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What makes cancer stem cell markers different?
Uwe Karsten* and Steffen Goletz
Abstract

Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack
cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the
problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be
distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell
markers? A hypothesis is proposed which might help to solve this problem in at least a subgroup of stem cell
markers. Glycosylation may provide the key.
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Background
The cancer stem cell hypothesis (Reya et al. 2001; Al-
Hajj et al. 2003; Dalerba et al. 2007; Lobo et al. 2007)
proposes that tumors - analogous to normal tissues
(Blanpain and Fuchs 2006) - grow and develop from a
distinct subpopulation of cells named “cancer stem
cells” or “cancer-initiating cells”. Stem cells are able to
manage, by asymmetric cell division, two conflicting
tasks, self-renewal on the one hand, and (restricted)
proliferation and differentiation on the other hand.
Cancer stem cells (CSC) are thought to be transformed
stem or progenitor cells with novel properties such as
enhanced proliferation, enhanced mobility and limited
ability for differentiation.
Cancer stem cells differ considerably from the majority

of cells of the tumor mass. It is assumed that the unlimited
growth capacity of the tumor as well as the capability to
develop metastases rest on the CSC population. Cancer
stem cells divide relatively slowly and are essentially drug-
resistant, two properties which make them refractory to
conventional chemotherapy. The acceptance of the CSC
concept therefore demands re-evaluation and potentially
re-direction of cancer therapies: instead of trying solely
to reduce the tumor mass, the CSC subset should be
specifically targeted. This aim implies the need to
search for CSC-specific therapeutic target marker mole-
cules. Cancer stem cells are, however, in many aspects
very similar to normal stem cells. They apparently ex-
press the same markers as normal stem cells. Therapies
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aimed at cancer stem cells therefore have a new prob-
lem: how to target cancer stem cells and leave normal
stem cells intact? Or, in other words, how can CSC
markers be distinguished from markers of normal stem
cells?
Stem cell markers
In recent years considerable effort has been invested in
the detection and characterization of stem cell markers.
The result is that there are now an overwhelming and
steadily increasing number of such marker molecules.
Some markers are indeed more or less specific for differ-
ent types of stem cells, for example, markers that differen-
tiate embryonic from adult stem cells or pluripotent from
progenitor cells. With the exception of pluripotent embry-
onic stem cells all other stem cells carry, in addition,
lineage-specific markers. Stem cells are also defined by the
absence of certain markers. Contemplating these data,
several questions arise. First, as already mentioned, almost
all markers of normal stem cells are also found on cancer
stem cells. Examples are shown in Table 1. This, of course,
poses a problem with respect to their potential use as
therapeutic targets. Ectopic (non-lineage) expression of
stem cell markers on cancer cells does not resolve the
therapeutic dilemma. Currently the best option for a
therapeutic target would be to rely on onco-fetal stem cell
markers which are not expressed on normal adult stem
cells. Otherwise there is at present no clear-cut distinction
available between normal and cancer stem cell markers.
Even at the level of regulatory miRNA clusters, identical
patterns were observed (Shimono et al. 2009). Several
his is an Open Access article distributed under the terms of the Creative
mmons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
inal work is properly cited.

mailto:uwe.karsten@glycotope.com
http://creativecommons.org/licenses/by/2.0


Table 1 Examples of non-carbohydrate stem cell markers which are also cancer stem cell markers

Marker Description Expressed on Selected
referencesCellular localization Normal stem or progenitor cells Cancer stem cells

ALDH1 Aldehyde dehydrogenase
Cytoplasma

AdSC (breast) CSC (breast and other carcinomas 1

Bmi-1 Polycomb protein
Cytoplasma

HSC, NSC, AdSC
(intestine, breast, prostate)

CSC (breast, prostate cancer,
neuroblastomas, leukemias)

2, 3

CD29 Integrin-β1
Membrane

AdSC (breast) CSC (breast, colon cancer) 4, 5

CD34 Adhesion protein
Membrane

HSC, MSC, HProgC, EnProgC CSC (leukemias, sarcomas) 6-11

CD44 Hyaluronan receptor, adhesion protein
Membrane

HSC, HProgC, PSC CSC (many carcinomas) 12-16

CD90 Thy-1
Membrane

ProgC (thymus), MSC CSC (breast cancer, glioblastomas) 17, 18

CD117 SCF receptor
Membrane

ProgC CSC (breast, ovarian, lung cancer,
glioblastomas)

16, 19

CD133 Prominin-1
Membrane

HSC, NSC, AdSC (colon) CSC (many carcinomas, glioblastomas,
melanomas)

20-24

CDw338 ABCG2, Bcrp1 ABC transporter,
permitting multi-drug resistance

Membrane

ESC, HSC, AdSC CSC (breast, lung cancer, glioblastomas,
melanomas)

25, 26

Nestin Class VI intermediate filament protein
Cytoplasma

NSC, ProgC (brain), HProgC CSC (glioblastomas, melanomas) 27, 28

Oct-4 Transcription factor
Cytoplasma

ESC, iPSC CSC (many carcinomas) 29, 30

This table lists only a few examples (exclusively human data) and selected references. It is not intended as a full review.
Abbreviations: AdSC adult stem cell, CSC cancer stem cell, EnProgC endothelial progenitor cell, ESC embryonic stem cell, HProgC hematopoietic progenitor cell,
HSC hematopoietic stem cell, ProgC progenitor cell, PSC pluripotent stem cell, iPSC induced pluripotent stem cell.
References: 1, Ginestier et al. 2007; 2, Sangiorgi and Capecchi 2008; 3, Lukacs et al. 2010; 4, Pontier and Muller 2009; 5, Taddei et al. 2008; 6, Krause et al. 1996; 7,
Furness et al. 2006; 8, Tardio 2009; 9, Annaloro et al. 2011; 10, Srour et al. 1991; 11, Basso and Timeus 1998; 12, Günthert et al. 1991; 13, Zöller 2011; 14, Singh
et al. 2001; 15, Takaishi et al. 2009; 16, Zhang et al. 2008; 17, Augello et al. 2010; 18, Salcido et al. 2010; 19, Ponnusamy and Batra 2008; 20, Liu et al. 2006;
21, Mizrak et al. 2008; 22, Ricci-Vitani et al. 2007; 23, Kemper et al. 2010; 24, O’Brien et al. 2007; 25, Bunting 2002; 26, Monzani et al. 2007; 27, Krupkova et al. 2010;
28, Dell’Albani 2008; 29, Monk and Holding 2001; 30, Carpenter et al. 2003.
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stem cell markers are upregulated in cancer, e.g. ABCG or
Bmi-1. In other instances, mutations have been detected
(Lobo et al. 2007; Guo et al. 2008). In some cases isotypes
of stem cell markers are preferentially expressed on tumor
cells (e.g. CD44v, Günthert et al. 1991; or ALDH1A3,
Marcato et al. 2011), although this issue is not finally
settled (Zöller 2011). We believe that a different, more
general approach should be considered.

Hypothesis: what makes CSC markers different?
Most stem cell markers described so far are proteins. A
relatively small number of stem cell markers have been
shown to be glycans bound to proteins or lipids (Table 2).
Glycans are known to be developmentally regulated
(Solter and Knowles 1978; Muramatsu 1988; Fenderson
and Andrews 1992; Cao et al. 2001), and are often al-
tered on tumor cells (Hakomori 1989; Cao et al. 1995;
Dabelsteen 1996; Cao et al. 1997; Brockhausen 1999; Le
Pendu et al. 2001; Cao et al. 2008). The question arises
whether glycans may be able to play a role as stem cell
markers in a more comprehensive sense. Interestingly,
the glycosylation of stem cell markers has so far not
been systematically examined.
For many years we have been interested in the

Thomsen-Friedenreich antigen or, more precisely, epitope
(TF; CD176), which is an onco-fetal glycan structure
(Galβ1-3GalNAcα1-). Although known since the mid-
twenties of the last century, it was only in 1975 that Georg
F. Springer discovered that this otherwise common cryptic
structure is exposed (unmasked) on tumor cells (Springer
et al. 1975; Springer 1984). We and others have developed
monoclonal antibodies towards TF (Clausen et al. 1988;
Karsten et al. 1995; Goletz et al. 2003) and examined its
expression on different types of tumor tissues (Itzkowitz
et al. 1989; Langkilde et al. 1992; Cao et al. 1995; Cao et al.
1999; Cao et al. 2000; Baldus et al. 2000; Goletz et al.
2003; Cao et al. 2008) as compared to their corresponding
normal tissues (Cao et al. 1996). As a result of compre-
hensive studies it can be stated that in adults TF is a
tumor marker of exceptional specificity. Among normal
tissues, TF is expressed on activated T cells (Hernandez
et al. 2007).



Table 2 Carbohydrate stem cell markers

Marker Description Expression on stem cell-like populations References

H type 1 SSEA-5, stage-specific embryonic antigen-5; carried on proteins
Fucα1-2Galβ1-3GlcNAcβ1-

PSC, iPSC; CSC (germ cell carcinomas) 1

CD15 Lewis X, SSEA-1, stage-specific embryonic antigen-1; carried on lipids or proteins
Galβ1-4[Fucα1-3]GlcNAcβ1-3Galβ1-

ESC, NSC, MSC; CSC (globlastomas) 2-7

CD60a GD3; ganglioside
NeuAcα2-8NeuAcα2-3Galβ1-4Glcβ1-

NSC; CSC (differentiated germ cell carcinomas,
melanomas)

7, 8

CD77 Gb3, Pk antigen, Burkitt lymphoma antigen (BLA); globoside
Galα1-4Galβ1-4Glcβ1-

CSC (Burkitt lymphoma, breast cancer, germ
cell carcinomas)

8, 9

CD173 H type 2; carried on proteins or lipids
Fucα1-2Galβ1-4GlcNAcβ1-

ESC cell lines, HProgC, MSC 9-11, 13

CD174 Lewis Y; carried on proteins or lipids
Fucα1-2Galβ1-4[Fucα1-3]GlcNAcβ1-

HProgC; CSC (breast cancer) 9, 11

CD175 Tn antigen; carried on proteins
GalNAcα1-

ESC cell lines; onfFN 12,13

CD176 TF, Thomsen-Friedenreich antigen, core-1; carried on proteins
Galβ1-3GalNAcα1-

ESC; CSC (diverse carcinomas and leukemias);
onfFN

12-14

GD2 OFA-I-2; ganglioside
GalNAcβ1-4[NeuAcα2-8NeuAcα2-3]Galβ1-4Glcβ1-

NSC, MSC; CSC (differentiated germ cell
carcinomas, breast cancer, melanomas)

7, 8, 10, 15

Gb4 Globoside
GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-

CSC (germ cell carcinomas) 8

Gb5 SSEA-3, stage-specific embryonic antigen-3;
globoside Carries TFβ (the β-anomer of TF)
Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-

ESC, MSC, iPSC; CSC (breast cancer, germ cell
carcinomas)

4, 8, 16-19

Sialyl-Gb5 SSEA-4, stage-specific embryonic antigen-4, GL7; globoside
NeuAcα2-3Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-

ESC, MSC, iPSC, ProgC (breast); CSC (germ cell
carcinomas)

4, 8, 16, 17,
19-21

Globo-H Carried on proteins or lipids
Fucα1-2Galβ1-3GalNAcβ1-3Galα1-4Gal-

CSC (breast cancer) 18

TRA-1-60 Tumor-recognition antigen; carried on protein
Sialylated keratan sulfate proteoglycan

ESC, MSC; CSC (teratocarcinomas) 4, 19, 22

Abbreviations: CSC cancer stem cell, ESC embryonic stem cell, HProgC hematogenic progenitor cell, iPSC induced pluripotent stem cell, MSC mesenchymal stem
cell, NSC neuronal stem cell, onfFN oncofetal fibronectin, ProgC progenitor cell, PSC pluripotent stem cell.
References: 1, Tang et al. 2011; 2, Solter and Knowles 1978; 3, Son et al. 2009; 4, Huang et al. 2009; 5, Hennen and Faissner 2012; 6, Riethdorf et al. 2006; 7,
Yanagisawa et al. 2011; 8, Wenk et al. 1994; 9, Cao et al. 2001; 10, Lin et al. 2010b; 11, Schäfer et al. 2011; 12, Matsuura et al. 1988; 13, Wearne et al. 2008: 14, Lin
et al. 2010a; 15, Battula et al. 2012; 16, Kannagi et al. 1983; 17, Henderson et al. 2002; 18, Chang et al. 2008; 19, Carpenter et al. 2003; 20, Gang et al. 2007; 21,
LaBarge et al. 2007; 22, Badcock et al. 1999.
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TF does not exist as a separate entity, but as part of
a larger carbohydrate structure (O-glycan core-1) car-
ried by many glycoproteins primarily of the mucin-type.
In the case of tumor cells, these glycans are truncated or
otherwise modified, and the core-1 structure (Galβ1-
3GalNAcα1-) becomes exposed. Knowing that the glyco-
sylation machinery of tumor cells is generally disturbed
(Brockhausen 1999), one might expect that TF is
expressed on most if not all glycoproteins of a tumor
cell. However, this is not the case. During recent years
several carrier molecules have been identified, and it
was found that TF is in fact expressed on a very re-
stricted number of proteins of a given tumor type (in
most cases one or very few: Matsuura et al. 1988;
Zebda et al. 1994; Singh et al. 2001; Baba et al. 2007;
Cao et al. 2008). An even greater surprise to us was
the fact that almost all TF carrier proteins identified
so far turned up as known stem cell markers (Table 3).
There are very few exceptions to this statement. The
most remarkable exception is oncofetal fibronectin
(onfFN, Matsuura et al. 1988), which is characterized
by a single O-glycosylation (either TF or Tn) at a spe-
cific sequence. OnfFN is not a CSC marker per se, but
an indicator and promoter of epithelial-mesenchymal
transition (EMT) of epithelial cancer cells to second-
ary stem cell-like cells (Ding et al. 2012). A second
example are two TF carrying glycoproteins (140 and
110 kDa) found in melanoma cells strongly correlated
with high metastatic activity (Zebda et al. 1994). It is
not known but conceivable that these proteins are in
fact stem cell markers.
These data and other more general considerations led

us to propose the following hypothesis.

1. During the process of malignant transformation
from a normal stem or progenitor cell to a cancer
stem cell, stem cell glycoprotein markers undergo
alterations in their glycosylation.



Table 3 Carrier molecules of the Thomsen-Friedenreich antigen (TF, CD176)

Marker General description/expression on normal stem cells Expression on cancer stem cells TF-carrying CSC marker (source)

CD34 Transmembrane protein
105-120 kDa

Adhesion protein
Immature hematopoietic stem/progenitor cells,

endothelial progenitor cells2

Leukemias, sarcomas2 AML cell line KG-1 (1)

CD44 Hyaluronan receptor, H-CAM, epican, phagocytic glycoprotein-1
80-95 kDa

Adhesion protein, binds hyaluronic acid
Hematopoietic and non-hematopoietic stem/progenitor cells2

Cancer of colon, breast, ovary, lung,
liver, stomach, etc.2

Colon cancer cell line HT29 (2),
lung, breast, and liver cancer (3)

Carries also Lewis Y (4)

CD45 Leucocyte common antigen (LCA)
180-240 kDa

Hematopoietic stem cells (7)

Glioblastomas (5) Acute T cell leukemia cell line
Jurkat (6)

CD164 MGC-24, endolyn
80 kDa

Mucin-like glycoprotein
Hematopoietic progenitor cells (10)

Gastric and prostate cancer (8, 9) Gastric cancer cell line KATO-III (8)

CD227 Mucin-1, MUC1, EMA, PEM
>200 kDa

Heavily glycosylated mucin
MUC1-C interacts with regulatory pathways

Hematopoietic progenitor cells (13)

Breast cancer (MCF7) side population
(12), gastric cancer, AML (13),

multiple myelomas (14)

Breast cancer (11); gastric cancer
cell line KATO-III (8)

MAGP1 Membrane glycoproteins from human melanoma cell lines
140 kDa (MAGP1), 110 kDa (MAGP2)

Highly metastatic melanoma
cell lines (15)

Highly metastatic cell lines
(e.g. T1C3) derived from M4Be (15)

Abbreviations: AML acute myelogenous leukemia, CSC cancer stem cell, MUC1-C cytoplasmic domain of MUC1.
1Not identical with microfibril-associated glycoproteins, also abbreviated MAGP (16).
2References see Table 1.
References: 1, Cao et al. 2008; 2, Singh et al. 2001; 3, Lin et al. 2010a; 4, Lin et al. 2010b; 5, Kang and Kang 2007; 6, Baba et al. 2007; 7, Poppema et al. 1996;
8, Masuzawa et al. 1992; 9, Havens et al. 2006; 10, Watt et al. 2000; 11, Lloyd et al. 1996; 12, Engelmann et al. 2008; 13, Fatrai et al. 2008; 14, Cloosen et al. 2006;
15, Zebda et al. 1994; 16, Gibson et al. 1999.
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2. As a consequence, cancer stem cells carry cancer-
specific glycans.

3. This appears to be a selective process. Accordingly,
these cancer-specific glycans are CSC makers.

4. Changes in stem cell marker glycosylation
contribute to the altered biological behavior of these
cells.

In brief, we propose that cancer stem cell markers dif-
fer from their normal counterparts by the expression of
tumor-specific glycans.
In order to substantiate the suggestion that CD176

(Thomsen-Friedenreich antigen) is specifically carried
on CSC markers, we have recently performed a study on
lung, breast and liver cancer cell lines as well as on
tissue sections, in which we examined the co-expression
of CD176 with the stem cell markers CD44 and CD133
(Lin et al. 2010a). In tissue sections of all three cancer
types 5–30% of cells revealed co-expression of CD176/
TF with CD44. Corresponding cell lines confirmed these
data but showed greater variability in the number of co-
expressing cells. This is not surprising since cell lines
in vitro, and especially cancer cell lines, are the subject
of manifold variation, selection and evolution processes.
More importantly, we were able to provide direct
evidence by a sandwich ELISA that CD44 is indeed the
carrier molecule for CD176/TF in lung, breast and liver
cancer cells (Lin et al. 2010a), confirming earlier data
from colorectal carcinoma (Singh et al. 2001).
Other data support the proposed hypothesis or are at

least not at odds with it.
The cancer stem cell concept implies that metastatic

spread is, in principle, restricted to CSCs. In fact, metasta-
ses show in most cases a higher percentage of TF-positive
cells or of TF-positive cases (Cao et al. 1995). Dissemi-
nated breast cancer cells in the bone marrow (DTC-BM,
identified as cytokeratin+/MUC1+) are in almost all cases
(96%) positive for CD176/TF (Schindlbeck et al. 2005).
This is remarkable, since sections of primary tumors often
show a mosaic of TF-positive and TF-negative cells (which
is to be expected if TF is a CSC marker). In the light of
our hypothesis the expression of TF on DTC might be
interpreted as indicating that these cells are cancer stem
cells, and thereby able to generate distant metastases.
With respect to claim #4 of our hypothesis, it is inter-
esting to note that a number of studies demonstrate the
involvement of CD176/TF in metastasis formation
(Beuth et al. 1988; Okuno et al. 1993; Shigeoka et al.
1999; Cao et al. 1995). Several modes of TF-mediated
adhesion mechanisms leading to metastasis have been
described. One is the binding of CD176/TF carrying
cells to asialoglycoprotein receptors (ASGPR) in the
liver (Schlepper-Schäfer and Springer 1989), which is
confirmed by clinical (Cao et al. 1995) and experimental
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data (Shigeoka et al. 1999). Another TF-mediated mech-
anism, which leads to hematogenic metastatic spread,
has also been described (Yu et al. 2007), and could be
experimentally inhibited with TF-carrying anti-freeze
glycoprotein from polar fish (Guha et al. 2013). Of
course, both mechanisms do not exclude each other.
Antibodies to CD176/TF have been demonstrated to
prevent TF-mediated metastatic spread (Shiogeoka
et al. 1999) and to induce apoptosis (Yi et al. 2011).
Furthermore, the expression of TF has been found to be
correlated with invasive tumor growth (Limas and
Lange 1986; Zebda et al. 1994), and interestingly also in
a special case of normal cells (trophoblast cells) invad-
ing the decidua (Jeschke et al. 2002). The lectin Jacalin
induces T lymphocyte activation following binding to
TF on Jurkat cells (an acute T cell leukemia cell line,
Baba et al. 2007).
An instructive example of how TF at a specific site can

lead to a re-direction of differentiation is fibronectin (FN).
Malignant FN (onfFN) differs from normal FN (norFN) by
a glycosylation at the threonine of the sequence VTHPGY
by either TF or its precursor, Tn, leading to a conform-
ational change of the FN molecule which completely
modifies its function (Matsuura et al. 1988). OnfFN, but
not norFN, is able to induce EMT in carcinoma cells.
Moreover, onfFN acts synergistically in this repect with
the transforming growth factor, TGFβ1 (Ding et al. 2012).
Interestingly, tumor MUC1 differs from normal epithelial
MUC1 in a similar conformational change induced by O-
glycosylation at the threonine of the sequence PDTRP
with either TF or Tn (Karsten et al. 2005).
Taken together, direct and circumstantial evidence

suggest that the TF disaccharide is typically found on
proteins which are (cancer) stem cell markers or which
are proteins with similar functions. Moreover, TF confers
direct and indirect properties enhancing the malignancy
of the cancer cell. Thereby TF is a characteristic example
for the type of changes which occur on glycoprotein
stem cell markers during malignant transformation and
which, according to our hypothesis, make the difference
between normal and cancer stem cell markers.

Questions to be answered
The fact that the glycosylation of cellular glycoproteins
is altered in cancer has been well known for decades
(Hakomori 1989). Our hypothesis, however, does not
simply extend this idea to stem cell markers but claims
that this is not a random process. It appears to be select-
ive with respect to the proteins as well as with respect to
the glycans involved. This raises several questions, for
instance, what is the reason for the apparent selectivity
of expression of, e.g., CD176/TF (and probably certain
other glycans) on stem cell marker molecules? We are at
present unable to offer an explanation for this type of
selectivity. However, remarkable selectivity of glycan
changes has already been reported in other cases
(Hernandez et al. 2007; Singh et al. 2001).
Furthermore, one may ask which other glycans from a

great diversity of potential candidates (Hakomori 1989;
Zhang et al. 1997) might be able to confer the property
of being selectively expressed as CSC markers. Tumor
specificity may be the most important qualifier. According
to this, CD176/TF is a prime candidate. However, it re-
mains open to what extent other known carbohydrate
tumor markers such as, for instance, CD175 (Tn), CD175s
(sialyl-Tn), CD174 (Lewis Y), CD15 (Lewis X), CD15s
(sialyl-Lewis X), CA19-9 (sialyl-Lewis a), or some subtypes
of A or H (blood group-related glycans) might also be car-
ried on CSC marker proteins. So far only few data are
available. Lewis Y is at present the second most likely CSC
marker-specific glycan. It has been found co-expressed
with CD44 in breast cancer tissues (Lin et al. 2010b). Tn
expression apparently alternates with TF (Barrow et al.
2013), and has also been found on oncofetal fibronectin in
exchange to TF (Matsuura et al. 1988). It may be that
these different glycans indicate different stages of the ma-
lignant stem cell-progenitor-tumor end cell lineage. Lewis
X is carried on CD147, a potential CSC marker (Miyauchi
et al. 1990; Riethdorf et al. 2006), but also known as a
normal stem cell marker (Hennen and Faissner 2012).
Our hypothesis applies so far essentially to stem cell

markers which are mucin-like surface proteins, which
predominantly carry O-glycans. N-glycans are also altered
on cancer stem cells (Hemmoranta et al. 2007). Their suit-
ability as CSC markers remains to be elucidated. However,
strong support for our hypothesis comes from glycolipids,
whose changes in malignant transformation and in EMT
are well known (Hakomori 1996). Some of them are CSC
markers (Table 2). For instance, both the globoside Gb3
and the ganglioside GD2 have been described as breast
cancer stem cell markers (Gupta et al. 2012; Battula et al.
2012).
It should be mentioned that some stem cell markers

are intracellular proteins, such as Oct-4 (Monk and
Holding 2001) or nestin (Krupkova et al. 2010). Their
glycosylation is different from that of surface proteins,
and so are any deviations in cancer cells (Slawson and
Hart 2011).

Conclusions
The CSC concept, although well founded, has had to
adapt to complex and partially adverse processes such as
the role of EMT or the influence of the microenviron-
ment on cancer stem cells (Medema 2013). The role of
glycosylation of stem cells, and especially of stem cell
markers, may add a further dimension to it.
If confirmed, this hypothesis has several consequences.

First, stem cell markers which are found on normal as
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well as on tumor stem cells should be systematically an-
alyzed for their glycan patterns in both circumstances.
In particular, CSC markers should be examined for their
potential expression of CD176/TF, CD175/Tn, and CD174/
Lewis Y. Second, these tumor-related glycans could become
very important or even crucial therapeutic targets. Third,
targeting CD176/TF might also help to overcome the thera-
peutic problem of EMT, i.e. the generation of secondary
cancer stem cells, because CD176/TF is expressed on
oncofetal fibronectin, which plays a key role in this process
(Matsuura et al. 1988).
In this connection the remarkably successful treatments

of breast cancer patients by Georg F. Springer with a TF-
carrying vaccine (Springer et al. 1994; Springer 1997)
should be remembered. They may now be seen in a new
light.
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