
a SpringerOpen Journal

Cheng and Yeh SpringerPlus 2013, 2:316
http://www.springerplus.com/content/2/1/316
RESEARCH Open Access
Trial encoding algorithms ensemble
Lipin Bill Cheng* and Ren Jye Yeh
Abstract

This paper proposes trial algorithms for some basic components in cryptography and lossless bit
compression. The symmetric encryption is accomplished by mixing up randomizations and scrambling with
hashing of the key playing an essential role. The digital signature is adapted from the Hill cipher with the
verification key matrices incorporating un-invertible parts to hide the signature matrix. The hash is a straight
running summation (addition chain) of data bytes plus some randomization. One simplified version can be
burst error correcting code. The lossless bit compressor is the Shannon-Fano coding that is less optimal than
the later Huffman and Arithmetic coding, but can be conveniently implemented without the use of a tree
structure and improvable with bytes concatenation.

Keywords: Symmetric encryption; Digital signature; Hash; Error correcting code; Bit compression
Introduction
This paper proposes trial encoding algorithms for
some common primitives in cryptography and loss-
less bit compression. The symmetric encryption is
slightly faster than some common block ciphers. It
consist of randomization + scrambling (permuta-
tion) + randomization. The randomization keys
(seeds) are the hashes of the key and the scram-
bling key is the key itself. The IV is hidden (a
costly practice, thus optional) to compensate for
possible unevenness in the IV/initial generator state
relation. The digital signature is an adaptation of
the Hill cipher by hiding the signature key matrix
with un-invertible verification matrices and turned
around into a signature scheme. They are substan-
tially faster than some common schemes. Key pairs
can be derived straight from any user specified
code for example, user password. The hash has
similar speed to some existing ones. Its collision re-
sistance comes from a substantial mixture of non-
linear functions to thwart differential cryptanalysis.
One non-cryptographic version can be burst error
correcting code. The Shannon-Fano bit compressor
is not always optimal like Huffman coding, but
* Correspondence: lipin_cheng@yahoo.com
Cavalry Storage, Inc, 4251 E Brickell St, Ontario CA 91761, USA

© 2013 Cheng and Yeh; licensee Springer. This
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
simple enough that a medium array may be used as
the data structure in place of a binary tree. It can
also be complemented with bytes concatenation and
Rice coding for better compression. The cryptog-
raphy part generally follows the guideline of essen-
tial cryptographic practices as illustrated in the
article “An Overview of Cryptography” (Kessler
2013). Miscellaneous details of relevance including
source codes are in “An Encoding Kit”(Lipin Bill
2013).
The test/coding platform for all benchmarks in this

document is shown in Table 1.
Symmetric encryption
First generate a random number as the IV (initialization
vector). IV is encrypted because among other is-
sues, it is an input parameter which is partially
under the control of the adversary (Erik 2007).
Data is randomized (stream cipher like), followed
by scrambling (block cipher like), and ending with
another round of randomization. For convenience,
this is named RSC (randomization scrambling
cipher).
is an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:lipin_cheng@yahoo.com
http://creativecommons.org/licenses/by/2.0

Table 1 Test/coding platform for all benchmarks

Hardware Processor OS IDE Framework

Acer laptop AMD E-350 1.60 GHZ 4.0 GB RAM Windows 7 64-bit VISUAL WEB DEVELOPER 2010 EXPRESS ASP.net C#

Cheng and Yeh SpringerPlus 2013, 2:316 Page 2 of 11
http://www.springerplus.com/content/2/1/316
The algorithm
The random key stream generation is based on the cyclic
piling up of modular addition, XOR, AND, increment,
and byte permutation of the key (seed).
Table 2 NIST randomness tests of key stream generator

Randomness test P-value Result

Approximate entropy 0.526869 Success

Block frequency 0.431942 Success
This generator is compared with the secure random
generator from C# system call. No differences have been
detected in some statistical randomness tests (frequency,
gap, runs, poker and serial) (Lipin Bill 2013; Lott 2005). It
also passed all NIST randomness tests (Andrew et al.
2010), as shown in Table 2: bit sequence length = 100,000
(except 1,000,000 for Universal Statistical test), pass
decision = p-value > 0.01 (significance level).
The bit scrambling (permutation) is a bit by bit swap

with a bit decided by the key.
Putting it altogether:
(6 bytes) Key is K = (K1 K2 K3 K4 K5 K6). Data is
D = D1 D2 D3 …
Generate random R = (R1 R2 R3 R4 R5 R6) as the IV
(initialization vector).
Get H = hash of K. Any efficient hash can be used, but
better a dedicated one (Erik 2007).
Set IV = R ^ H.
Scramble IV with K as the scrambling key.
Get H = hash of H.
Set IV = IV +H.
Compute K = K ^ R.
Get H = hash of K.
Feed H as the seed to the pseudorandom generator to
get a random R.
Now set D1 = D1 ^ R.
Continue with the pseudorandom generator to get
another random R.
Now set D2 = D2 ^ R.
Repeat this to the last data byte.
Scramble the data either as a whole or block by
block for better performance with K as the scram-
bling key. When the data bit index reaches 6 x 4 = 24
bytes = 192 bits, bit scrambling is switched to byte
scrambling since 24! > 2 ^ 48, because bit scrambling is
expensive.
Get H = hash of H.
Cumulative sums 0.609751 Success

FFT 0.450552 Success

Frequency 0.775947 Success

Linear complexity 0.450531 Success

Longest runs 0.223268 Success

Non-overlapping template 0.438379 Success

Overlapping template 0.263724 Success

Random excursions 0.350888 Success

Random excursions variant 0.221961 Success

Rank 0.461483 Success

Runs 0.203627 Success

Serial 0.641047 Success

Universal statistical 0.170547 Success

Table 3 RSC benchmark relative to common ciphers - data
size: 1,000,000 bytes

Cipher Key Encryption time Decryption time

AES 256 bits 80 ms 90 ms

Rijndael 256 bits 150 ms 150 ms

3DES 192 bits 120 ms 120 ms

RC2 128 bits 70 ms 400 ms

Blowfish 64 bits 500 ms 250 ms

RSC 256 bits 40 ms 40 ms

Cheng and Yeh SpringerPlus 2013, 2:316 Page 3 of 11
http://www.springerplus.com/content/2/1/316
Do another round of randomization with the same
pseudorandom generator and H as the seed, but set
D = D + R.
Concatenate IV and D to wrap up encryption.
Decryption is the natural reverse of encryption.

Security aspect
The initial inner state of the key stream generator
is the hash of K + IV, and should be indistinguish-
able from random (Erik 2007). Since theoretically
hash does not meet that criterion, IV is randomly
generated to begin with, also encryption of IV is
intended to mitigate the potential problem assum-
ing that encrypted IV is no less random than plain
IV. Evidently the goal is to break any exploitable
predictability of the initial state from the
encrypted IV. Statistical tests were thus conducted
to help determining whether this is effective. For a
given E1/E2 differential, no statistical deviation
from random has been found in the H1/H2 differ-
entials, where E is an encrypted IV and H is the
corresponding initial state (Lipin Bill 2013). These
differentials also passed all NIST randomness tests
(Andrew et al. 2010). As a rule of thumb, the key/
IV size complexity should be 4 times the length of
data to be encrypted. The size of the inner state is
2 times the key size, but can be increased (at the
expense of performance), as there are indications
in the literature that 4 times is safer. The IV en-
cryption is made of a XOR and a modular addition with
a bit scrambling sandwiched in between. The bit
scrambling results in brute force complexity of the
order of n!/((n/2)! (n/2)!) ≈ 2 n, where n is the key size
in bits. However, IV encryption is only optional.
Data encryption is similar to IV encryption:

1 round of XOR key stream randomization and 1
round of modular addition key stream randomization
with 1 round of scrambling sandwiched in between.
Confusion obviously comes from the combined ac-
tions of all 3 rounds while diffusion is accomplished
by the scrambling round which is optional, as OTP
and its weaker versions, stream ciphers are provably/
acceptably secure with confusion only. The brute
force complexity is similar to that of IV encryption,
with the effective key size being the lesser of data and
key. Key space of the randomizations are made of 2
hashes of the key. The scrambling key is the key itself.
In addition, because the IV is not a mere additive to
1st block of plaintext, it has to be factored into the
linear approximation of a known plaintext encryp-
tion. In other words, linear cryptanalysis will have to
start with IV cracking (except for man-in-
the-middle attack where the attacker could inter-
cept the communications and change the IV on the
fly (Frederic 2004)), followed by modification of the
key with the IV addition and the subsequent hashing.
Another issue is that the random IV is not a nonce,
its birthday problem (if IV is deemed as not long
enough) is thus rectified with the removal of XOR
malleability by mixing up randomizations and
scrambling.
As input has no bearing on key stream gener-

ation, plaintext input differential cryptanalysis is
not applicable to RSC. The main issue here is with
the key differential. Since a key stream is primarily
made of modular addition and XOR, obviously
these relations between a pair of keys K1 and K2
will be carried over to their respective key streams,
that is, had it not been for hashing and IV. The
seeds to the key streams are H(K1 + IV1) for one
and H(K2 + IV2) for the other. The K1/K2 differen-
tial is not preserved in H1/H2. So such attacks can-
not be trivially effective. Similarly, some stream
ciphers were subject to plaintext IV attacks on the
key, for example, it was shown that two IV’s with
some given difference may produce the same key
stream (Eli & Orr 2007). However, because the IV1/
IV2 relation does not go to H1/H2, this cannot be
effectively applied to RSC either, although more
study is still needed on whether the initial gener-
ator state is random enough relative to the
(encrypted) IV.
Performance aspect
RSC benchmark is shown in Table 3.The perform-
ance is basically independent of the key size and
slightly faster than some of the well-known block
ciphers. This is conceivably because RSC does
mostly byte scrambling (if data is over 10 times
bigger than the key) rather than bit scrambling
(permutation). But the initial stage is slowed down
by random IV generation, IV encryption, key
hashing and bit scrambling.

Table 4 HDS benchmark comparisons - Data size: 80 bytes

Signature Key Effective key Key gen-eration time Signature time Verification time

RSA 1024 bits 80 bits 200 ms 6 ms 5 ms

DSA ? ? 300 ms 5 ms 3 ms

ECDSA ? ? 50 ms 13 ms 22 ms

HDS 1064 bits 256 bits 20 ms 0.3 ms 0.3 ms

Cheng and Yeh SpringerPlus 2013, 2:316 Page 4 of 11
http://www.springerplus.com/content/2/1/316
Symmetric encryption summary
As is well known, this is the black/fine art of
striking a balance between the conflicting demands
of security and performance. This is true of both the
key stream generation and scrambling. The general
concept is to produce just enough randomness with
minimum operations to ward off some known attacks.
But it comes with a costly initial stage where IV is
hidden (contrary to common practice, although
optional).
Digital Signature
This algorithm is an adaptation of the Hill Cipher (Murray
1999; John & Matthew 2010; Aldar 2009), thus named
HDS (Hill digital signature) for convenience.
The Algorithm
Step 1. Generate 2 x 2 random invertible matrices A1 and
A2 along with A1-1 and A2-1. Now choose constant un-in-
vertible matrices C1 and C2:

C1 ¼ 1 1
1 1

� �
and C2 ¼ 1 −1

−1 1

� �

where C1 +C2 = 2 x I and I is identity matrix.

Step 2. Verification key is V1 = C1 x A1 and V2 = C2 x
A2. Signature key is S1 = A1-1 and S2 = A2-1.

Step 3. To sign D, generate random numbers R1 and
R2, such that C1 x R1 = 0 and C2 x R2 = 0. Then com-
pute E1 = S1 x (R1 + D) and E2 = S2 x (R2 + D). R1 and
R2 are added to prevent plaintext attacks upon the sig-
nature key.

Step 4. To extract/verify D, compute (V1 × E1 + V2 ×
E2)/2.

V1� E1þ V2� E2ð Þ=2
¼ ðC1� A1� A1 −1 � R1þ Dð Þ þ C2� A2� A2−1 �

ðR2þ DÞÞ=2
¼ C1� R1þ C2� R2þ C1þ C2ð Þ � Dð Þ=2
¼ 2� Dð Þ=2 ¼ D
With half the matrix missing, the signature key
is quite clearly not derivable from the verification
key. Hence presumably the only viable way to
fake a signature is to attack the verification
formula. This amounts to solving the linear
equations V1 x E1 = D1 and V2 x E2 = D2, where
D1 = {(d1 + d2), (d1 + d2)} and D2 = {(d1 – d2), –
(d1 – d2)}. But this cannot be done because V1
and V2 are un-invertible matrices. The verification
key size is the matrix size which can be for
example, 2 x 2 x 32 bytes = 128 bytes. The
signature faking complexity is assumed to be 1 / 2
of the missing matrix size, or 1 / 4 of the matrix
size = 128 / 4 = 32 bytes. Thus the ratio of verifica-
tion key size to effective key size is 128 / 32 = 4
times. The data size expansion after signature is
typically about 4 times.
Performance aspect
AHC benchmark is shown in Table 4, indicating faster
speed than the other algorithms tested. Its operation time is
proportional to the key size.
Digital Signature summary
Matrix pairs are generated by a pseudorandom
generator with a user specified seed (thus keys
can be generated on the fly). Then with un-
invertible matrices as part of the verification
key, Hill cipher is adapted into a digital signature
scheme. However, it has an overhead in bigger
key size and data size expansion after signature.
Hash functions
This hash tallies running modular summations
(addition chain) of data bytes. Another round
of running XOR’s is tacked on, mixed with
more non-linear functions, and named matter-
of-factly RSH (running summation hash) for
convenience.

Cheng and Yeh SpringerPlus 2013, 2:316 Page 5 of 11
http://www.springerplus.com/content/2/1/316
The algorithm
 Optionally, salting may be added to prevent pre-
calculated rainbow table attacks.

Security aspect
In essence, the pre-image resistance is to match the hash
size. The collision resistance is to match the inherent
birthday problem’s one half of the hash size. Pre-image
resistance alludes to hash being one way, given a specific
message M, it’s computationally infeasible to derive M or
any of its peers (collisions, if M is bigger than H) from H
(M). Collision resistance is the same definition with the
word “specific” changed to “arbitrary”. From a practical
point of view, the only difference between the two is that
birthday attacks can be applied to finding collisions, but
not to pre-images.
RSH’s collision resistance relies on the assumed hard-

ness to solve a system of non-linear equations. If we
replace all modular additions by XOR’s in a hash function
operating on n–bit words (bytes) and originally containing
r modular additions, we get probability(3/4) r (n – 1) that
the output is the same as in the original hash function
(Nieke 2011). So linearization cannot help much with
cryptanalysis, as this is not much different from the brute
force complexity in order of magnitude.
However, all hashes are subject to differential crypt-

analysis somewhat like all symmetric ciphers except OTP
are subject to linear cryptanalysis. While linear cryptanaly-
sis cannot be applied to hashes (unless the non-linear part
of hashing is really weak) because there is no such thing
as a “partial” collision, there is no escape from exploitation
of uneven differentials among hash inputs and outputs.
Assuming for example, that the hash is strictly linear with
respect to XOR (just for convenience of discussion, not
realistic because pre-images can be directly solved and all
collisions found), then for a given input A, any input B
such that H(A ^ B) = 0 would be a collision. The implica-
tion is that however poor a linear approximation may be,
a differential input pair would give a related output pair
(not entirely random). As a realistic example, if a hash is
made of modular addition and XOR, then it can be
attacked with combined differentials of modular addition
and XOR (Nieke 2011).
RSH’s approach is to “maximize” non-linearity without

losing performance too much. The non-linearity comes
from mixing up modular addition and XOR, modular
multiplication of the running summation with the running
index of looping in postProc(), bit permutation in
postPermute() and some AND’s at the end. Therefore,
combined differentials attacks have to include modular
multiplication, bit permutation and AND.
The optimum birthday attack resistance is n/2 bits,

where n is the hash size. This is equivalent to the hash
output being even – random input leads to random
output, so does perfectly ordered input. No statistical

Table 5 RSH benchmark relative to common hashes -
data size: 10,000,000 bytes

Hash Hash size Compute time

MD5 128 bits 50 ms

RIPEMD 160 160 bits 240 ms

SH1 160 bits 80 ms

SH256 256 bits 240 ms

SH512 512 bits 180 ms

RSH 512 bits 180 ms

Cheng and Yeh SpringerPlus 2013, 2:316 Page 6 of 11
http://www.springerplus.com/content/2/1/316
deviation from random has been found in tests conducted
for this (Lipin Bill 2013). These outputs also passed all
NIST randomness tests (Andrew et al. 2010).

Performance aspect
RSH benchmark is shown in Table 5. Its speed is basically
independent of the hash size and quite similar to some of
the hashes currently available except for shorter hashes.

Non-cryptographic hash – error correcting code
The 1 pass only version is tailor made for data error detec-
tion and correction by solving the quasi-linear equations set
of erroneous data bytes (if they are contiguous) out of the
hash. If there is a unique solution, then the error can be
corrected.
A few extra bytes of encodings are attached to the
hash in order to get a unique error correcting because
the equations to be solved are quasi-linear (overflow
discarded). If the (recalculated) hash is changed upon
data reception indicating errors, then it is possible to
restore the corrupted bytes from the hash and the at-
tached bytes.

Summary of hash functions
2 rounds of running summations and/or XOR’s form
the backbone of hashing. With additional non-linear
functions packed into the hashing, methodically
cracking the collision resistance may be no faster than
brute force birthday attacks. The 1 pass only version
can be used for burst data error detection and
correction.
Bit compressor
This is a simpler precursor of Huffman coding. In
essence, it is just a bit representation that reflects the
actual probability of each number in the data. This is
in contrast to the “regular” bits that assume all pos-
sible numbers are equally likely in the data. For
example, byte 21 is equal to or less than 127, therefore
the 1st bit is 0, then it is compared against 63 and so
on, thus arriving at 00010101. But for a typical piece
of text data, some bytes would be more frequent than
the others. Therefore, the 1st comparison would be
with something less than 127, the next would be less
than 63, and so on. Thus, it presumably would result
in shorter bits along the same line of the later and
more optimal Huffman coding, as proposed by Shan-
non and Fano, and therefore named SFC (Shannon-
Fano coding) for convenience.
The algorithm
As described above, if the data is random, then the
medium byte array would be 127, 63, 31, 15, 7, 3, 1, 0,
1, 2, 3, 5, 4, 5, 6, 7, 11, … But for text data, it could be
something like 10, 4, 2, 1, 0, 0, 1, 2, 3, 3, 4, 7, … These
are derived from the frequencies (same as Huffman
coding) of each data byte. It is sent along with the
compressed data. Being an array, it is easier to handle
than the binary tree in Huffman coding.
As a simple illustration, assuming there are 6 different

bytes in the data with the following counts in non-
ascending order:
Cnt[] of {15, 76, 59, 123, 68, 154} = {40, 15, 10, 5, 2, 1}
Map {15, 76, 59, 123, 68, 154} to N[] = {0, 1, 2, 3, 4, 5}
Now construct the medium array M[] for N[]:
The 1st element in M[] is the medium of N[]: add up

40 + 15 + 10 + 5 + 2 + 1 = 73, and since 40 >= 73/2, so
M[0] = 0.
M[1] is the medium of all elements in N[] that are <= M

[0]. Since there is only one such element, M[1] = M[0] =
0. M[1] is also an “end” element (the only one).
M[2] is the medium of all elements in N[] that are >

M[0]: 15 + 10 >= (15 + 10 + 5 + 2 + 1)/2, so M[2] can
be 2, but 1 is closer to medium, so M[2] = 1.

Table 6 SHC benchmark comparisons - Text size:
1,083,745 bytes

Compressor Compression Compression
time

Decompression
time

Huffman coding 744,298 bytes 200 ms ?

Arithmetic coding 733,356 bytes 450 ms 700 ms

SFC 740,441 bytes 200 ms 130 ms

SFC concatenated 650,225 bytes 280 ms 180 ms

Cheng and Yeh SpringerPlus 2013, 2:316 Page 7 of 11
http://www.springerplus.com/content/2/1/316
M[3] is the medium of all elements in N[] that
are > M[0] and <= M[2]. Since there is only one such
element, M[3] = M[2] = 1. M[3] is also an “end” element.
…, thus arriving at the medium array, M[] = {0, 0, 1, 1, 2,

2, 3, 3, 4, 5}. Some rearrangement is made to this array to
shorten it before eventually attaching it to the compressed
data. But this is not critical, as this array is typically quite
short compared with the data. There is also a Boolean array
associated with the medium array, E[] = {0, 1, 0, 1, 0, 1, 0, 1,
0, 1}, indicating if the element is at the end (of a search).
Byte 0 mapped to bits:
0 <= M[0], followed by 0 <= M[1] and also E[1] = 1

(reaching end), so Bits[0] = 0.
Byte 1 mapped to bits:
1 > M[0], bypass M[1] to get to the next element

greater than M[0], so that’s M[2], 1 <= M[2], followed by
1 <= M[3] and also E[3] = 1, so Bits[1] = 10.
Byte 2 mapped to bits:
2 > M[0], bypass M[1] to get to the next element greater

thanM[0], so that’s M[2], 2 > M[2], bypass M[3] to get to the
next element greater than M[2], so that’s M[4], 2 <= M[4],
followed by 2 <= M[5] and also E[5] = 1, so Bits[2] = 110.
…, thus Bits[] of {0, 1, 2, 3, 4, 5} =

0
1 0
1 1 0
1 1 1 0
1 1 1 1 0
1 1 1 1 1

So data compression just maps bytes 0, 1, 2, … to the
corresponding Bits[].
Decompression reverses this process, mapping the bits

back to 0, 1, 2, …, then back to 15, 76, 59, 123, 68, 154.
Depending on the text size, some common words may

show up quite often. So concatenation of data bytes into big-
ger units may pay off in achieving better compression. For bet-
ter performance, the principle of Rice coding is borrowed
here. That is, the compression is done not on the data itself,
but on the number of bits in each data unit. The
(transformed) data stripped of the top bit (must be 1) is sent
as it is. Decompression extracts the recorded number of bits
back into each unit. Thus compression is primarily data map-
ping, with bit conversion playing a lesser role. This (recursive)
concatenation scheme is somewhat like dictionary coding,
such as LZW, in that it can also be applied to the likes of GIF,
PNG and clip arts.

Performance
SFC benchmark is shown in Table 6. Compression and
speed are near identical with Huffman coding for
common texts, unless data frequency distribution is
significantly “undividable”.
Summary of Bit compressor
This calculates the frequency of each data byte just like
Huffman coding. But instead of a binary tree as in
Huffman coding, an easier to handle medium array is
constructed. The downside of this is that the bit
conversion is not always optimal. This happens when a
medium deviates significantly from evenly dividing a
set of data. Conversion of a data byte to (shorter) bits is
done by comparing it with the medium array which is
then replaced by a mapping table for speed. Where
appropriate, data bytes may be concatenated into bigger
units for better compression while largely maintaining
its speed.

Conclusions
Some trial encoding algorithms were proposed. Their
implementation is quite simple relative to some com-
parable encoders. Performance comparisons with some
well-known similar algorithms were conducted. The
results show better or no worse performance: the sym-
metric cipher has a slight edge over some common
block ciphers, the digital signature can run considerably
faster than some common schemes, the hash and the
bit compressor are near the same with some of the
most common. To sum up the approaches: optional en-
cryption of the IV at the outset, followed by 2 rounds
of data randomization with 1 round of data scrambling
sandwiched in between in the symmetric cipher, adapta-
tion of Hill cipher by use of un-invertible matrices as part
of the verification keys in the signature scheme, chaining
of addition/XOR/multiplication, followed by bit permuta-
tion and ending with some AND’s in the hash. The bit
compressor is slightly different from Huffman coding that
uses an array rather than a binary tree as the data struc-
ture, with an advantage and a disadvantage. Compression
may be enhanced through bytes concatenation and Rice
coding. A non-cryptographic version of the hash is for
burst error correction.
A. Appendix
A.1 CSPRNG proposal
All encryptions and signatures require randomization.
The C# CSPRNG (cryptographically secure pseudoran-
dom number generator) can be used for this purpose.

Cheng and Yeh SpringerPlus 2013, 2:316 Page 8 of 11
http://www.springerplus.com/content/2/1/316
Alternatively, the following generator is proposed for bet-
ter performance.
This is the 2 rounds of randomizations in RSC wrapped
into one. Like an individual round, it also passed all NIST
randomness tests (Andrew et al. 2010).
To function as a stream cipher, let key1 be the IV

randomized secret key and key2 be the hash of key1.
A.2 RSC with nonce
Rather than random IV’s, a variation of RSC can use IV that
is nonce (non-repeating number), the simplest of which is a
plain sequence, 0, 1, 2, 3, … Nonce ensures each encrypted
message can only be valid once without incorporating a
time stamp or unique ID in the plain message, thus cannot
be re-used over the internet by hijackers.
IV is transmitted in the open (no encryption).
Scrambling key = SK = PRF(K + IV), where PRF is a

pseudorandom function.
1st randomization key = RK1 = PRF(SK).
2nd randomization key = RK2 = PRF(RK1).
The PRF here should be computationally indistinguish-

able from random, leading to a costly initial stage in the
encryption. But depending on the strength of the under-
lying key stream generator, this requirement can be relaxed
for better efficiency (Erik 2007). In lieu of a dedicated PRF
that is yet to be found in the literature, the following series
of RSH based key generators is proposed. The idea is to list
them in increasing complexity (thus decreasing efficiency),
with the optimum choice being the one with best effi-
ciency, yet enough security for a particular situation. Given
that the in-distinguishability from random is a generally
sufficient, but not always necessary condition for a viable
PRF, all proposals are therefore tested (for plain sequence
input) with the NIST randomness test suite, as a general
reference to their relative strengths.

Cheng and Yeh SpringerPlus 2013, 2:316 Page 9 of 11
http://www.springerplus.com/content/2/1/316
keyHash_1() (2nd round removed) and keyHash_2()
(modular multiplications removed) are simplified ver-
sions of postProc(). They are the only ones failing the
NIST randomness tests, but nonetheless likely sufficient
for the initial generator state setup given random IVs
and possibly for ordered nonce IVs too, although more
study is needed for that. So it appears that in general,
keyHash_3() is the best tradeoff between security and ef-
ficiency. In fact, it is the one used in RSC. On the other
hand, keyHash_4() and keyHash_5() may be “overkills”
in typical situations, as postProc() alone passed all NIST
randomness tests for plain sequence input.

A.3 RSC scrambling
This is to break any exploitable correlation between in-
put and output (diffusion). For testing purposes, the in-
put is kept simple, 10 random bytes, followed by 0’s. Bit
scrambling is shown, so is byte scrambling which is suf-
ficient to accomplish diffusion if input size is substan-
tially larger than key size. Actual scrambling is mixed.

Input:
39 237 13 203 234 75 123 250 185 147 0 0 0 0 0 0 0 0

0 0
0 0
0 0
Bit scrambling output:
132 161 36 2 145 129 136 0 4 224 96 0 129 192 160 16

0 0 64 0 1 64 160 0 0 0 96 0 0 0 128 16 0 0 64 16 0 0 0
0 0 0 192 16 0 0 0 0 0 0 64 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 64 0 0 0 64 0 0 0 0 0 0 0 0 0 8 0 0 0 8 0
0 0 0 0 0 0
Byte scrambling output:
0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 39 147 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 0 75 0 123 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
250 234 0 0 0 0 0 0 0 0 0 0 237 0 0 0 0 0 0
RSC (mixed) scrambling output:
26 16 67 9 6 0 0 0 10 32 1 0 7 0 0 0 0 0 0 0 15 32 4 0 0 6

0 0 0 6 0 0 0 0 0 0 8 0 1 0 8 0 0 0 0 0 0 0 0 0 0 8 0 32 0 0 0
0 0 0 0 32 0 0 0 0 0 0 4 0 0 0 4 0 0 0 0 32 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0 0 0 8 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 32
0 0 0 0 0 7 4 0 0 0 32 0 0 8 0 0 0 0 0 0

A.4 RSC linear cryptanalysis
For simplicity, only the 1st round of randomization is
taken into consideration here (just for illustration, as 1
round of randomization can easily be cracked with div-
ide and conquer, rather than the pretentious method
below):
C1 = P1 ^ S1, C2 = P2 ^ S2, …, Cn = Pn ^ Sn, where C

is a cipher byte, P is a plain byte, S is a key stream elem-
ent and n is the key size in bytes. From the key stream
algorithm, S1 = (K1 ^ Kn) + Kn, S2 = (K2 ^ S1) + S1,
S3 = (K3 ^ S2) + S2, …, therefore the total number of
modular additions in these equations is effectively n.
If we replace all the modular additions with XOR,
then the accuracy of the resulting linear approximation

Table 8 NIST randomness tests of RSH for ordered input

Randomness test P-value Result

Approximate entropy 0.099491 Success

Block frequency 0.496425 Success

Cumulative sums 0.391556 Success

Cheng and Yeh SpringerPlus 2013, 2:316 Page 10 of 11
http://www.springerplus.com/content/2/1/316
is (3/4)n (8 – 1)(Nieke 2011), or (3/4) 112
≈ (1/2) 50, if n = 16

bytes. An effective attack thus requires the order of 2 50

known plaintexts, hence is generally impractical.
In addition, there is another round of randomization

and the effect of one bit of IV change leading to an en-
tirely different randomization key, H(K + IV).
FFT 0.296168 Success

Frequency 0.330066 Success

Linear complexity 0.662034 Success

Longest runs 0.553321 Success

Non-overlapping template 0.436819 Success

Overlapping template 0.602813 Success

Random excursions 0.589878 Success

Random excursions variant 0.121938 Success

Rank 0.339569 Success

Runs 0.324969 Success

Serial 0.410914 Success

Universal statistical 0.571653 Success
A.5 Matrix pair generator
HDS uses a fast matrix pair generator that creates a
matrix as (I +Δ1) x (I +Δ2) x (I +Δ3) x … where I is the
identity matrix, Δ is a random matrix with all 0 except
one non-diagonal element is 1 or –1. All the random
numbers used in the matrix generation can be from a
pseudorandom generator with a user specified seed. The
inverse is by virtue of the property (A1A2⋯Ak–1Ak)

–1 =Ak
–

1Ak–1
–1 ⋯A2

–1A1
–1. The inverse of each component is the

same except that the non-zero non-diagonal element is ne-
gated. Besides keeping the matrix simple, it is faster than
inverting an existing matrix when matrix dimension
reaches 20 × 20.
A.6 HDS Signature Faking
Faking is obtained by solving the linear equation, V x
E = D, or (C x A) x E = D. If the matrix dimension is 2 x
2, this reduces to a1 x e1 + a2 x e2 = k1, where k1 = d1 +
d2. The expected fake resistance is 1 / 4 of the matrix
size. Test results indicate similar order of magnitude be-
tween the actual and expected fake resistance, as shown
in Table 7.
A.7 RSH evenness
Each input instance is 64 bytes. Input = {0, 0, 0, …}, {1,
0, 0, …}, …, {255, 0, 0, …}, {0, 1, 0, …}, {1, 1, 0, …}, …,
{255, 1, 0, …}, {0, 2, 0, …}, {1, 2, 0, …}, … NIST random-
ness test of the output is shown in Table 8: bit sequence
length = 100,000 (except 1,000,000 for Universal Statis-
tical test), pass decision = p-value > 0.01 (significance
level). The output is quite even despite unevenness of
input. This raises the possibility of customizing RSH into
a PRF for the IV setup in a cipher.
Table 7 HDS signature faking benchmark – expected fake res

Test a1 a2 e1

1 -2797146 -18277625 -757510776

2 -56824 -196635 2140009268

3 16106711 -3810926 -1261293830 -

4 -2050051 -5798512 -1302033155

5 -2314423 12407679 86461160

6 3760308 25672051 1519003560
A.8 RSH divide and conquer
One potentially viable approach to crack the collision re-
sistance is to attack the 2 rounds of running summa-
tions/XOR’s separately. In this approach, if 2 messages
have identical output from both rounds, then they would
be collisions, thus bypassing the post processing made of
modular multiplication, bit permutation and AND.
While it’s quite feasible to find messages M1 and M2,
such that either R1(M1) = R1(M2), or R2(M1) = R2(M2),
the outcome of R1 has no bearing on that of R2, and
vice versa. Looking for common solutions this way, is
therefore effectively no different from a brute force
birthday attack. In fact, it can be shown that in the sim-
ple case of m = 3 and h = 2, where m is the number of
message bytes and h is the number of hash bytes, the so-
lutions for the 2 rounds are mutually exclusive, out of
the 256 R1 collisions for a given R1 hash, no pair collide
in R2.

A.9 RSH Differential Cryptanalysis
This is to find m, Δm with Δm ≠ 0 and Δh(m) = 0, where
Δm=m ^ m’ and Δh(m) = h(m) ^ h(m’), where ^ can
istance = sqrt(a1 x a2)

e2 k1 Resist’ce Expected

115927001 2014607329 7270925 7150188

-618418855 -1095091907 97915 105705

5330803243 1473739888 3574125 7834634

460330610 1805388585 878573 3447788

16127823 1153442137 36454461 5358789

-222495726 -386457546 3850777 9825213

Cheng and Yeh SpringerPlus 2013, 2:316 Page 11 of 11
http://www.springerplus.com/content/2/1/316
be + instead or in conjunction. It is effective in 2 scenar-
ios, one is if h is made of ^ and + only, for obvious rea-
sons, the other is if h is made of mapping, as a simple
example, {0, 1, 2, 3}→ {0, 3, 2, 1}. In the latter case, if
Δm =m+m’ = 1, then m/m’ can be 0/1 or 2/3 leading to
h(m)/h(m’) = 0/3 or 2/1, or Δh(m) = h(m) + h(m’) = 3,
thus distinctively uneven. RSH is beyond these, the in-
accuracy of the linear approximation of modular multi-
plication, bit permutation and AND is no less than the
hash size complexity, thus negating the feasibility of this
approach.

A.10 RSH Dry Run
Data: For people still clinging to decent jobs, the chal-
lenge is more complicated.
(32 bytes) Hash: 170 115 252 234 103 19 126 229 230

111 89 107 55 248 87 124 164 198 116 144 236 113 106
60 220 140 145 244 203 127 115 77
Now change the last character in the data from period

to comma.
Data: For people still clinging to decent jobs, the chal-

lenge is more complicated,
(32 bytes) Hash: 93 121 221 107 248 229 184 85 126

97 208 245 203 15 235 65 59 141 210 93 222 52 177 8
215 248 32 13 175 249 6 179
Data: a
(32 bytes) Hash: 55 147 103 139 191 97 126 31 68 96

177 67 208 18 35 119 225 138 26 60 10 7 170 189 20
129 30 165 166 91 43 63
Data: b
(32 bytes) Hash: 128 41 130 165 39 135 222 154 229

250 85 87 13 101 203 153 29 54 34 51 67 166 91 162 85
39 173 56 177 194 33 95

A.11 RSH burst error correction
If the number of corrupted data bytes is k and k < = n,
where n is the number of hash bytes, then the corrupted
bytes can be solved from k quasi-linear equations out of
the hash. But because any overflow beyond 1 byte is lost
from the hash, the solution has some collisions. So Σ
(di x i) is stored in a 2 bytes integer, with i ranging from
1 to m, where m is the total number of data bytes
contained in the hash. It is attached to the hash along
with 1 byte total sum and 1 byte total XOR. The colli-
sions are matched with the attachment to single out the
real solution. Obviously this can only work if the hash is
intact. So duplicates of hash may be attached to both
ends of the data.
Original data: 89 108 200 234 183 33 85 206 229 5

[[226 164]] 59 144 121 215 36 223 48 178 116 147 176
…
Received data: 89 108 200 234 183 33 85 206 229 5

[[221 194]] 59 144 121 215 36 223 48 178 116 147 176
…

Corrected data: 89 108 200 234 183 33 85 206 229 5
[[226 164]] 59 144 121 215 36 223 48 178 116 147 176
…

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LBC and RJY defined the research theme, designed the algorithms,
completed the implementations, carried out the tests, wrote the paper and
analyzed the concepts from the perspectives of IT engineers. Both authors
read and approved the manuscript.

Received: 9 May 2013 Accepted: 8 July 2013
Published: 15 July 2013

References
Aldar C-F (2009) Chan: Symmetric-Key Homomorphic Encryption for Encrypted

Data Processing, ICC’09 Proceedings of the 2009 IEEE international
conference on Communications., pp 774–778

Andrew R, Juan S, James N, Miles S, Elaine B, Stefan L, Mark L, Mark V, David B,
Alan H, James D, San V (2010) A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, National
Institute of Standards and Technology

Eli B, Orr D (2007) Differential Cryptanalysis in Stream Ciphers. http://eprint.iacr.
org/2007/218.pdf

Erik Z (2007) Why IV Setup for Stream Ciphers is Difficult, Technical University of
Denmark

Frederic M (2004) Differential Attacks and Stream Ciphers. http://www.ssi.gouv.fr/
archive/fr/sciences/fichiers/lcr/mu04b.pdf

John C, Matthew D (2010) Extending the Hill Cipher. http://www.jchase.com/
mathclass/Extending%20the%20Hill%20Cipher.pdf

Kessler GC (2013) An Overview of Cryptography. http://www.garykessler.net/
library/crypto.html

Lipin Bill C (2013) An Encoding Kit. http://www.encodingtools.org/
Lott SF (2005) Empirical Tests of Random Number Generators. http://www.

itmaybeahack.com/homepage/_static/rngtest/rngdoc.html
Murray E (1999) Hill Ciphers and Modular Linear Algebra. http://www.apprendre-

en-ligne.net/crypto/hill/Hillciph.pdf
Nieke A (2011) Cryptanalysis of Hash Functions, Macquarie University &

Eindhoven University of Technology

doi:10.1186/2193-1801-2-316
Cite this article as: Cheng and Yeh: Trial encoding algorithms ensemble.
SpringerPlus 2013 2:316.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://eprint.iacr.org/2007/218.pdf
http://eprint.iacr.org/2007/218.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lcr/mu04b.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lcr/mu04b.pdf
http://www.jchase.com/mathclass/Extending%20the%20Hill%20Cipher.pdf
http://www.jchase.com/mathclass/Extending%20the%20Hill%20Cipher.pdf
http://www.garykessler.net/library/crypto.html
http://www.garykessler.net/library/crypto.html
http://www.encodingtools.org/
http://www.itmaybeahack.com/homepage/_static/rngtest/rngdoc.html
http://www.itmaybeahack.com/homepage/_static/rngtest/rngdoc.html
http://www.apprendre-en-ligne.net/crypto/hill/Hillciph.pdf
http://www.apprendre-en-ligne.net/crypto/hill/Hillciph.pdf

	Abstract
	Introduction
	Symmetric encryption
	The algorithm
	Security aspect
	Performance aspect
	Symmetric encryption summary

	Digital Signature
	The Algorithm
	Performance aspect
	Digital Signature summary

	Hash functions
	The algorithm
	Security aspect
	Performance aspect
	Non-cryptographic hash – error correcting code
	Summary of hash functions

	Bit compressor
	The algorithm
	Performance
	Summary of Bit compressor

	Conclusions
	A. Appendix
	A.1 CSPRNG proposal
	A.2 RSC with nonce
	A.3 RSC scrambling
	A.4 RSC linear cryptanalysis
	A.5 Matrix pair generator
	A.6 HDS Signature Faking
	A.7 RSH evenness
	A.8 RSH divide and conquer
	A.9 RSH Differential Cryptanalysis
	A.10 RSH Dry Run
	A.11 RSH burst error correction

	Competing interests
	Authors’ contributions
	References

