz)Cz 3

(See (Baumol WJ 1952; Miller M and Orr D 1966;
Tobin ] 1956) and (Alvarez F, Lippi F 2009) for references
on transactions demand for cash). In a parallel form to the
classical situations in transactions demand for cash, we
have in our particular context of bank branches two-asset
setting, one asset being the brancht’s cash balance, and the
other, a separated portfolio of liquid assets, represented by
the cash central.

We derive the above function in a similar way to
(MillerMand Orr D 1966). Also, the main assumption of
the model will be established here: in contrast with the
(deterministic) Baumol model, now the net cash flow is
completely stochastic. Mainly, the branch cash balance
will be allowed to fluctuate freely until it reaches either
the lower bound, zero, or the upper bound, C,, at which
time a transfer of founds will be undertaken to restore the
balance to a security level according to the normative. By
the moment, we consider two separated addends, one for
the costs derived from the cash flow and the other for the
opportunity costs associated with cash inventories, that is,
the costs that the bankt's company suffers for not having
the cash in other products that yield higher benefits.

As for the first addend, this can be written as the prod-
uct of the cost per transfer (say y) and the total expected
number of transfers per period of time considered. While
in the classical issue of transactions demand for cash, the

e(Co, &) =

’
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costs due to cash flow are simply transfer costs (from one
current account to another), in our particular context,
these costs include personnel costs, investments costs,
material and clearing costs, insurance and logistic costs
for transport and handling.

Hence, this first addend of the function is

A
y M
(CO - Cz) Cz
— —
costs due to cash flow

where A denotes the variance of daily changes in the cash
balance. Specifically, considering that the random behav-
ior of the cash balance can be characterized as a sequence
of independent Bernoulli trials, if .« denotes the amount of
euros that the branch cash balance increases or decreases

in some small fraction of a working day —, thus A = p2¢.

As for the the costs per stop, y, we simply distributes the
total costs per contracting a security company (which are
constant and in consequence, independent of the amount
transferred) by the mean of total stops for this branch. Let
us point out that in reality, branches (bank companies) pay
a constant amount per month for all services to the secu-
rity company, independently of the number of stops they
have to make.

As for the second addend, this will be the product of
the daily rate of interest earned on portfolio (e.g., other
banks products which yield higher benefits), say v, and the
average daily cash balance. This steady-state distribution
of cash holdings is of a discrete triangular form with base

C, and mode Cj. Hence the mean of such a distribution is
C'0 + Cz

Then, summarizing all the above information, the objec-
tive function till now is

A Co+C
£(Co,C) = 7 s
(Co — C)C, 3
— S——
opportunity costs

stop costs

where y represents the costs per stop, is the

A
(Co — Cz) Cz
total number of stops in the period of time, while v is the

Co+C,
daily rate of interest earned on the portfolio, and m

represents the average daily cash balance on bank branch.

However, we must also consider other costs involved
with a large quantity of stored money inside its branches:
the payment on the bankt’s company to a theft insurance
policy. This cost will be directly proportional to the max-
imum amount of money allowed by the bankt's company
for this branch in particular.

Hence, the completed objective function is

Co+ C,
£(Co,Co) =y + v 4+ BC
(Co— C)C, 3 —
—_— Y insurance costs

stop costs opportunity costs
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Note that in the objective function (in the first addend)
there is a parameter directly related to the branch users
behavior. This is u, with A = p2t, which acts as an index
of how active the branch users are: the more times they
make withdrawals or deposits -and the higher are the
quantities they move- the bigger is 1 and the bigger are
the fluctuations of the cash balance. Hence, from now on,
we consider u as the indicator of the fluctuations of the
branch cash flow. Let us remark that u €[0, +00) if it is
considered as a symmetric function:

In practice, pu is strongly directly related with the geo-
graphic location of the branch, more than to its size:
nearer the branch is situated to an industrial, commercial
or financial center, higher will be the fluctuations of the
branch cash flow, so higher will be .

Later on, in section “Comparative statics’, we will define
a second parameter which we will use to calibrate the
strength of our model. This will be the proper branch
size: both parameters will allow us to measure the changes
of the optimal policy for branch costs, depending on the
different values on these estimators.

The random deposits and expenditures

As mentioned before, the quantity Cyp of money that the
branch demands to its cash central must fulfill some
requirements, which can be condensed in only one: C
must cover the expenses of the branch during the consid-
ered period of time.

Following section “The mathematical model’;, the
branch expenses can be classified into expected and unex-
pected expenditures. While the first ones are easily mod-
eled like a constant (which could be left aside of the model,
as we will argue in short), the second ones are much more
difficult to be designed, due to their random nature. This
section is, thus, devoted to capturing the randomness of
our problem by means of some stochastic processes.

Through the analysis of our problem, some stochastic
elements have been kept hidden: first of all, the number of
bank branch users during the considered period of time.
These consumers make deposits and withdrawals through
the available ATM of the branch as well as from the cash
desks. A second stochastic element involved is the quan-
tities of money that these branch users take into and
out. Note that the bank branch deals with both stochastic
elements using its historical data.

Let N be the number of costumers which make use of
the bank branch during the considered period of time. Let
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us recall that often, the arrival process of customers can
be described by a Poisson process. Mathematically the pro-
cess is described by the so called counting process N(t)
or N;. The counter tells the number of arrivals that have
occurred in the interval (0, t), that is,

N; = number of bank branch users in the interval (0, ¢).

From this definition and considering the period of time
as the unit of time, note that N = Nj.

For that reason, if N; is a (Poisson) counter process of
parameter, say, A, some of its properties are the following:

e the number of arrivals to the bank branch in an
interval of length t has a Poisson distribution with
e—)Lt ()»L‘)n
1
measures the probability of n bank branch customers
in the time t.
e The mean and variance of N; are

parameter A - £; that is, P[Ny = n] =

E[N{]=A-t and var[Ny]= A - ¢.

Particularly, since A = E[N], follows that the rate of the
Poisson process N, 1, is the average of branch consumers
in the considered period of time.

In order to properly structure the later withdrawals and
deposits movements, note now that not all the users who
come to a branch do so in order to make withdrawals
or deposits. For this reason, the counting process N; can
be separated into many counting processes, which we
summarize for simplicity like

N, =N +N?+ o0,

where N}’ represents the number of withdrawals in the
interval (0, £), Ntd represents the number of deposits made
in the interval (0,¢) and the term O; gathers the rest
of operations and requests (apart from withdrawals and
deposits) made by the branch users.

Apart from the number of branch consumers per period
of time, another random element of our problem is the
amount of each withdrawal made by each consumer. Let
W; the withdrawal that the i-th user makes. We capture
all these quantities W; by means of a compound Poisson
process.

A compound Poisson process is a (random) stochastic
process with jumps. The jumps arrive randomly accord-
ing to a Poisson process and the size of the jumps is also
random, with a specified probability distribution. In our
context we define the withdrawal process, parameterized
by certain rate X, as the compound Poisson process given
by

Ny
Xe=) W
i=1
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viewed as independent and identically distributed (i.i.d.)
random variables. Then, X; is the total amount that has
been taken off by the N}’ bank branch users until the
moment ¢ of the considered period of time. Note that,
particularly,

NY
X1 = Z Wi
i=1

is the total amount of money that is taken from the bank
accounts -either through the ATMs or through the cash
desks- for ¢t = 1.

At this point, remember that the mean of a compound
Poisson process can be calculated via the mean of one of
the i.i.d. variables, as

E[X]]= A"t E[Wi],

where A" is the rate of the Poisson process N}".
Consequently, for ¢t = 1, we have

EX] = AV -E[Wi]=

Average number of
withdrawals per
considered period of time

Average quantity taken off
- from bank branch
per considered period of time

Once we have modeled the withdrawal process, we can
operate in a similar manner for the deposit process. That
is, the deposit process parameterized by certain rate A%, as
the compound Poisson process given by

N
Y; = Z D;
i=1

where D; denotes the deposit that has been made by
the ith-customer, viewed as independent and identically
distributed (i.i.d.) random variables. Then,

Nd
Y, = Z D;
i=1

In a parallel form to the withdrawal process, the mean
of this compound Poisson process can be expressed
E[Y,]= 1" t-EDi],

where A4 is the rate of the second Poisson process N?.
For t = 1, we also have that

E[Y1]

A EDj] =

Average number of
= deposits per
considered period of time

Average quantity taken into
- the bank branch
per considered period of time

We will complete this section by calculating the number
of withdrawals and deposits in terms of expected values of
expected times between two arrivals as well. This will be
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done using some classical results cited in (Alvarez F, Lippi
F 2009).

For this, let us remember first some previous definitions
and constructions.

In a counting process, often T, represents the time
between consecutive arrivals: specifically, T), denotes the
time between the (n — 1) — th arrivals and the n-th one.
These variables are i.i.d., and they allow the constructions
of a new variables,

=T+ To+...+ Ty,

which represent the time until the #-th arrival.

By defining N(¢) = N; := max {n/t, < t}, this counts
the number of arrivals which occurs in the interval (0, ),
in the same manner that, in our particular context, N;
counts the number of bank branch users in the interval
(0, t), as we mentioned before.

Hence, the renewal function is defined by

m(t) := E[Ny] .

If we denote by u the expected time between arrivals ,
the fundamental theorem of Renewal Theory states that
. m(t) 1
limi_oo—— = —.
4 Iz

This means that the expected number of arrivals is equal
to the reciprocal of time between arrivals. As alogical con-
sequence of this result, minor all is the number of users
who extract money, major will be the time that passes
between the two arrivals.

This result can be applied when the arrivals are with-
drawals and deposits, respectively. For this, let us define
new random variables which will measure the times
between withdrawals or deposits.

Let

o=T"+1y+...+ T,

be the time until the #-th arrival of an user who makes an
withdrawal.

By defining N¥(¢t) = N}’ := max {n/t)) < t}, this
counts the number of withdrawals which occur in the
interval (0, t). In the same line, the renewal function for
withdrawals is defined by

m" (t) .= E[N}"].

As direct application of the fundamental theorem of
Renewal Theory, the expected number of withdrawals is
equal to the reciprocal of time between withdrawals.

On a parallel form, this process can be defined for
deposits: let

td=Td 4 Td . 4T,

represent the time until the n-th deposit has been made.
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By stating N4(¢) = Ntd = max {n/r,f < t}, this
counts the number of deposits made in the interval (0, £).
Therefore, the renewal function for deposits is defined by

m?(t) == E[N?],

which expresses, by means of the fundamental theorem of
Renewal Theory, that the expected number of deposits is
equal to the reciprocal of time between deposits.

In both cases, the number of withdrawals and deposits
-the first term in the equality set by the fundamen-
tal theorem of Renewal Theory- is given by N" and
N9 respectively, considering the period of time as the
unit.

As for the second term in the fundamental theorem
of Renewal Theory, the reciprocal of time between two

withdrawals or deposits, — and —, let us examine it

immediately afterwards.

We start with u", the time between two withdrawals.
The Poisson (counting) process N;” with intensity A}
(particularly N with intensity A") is also an renewal
process where the time between two withdrawals, {7/},
is distributed as an exponential with parameter 1". So
simple algebra shows

uw’ =1- e,

The same idea works for deposits. Thus, u? denotes the

time between two deposits,

d

d
w =1—e".

Therefore, the number of withdrawals and deposits per
unit of time is given by the following formulae:

The number of withdrawals NY — 1

per unit of time o T 1M
as well as

The number of deposits N — 1

per unit of time T T M

Instructions from the bankt's company to its
branches

As we mentioned before, the central aim of this paper is
to optimize the bank cash inventories across its branches.
For this, our proposal is that the bankt’s company must
impose some restrictions to its branches cash movements.
These restrictions are imposed in the shape of some for-
mulae which help the branches to calculate their needs
of cash, before they make a cash requirement to the cash
central. These formulae accurately adjust the demand for
money to the real needs of the branches, avoiding a sur-
plus of money and, hence, minimizing the opportunity
costs.
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This section is devoted to rewriting these restrictions,
designed as formulae, which the bankt’s company imposes
to its branches as the new mechanism to calculate the
required cash. In fact, these formulae would substitute the
old mechanism the branches use until now, based only
on their historical data. Actually, since all work has been
done in the previous sections, we are now ready to extract
conclusions.

The branches cash needs, Cp, are quite simple to
define in view of the deposits and withdrawals of
money: they are equal to the total amount of expen-
ditures minus the total amount of deposits (expected
and unexpected). Let us associate the expected quanti-
ties of money as well as the unexpected ones in separated
addends, since both addends exhibit opposite qualities.
Thus,

Co = unexpected expenses - unexpected deposits +

expected (expenses and deposits)

X1 — Y +K,

assuming that both expected expenses and expected
deposits are constant since they could be anticipated
because they do not exhibit any random features. Let
K be this constant which brings together both expected
expenses and deposits.

As the expected moves of cash, represented by the
constant K, do not exhibit unpredictable behaviors, it
is logical to assume that they could be left aside of
the model. That means that, from now on, we will
be focused only on unexpected moves of cash (with-
drawals and deposits) with the concrete intention of
finding a formula which, as easy as possible, approx-
imate them. Once we have concluded our task, the
expected moves of cash K will be simply added to our
formulae.

Another reason for leaving aside of the model the quan-
tity K derived from expected movements of money;, is that
this may be considered as part of the security cash level
(like settlement accounts) that each bank holds in order to
fulfill the clients demand up to a certain confidence level
for precautionary motives. As we mentioned in previous
sections, the total amount of cash which the bank holds
for security reasons (K is part of this) depends mainly on
the internal normative (or rules of functioning) of each
bank.

Let us return then to the task of estimating the unex-
pected cash moves of the branch, X; and Y;. If we approxi-
mate each random variable X; and Y; by its mean, we have
that

Co = E[X1] —E[Y1] +K.
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Then, using the specifications made for E[X;] and E[Y1]
in the former section, the above formula turns out to be
Average number of Average quantity taken off

Cy = withdrawals per from bank branch —

considered period of time  per considered period of time
Average number of Average quantity taken into
the bank branch +

per considered period of time

— deposits per
considered period of time
+ K

Thus, this formula is the new mechanism of control that
the bankt’s company must impose in its branches in sub-
stitution of their old methods, based on historical data.
The introduction of this formula must be imposed as part
of the program of minimizing costs for internal cash flow.
In the light of this, we emphasize that this formula is very
simple itself as well as very simple to manage with.

Let us make now an slight approach to the adequacy
of the model for different branch sizes, by evaluating the
error committed in the approximation used before on the
random variables X7 and Y;.

The previous formula is constructed by means of the
stochastic variables, X; and Y; (the so called withdrawal
process and the deposit process, respectively) which cap-
tures both random processes of withdrawing and incom-
ing money, for a random number of users, N (¢). Moreover,
in order to transform into determinist a random problem
as far as possible, we have used the approximation of the
stochastic variables X; and Y; by their means:

X; 2 E[X;], and Y3 =E[Vi].

As any approximation, this carries a little error of calcu-
lus. We are now going to examine the committed mistake
of approximation as well as to interpret this for different
branch sizes.

For any random variable, the mentioned miscalculation
is given by its standard deviation. As it is well known, the
standard deviation of a random variable X is defined as the
quadratic root of its variance and it provides a measure of
the dispersion of the variable: minor is the standard devi-
ation, major will be the concentration of data about the
mean.

Let us recall that, from the definition of variance of any
compound Poisson process, the variance of the random
variables X; and Y; are

var[X,) = A - t-var(W;) + A" -t - E[W;]2 =

= )\,W -t (Vﬂr(‘vl’) +E[VV1]2)1

varlY;] = 24 - ¢ - (var(D;) + E[D;]?).
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Henceforth, in the particular case of ¢ = 1, theses
variances are

varlXi] = " (var(Wy) +E[W)),

var(Y1] = A% (var(D;) + E[D,‘]2 ).
or, even more,

var[X1] = AY-E[(W)?],

var[Yi] = A% E[(D)?].

Then, in our particular context, the measure of this
error is given by

ox =var[X1] = - VE(W)?],

and

oy = Vvarlvi] = 4. VE(D)2.

Since the intensities of the corresponding Poisson pro-
cesses N" and N%, 1" and A%, respectively, are given
by

)\,W

E[N"]

A = EINY,

they represent the average number of branch consumers
who make withdrawals and deposits respectively, in the
considered period of time. For our purpose of delimiting
the error, the variables (W;)? and (D;)? give us a similar
interpretation of what is given by W; and D;.

Hence, from these formulae, the logical consequence
of the model is that the minor is the number of branch
users, the minor will be the committed miscalculation.
This vaguely seems to indicate that the model makes
more accurate predictions for small and medium sized
branches.

Note that we use the term vaguely to reflect the fact
that the notion of branch size seems to be related with the
number of branch users, although this has not been spec-
ified yet. Actually, there are many equivalent criteria to
quantify the size of a branch by bank managers, and one of
them is indeed the the number of its clients. In the follow-
ing sections (section “Comparative statics”) we will return
on this point to analyze this with more detail.

The underlying optimization problem

Since the main target of this paper is to optimize the
cash resources of the bank companies across its branches,
it is crucial that the quantity that the branch requests
from the cash central, Cy, fits perfectly to the branch
expenses without surplus. In other words, we propose that
Co must be small enough to avoid losses to the bankt’s
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company, derived from the fact of holding too much cash
in the branch, while the surplus of Cy should be generating
money if it should be deposited in other bank products.

Recall at this point that the remarks made before on C,
can be now applied to Cyp: we refer to the fact that we may
calculate Cy either to perfectly fit to the branch expenses
without surplus or, at the contrary, we may determine it
to exceed these expenses in a “bit more” in order to fulfill
the clients demand up to a certain confidence level, even
more taking into account that to resolve one problem or
the other one has a minuscule difference from the math-
ematical point of view (equality or inequality constrained
minimization).

However, we choose to calculate Cy for perfectly cover-
ing all the branch expenses in order to avoid opportunity
costs. And, once we have determined the optimal amount
Co to minimize costs under the condition of perfectly
cover the branch needs, we let to the bank institution
the decision of increasing more o less such quantity Co,
depending on their internal rules of functioning.

Taking again the above idea of optimizing the banks
objective function with the constrain that Cy must cover
all branch expenses, we arrive in a natural way to the
following optimizing problem with constrains:

Minimize : banks objective function
s.a. Co must cover the whole branch expenses
Let us start with the banks objective function. Remem-

ber from section “The mathematical model” that the
banks objective function is

A Co+C,

e(Co, Cy) =y v + BC,
(CO - Cz)cz 3 ——
N— —— — .
. insurance costs
stop costs opportunity costs

As for the constrain of the optimization problem, i.e., Cy
must cover the whole branch expenses, this can be written
in mathematical terms as

Co = E[Xq] —E[Y1] +K

where K includes both expected expenditures and
deposits. Note that both terms E[X1] and E[Y7] are known
by very simple formulae, as they were deeply analyzed in
the former section.

We can not forget the fact that C, is the upper bound
of cash that the bankt's company allows to the branch.
Hence, a natural second constrain will be

Co < C,.
Note that both constrains together state that
Co = E[X1] —E(1]+K < C; & C, = E[X1] —E[Y1] +K,

which it is the logical rule to ensure a well functioning of
the branch.
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Once both the bank objective function and the con-
strains are specified, the optimization problem turns out
to be the following:

A Co+C, n

+v

Minimize : y
(Co— CC, 3

BC,

sa Co = E[Xi] —E[Y1] +K

CO = Cz

To solve this problem, we effect the following change of
variables:
X = Co — CZ
y=C

Accordingly, the optimization problem turns out to be

A
Minimize : y — + B(x +2y) + By
xy 3

s.a. x4y = E[Xi] —E[1] +K
X <0
We resolve the optimization problem with the first con-
strain and, later on, we will select from the set of solutions
(x,) those which verify x < 0. For this reason, we solve
the minimization program

A
Minimize : y — + B(x + 2y) + By
xy 3
s.a. x+y = E[X1] —E[1] +K

by substitutingx = E[X;] —E[Y1] +K —y into the objective
function. If we do so, the solutions to the problem are the
roots of the following quartic equation, where, by now, R
is shorten for E[X;] —E[Y1] +K:

-2y +R

gy — L.
EO=rAGR TG T =0

or expanded,

2y A
V5 Y
(g + B)

AR

+ 22 o
Y4B
(3+ )

yt —2Ry® + R*y? —

This quartic can be resolved by means of algebraic
equations in radicals, following the Galois Theory. This
will yield to the desired solution of the optimization cash
costs.

For future references, we will denote (Cj, C}) to the
optimal policy for total branch costs. Note that, due to the
plain (linear) relationship among variables Cy, C, and «x, y
for the previous change of variables

x:Co—Cz
y=C
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the optimal return point can be expressed in terms
of x and y, (x*,5*) or in terms of (Cj,C}). We
may use both of them indistinctly depending on the
context.

As for the optimal value, we will denote this as m* =
e(C5,Cy), and m* = e(x*,5*). We also use the notation
of m(x,y) instead of e(x,y) when we want to empha-
size that our analysis of the objective function is specif-
ically done for finally evaluating it at the optimal return
point.

Comparative statics

Along this paper, some slight approaches on the the
accuracy of the model for different branch sizes have
been made. The detailed discussion about this will
be developed in this section with a comparative stat-
ics exercise on the optimal policy m* (or, alterna-
tively, m*) in terms of the primitive parameters R
and pu.

The branch size
Let us start this paragraph by making some remarks about
the concept of branch size.

Intuitively, the notion of branch size is identified with
the volume of its turnover. Actually, there are many
criteria to quantify the size of a branch: the volume
of its credits, the number of its clients, the number
of its staff or the volume of its deposits, among oth-
ers. In practice (i.e, among bank managers), the most
accepted criterion to measure the size of a branch is
simply to quantify its total needs of cash and then,
to state that branch size as an increasing function of
these needs. In short, bank managers assume that the
bigger branch sizes correspond to the mayor needs of
cash of the branch, related to mayor moves of money
(entries and exits).

Even though we used R before in order to shorten the
notation (of the quartic equation), we do make now a
formal definition: R is defined as

R:= E[X1] —E[V1] +K,

and it represents the total needs of cash of the branch.
For the reasons exposed before, we will assume from now
on that the parameter R quantifies specifically the size of
the branch. As a parameter, R takes values on [0, +00),
although for simplicity, in practice R is considered as
belonging to one of the three categories: small, medium
and big size,

small medium big

sizes sizes sizes
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Then, regarded simply as the branch size, the parame-
ter R will allow us to calibrate for which sizes our model
is more or less accurate. Recall that R is the second indi-
cator we define since actually we introduced at the end
of section “The mathematical model” the parameter u as
an index for measuring the cash flow fluctuations of the
branch.

As we mentioned before, the main objective of this
section is to do some comparative static exercises on the
optimal policy m™* (or, alternatively, m*) in terms of the

primitive parameters R and . Let us start with R, by find-

ing the sign of — to state in which cases m is increasing
IR

or decreasing on R.
Let us observe first that m is function of y, m = m(y),
via the objective function

A v
y— + —(x+2y) + By,
xy 3

with the change x = R — y, that is,

W= Rty +B
my) = ——+ - ,
®R=yy 3 T
9 d
so we may calculate 8—m = d—m This partial deriva-
Y

tive is always positive since this is the result of algebraic
operations (sum and product) among positive quantities.
Specifically,

am AR -2 v
i _YAR=2) v g
dy (R —y)*y 3
A(2y — R
_ YA )+(3+B)>0
R—-y%?* 3
D — S~———
+ +

which is positive as all terms involved so are as we claimed.
Actually, since the second addend is positive with no
doubt, we focus on the first addend: while it is clear that
the denominator of the first term is positive, note that also
it is the numerator of the fraction since y(= C;) > R for
well functioning of the branches, so

R
yzRéyZR>§=>2y—RzO.

This shows that the optimal value m* is increasing on
the optimal policy y*.

Let us note that this fact, m™ is increasing on y*, is not
related with the parameters of the model but it is simply a
logical consequence of the model: mayor will be this upper
bound (maximum of cash) C}, higher will be the optimal
value for costs. This statement should be kept in mind for
the bank companies when deciding (or not) to add the “bit
more” over C} for precautionary motives according with
their internal rules of functioning, independently either of
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the size of the branches or the fluctuations of their cash
balance.

On the other hand, the function m() may also be
regarded as a function of R:

®="4 ke i
m(R) = = = .
yR—y* 3 3 4
d d
Henceforth we may calculate an_ —m:
dR  dR

om —yAy v
R R_wm2e T3=
R~ R—y%2 3

—YA v
————5-+5=0 or =0
R=y%y 3

which could be positive or negative, depending on the
A
values of both /-~ and ~.
x* 2y 3
We note that we have the following chain of logical
implications:

om
when x*%y* — 0 = — 00 = — <0,

x* gk aR
since
om v yA
— = — <0,
AR 3 x¥yx

because the subtrahend — oo. A similar argument allows
us to state that

0]
- 0= a > 0.
x*2y¥ oR

when x*%y* — 00 =

On the other hand, it is nor difficult to see that x%y is
increasing on y since

that is, if y = x?y . Thus, combining both results,
we have that

*
< 0.

*

oR

In other words, since y = C,, the above result states that

1. wheny — 0= 4%y — 0 =

2. Wheny — 0o = &%y — 00 = > 0.

1. When C, — 0, then m* is decreasing on R.
2. When C, — oo then m™* is increasing on R.

Along this paper we have rejected for simplicity some
features of C, to center our attention on the main req-
uisite on C, of minimizing costs to the bankt's company.
At this point, we return to the fact that C, (maximum
of cash) is fixed by the bankt's company for each branch,
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attending some parameters, particularly, the size of the
branch.

Although other considerations (like geographic loca-
tion) may influence, in the reality C, is fixed by the bank
company in a directly proportional way to the branch
size: higher is the branch size, bigger will be C,. That
is, if

R 7

This result states that in the category of small branches
(branches for which size R takes small values) the opti-
mal value for branch costs m* decreases in despite of R
increases. This may be interpreted in the sense that the
bank company can expected to have the same optimal
value for costs m™ for all branches of this category, even for
branches with sizes in a neighborhood of small size. That
is, for small/medium branches.

However, the opposite phenomena occurs for the cate-
gory of big branches: dealing with them, the bank com-
pany may expect that the optimal costs will blow up as the
size of the branches increase.

Now we return to the central optimization problem
of this paper, which yields us to discuss the features of
the Lagrange multiplier associated to this program. This
allows us to state some complementary properties of the
index R.

While we have solved the minimization program

= G /.

A v
Minimize : y— + -(x+2y) + B
inimize yxy 3( y) y
s.a. x+y = E[X;] —E["1]+K

by substitutingx = E[X;] —E[Y1] +K —y into the objective
function, one also would have resolved this by apply-
ing the Lagrange method: let us see then which features
the associated Lagrange multiplier exhibits and which
economic implications could be derived from this.

When the objective is to minimize the cost function
subject to the “output constraint’, it is well known that the
Lagrange multiplier turns out to be the marginal cost of
“production” that is, the increase in total costs when one
more unit of output is permitted. Note that the “output”
in our constrain corresponds to the branch needs of cash
(or alternatively, the branch size), R.

By incorporating R, the minimization problem written
in terms of x and y as variables (as before) turns out to be

A
Minimize: y— + E(x + 2y) + By
xy 3

s.a. x+y =R
x <0

As it is well known, the solution of this constrained
optimization problem can be found as well by using the
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so-called Lagrangian method. If we define the Lagrangian
A v

as L(x, ;1) = y@ + g(x—f— 2y) + By — A(x +y — R), the

equations given by this Lagrange multiplier method are

AL yA -1 v

_ = —(— — — A=

= )t
8L_yA(—1)+2v+B 3 =0
ay  x  9? 3 N
L _ g

on _TTITE

where the multiplier A has an economic interpretation. As
it is well known,
om*
~ OR
represents the rate of change of the optimal return point
m* = &(C§, C}) when R increases one unit.
From the first and second equations, we have that
—vYA v —yA 2v

A= -
x2y+3 xy2+3

+ B.

From algebraic computation, it is clear that A is increas-
ing function of both x%y and xy*: actually, if %y or xy?

increase, then —- and — decrease, so —- and —
x%y xy x2y xy
increase as well, even more if both are multiplied by non
negative constants. Finally, to determine that both 4%y and
xy?* are increasing functions of R, we simply use the test of

first derivative: since x + y = R then

x%y = f(R) = x*(R — x),

xy2 = g(R) = (R —y)y?

Hence,
f(R) = x? >0,
g® =y*>0.

As a result of this, we have the following sequence of
implications:

if R/ = A = am*/' & am*/

1 dR oR 7’
om* .

as A = and m* and m™* are linearly related. As a

consequence of this,

*
oR
*

2. i K
lmpsog ——— =0,
R—0 IR

1. limp— 400 = +00, and
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The economical interpretation of this result is the
following: this outcome states that, as the branch size
increases, the rate of changes in the optimum for branch
costs increases as well. This means that the situation of
branch costs deteriorates at major speed when dealing
with branches of big size. All the contrary, the situation of
possible changes on optimal costs for the branch of small
size diminishes (improves) for small values of R.

The fluctuations of the cash flow
This paragraph is devoted to analyzing how the parameter
w, defined in section “The mathematical model’, influ-
ences the behavior of the optimal return point m*. Let us
start then with some remarks about the meaning of the
parameter wu.

Recall that p appears at the first addend of the objective
function

A
YG-cCoc,
—_—

costs due to cash flow

where A = 2t is the variance of daily changes in the
cash balance and u stated for the amount of euros that
the branch cash balance increases or decreases in some

small fraction of a working day —. Then, as we established

in section “The mathematical model’, u shows the branch
users behavior as it indicates how active the branch users
are in form of fluctuations of the branch cash balance.

Recall also that, in practice, u is strongly directly related
with the geographic location of the branch since the fluctu-
ations of the cash balance -in the major part of the cases-
are caused by some physical reason (in a similar way that
a physical phenomena disturbs the state of rest of any
object, changing this initial state of rest -with a graphical
representation close to a straight line- into a motion state-
represented by a periodic wave motion, bigger or smaller
depending on the intensity of the disturbs).

state of rest fluctuations

In our particular context, this physical phenomena
which disturbs the branch cash flow may be identified
with the proximity to a cash center, in the wide sense of
this expression: that is, understanding that a cash center is
an industrial, financial, shopping center or whatever other
physical zone where the moves of money are higher than
usual.
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Thus, for our purposes of calibrating the model, p will
quantify the fluctuations in the branch cash flow and
n €[0,400). However, due to the direct relationship
exposed before between the fluctuations of the cash flow
and the physical reason that causes the fluctuations (cash
center), i could be interpreted as geographic location of
the branch -in reference to a cash center- as well.

As function of x*, y*, m* is

A x* 4+ 2y*
= yx*y* +v 3 + By* or
A R+ y*
() = Lty

v
TRy T3
In a similar way, m™* may be regarded as a function of u:

R+ y*

—u*+ (v

t *
R 5y + By*),

m' =f(u) =y

From this expression it can be derived that

dm* ) t
=2y ——
du R —y*)y*
t
= ZJ/x*y*M
=2y * *M <0,

t
since the factor 2y —— is negative asx* < 0 while the rest
Xy

of factor (y,t,y*) are positive. As a consequence of this,
m™* is decreasing on p in all cases.

In contrast with the results based on the parameter
R, where the result clearly depends on the values of R,
the case of the parameter p can be written in absolute
terms: for all the values of u the optimal value for branch
costs m* is always decreasing on u. That may be inter-
preted as, if the fluctuations in the branch cash balance
increases, the optimum for branch costs decreases: specif-
ically, the situation of branch costs improves when dealing
with branches of big fluctuations in the cash flow, that is,
when dealing with branches closely located near to cash
centers.

Conclusions

This paper offers a mathematical model which reflects
specific and relevant features of bank branch cash
management with important implications for bank
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efficiency. Many banking systems are going through
intense processes of consolidation which include not only
mergers and acquisitions but also efficiency plans. In these
plans, the number of bank branches, their size and dif-
ferent aspects of their management are a critical feature
for determining the success of the restructuring process in
terms of efficiency gains.

The model in this paper focuses on optimization of cash
inventories which has been always a critical feature of
financial intermediation given the maturity transforma-
tion that banks face by converting short-term liquidity to
long-term funding.

Our model provides some simple but easy to implement
and effective tools to improve bank branch optimization
of cash inventories. It relies on a series of simplifying
assumptions that, however, do not affect the practical
implementation of the model.

The model and the results themselves provide contribu-
tions to the extant literature in, at least, three dimensions.
First of all, the model offers a way of managing and mon-
itoring cash optimization that reduces the average branch
management costs to a significant extent. Secondly, the
magnitude of the efficiency gains of applying such cash
management model are mainly dependent on the size
of the branch. In particular, optimizing cash inventories
seems to be more feasible at relatively small or medium-
sized branches. However, in the case of large branches,
there seems to be little room for efficiency improvements,
at least in what cash efficiency issues are concerned.
Third, the model also shows that branch cash manage-
ment costs can be reduced to a large extent in those
branches where both the outflows and inflows of cash
are particularly intense (high fluctuations in the cash bal-
ance), such as the case of branches located to particularly
active urban areas or cash centers.

Our model also has implications for bank restruc-
turing processes in what it provides a way to evalu-
ate efficiency improvements from changing branch size
(or simply closing branches) from the cash manage-
ment perspective. The model as well suggests that the
(significant) differences in the size of bank branches
across banking sectors internationally may respond, inter
alia, to different ways of dealing with branch cash
management.

Finally, it is important to point out that the sim-
plicity of the mathematical model proposed makes it
particularly feasible to implement. It is also worth not-
ing that some of the simplifying assumptions of the
model (such as making the maximum of cash available
equal for each branches irrespective of their location)
do not affect the overall validity of the results as banks
tend to apply their branch cash management methods
in a very standard way for all the branches within a
bank.
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