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Abstract

Dynamic thermal management techniques employ a set of on-chip thermal sensors to measure runtime thermal
behavior of microprocessors so as to prevent the on-set of high temperatures. Therefore, effective analysis of
thermal behavior and determination of the best allocation and placement of thermal sensors directly impact the
effectiveness of the dynamic thermal management mechanisms. In this paper, we propose systematic and effective
techniques for determining the fewest number of thermal sensors and the optimal locations based on dual
clustering to provide a high fidelity thermal monitoring. Initially, we utilize the dual clustering algorithm to devise
method that can reduce the number of sensors to a great extent while satisfying an expected accuracy. Then we
identify an optimal physical location for each sensor such that the sensor’s attraction towards steep thermal
gradient is maximized. Experimental results indicate the superiority of our techniques and confirm that our
proposed methods are capable of creating a sensor distribution for a given microprocessor architecture using the
number of thermal sensors of 2, 8, 15, 24, 35, depending on different expected hot spot temperature error accuracy
of 5%, 4%, 3%, 2%, 1%, respectively.

Keywords: Dynamic thermal management, Thermal sensors, Allocation, Placement, Dual clustering, Thermal
gradient
Introduction
Large-scale circuit integration and exponentially increas-
ing power densities have resulted in high temperature in
current microprocessors. Elevated chip temperature slows
down transistor speed and increases interconnect delays
(Brooks et al. 2007). The results of these trends are timing
failures and thermal runaway (Lin & Banerjee 2008).
Therefore, effective assessment and analysis of the thermal
behavior of microprocessors have become a major issue to
be considered.
Traditionally, the problem of temperatures on chips

has been solved by employing dynamic thermal manage-
ment techniques (Jayaseelan & Mitra 2009) which use a
set of on-chip thermal sensors that continuously moni-
tor temperatures at a few selected die locations during
the runtime. The most well-known dynamic thermal
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management techniques include clock gating, dynamic
voltage and frequency scaling (DVFS) (Hanson et al.
2007). Several microprocessors have been equipped with
thermal sensors. For instance, AMD Opteron employs
38 thermal sensors (Zhang & Srivastava 2009; Zhang &
Srivastava 2011) that trigger alarms if the junction
temperature exceeds a specified limit (Coskun et al.
2008).
Moreover, accuracy is another crucial criterion for dy-

namic thermal management techniques. Overestimation
of temperature results in spurious alerts that lead to
unnecessary triggering of thermal control mechanisms,
e.g., DVFS (Long et al. 2008; Memik et al. 2008). On the
other hand, underestimation of temperature greatly re-
duces the reliability since the processor will continue to
operate at a higher temperature than its rated operating
condition (Long et al. 2008; Memik et al. 2008). Embed-
ding a large number of thermal sensors on the die is an
unadvisable option to increase the accuracy. In fact,
chips need to use the fewest number of thermal sensors
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g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Table 1 Overview of related works

Motivation Reference Methodology

Thermal sensor
allocation

Long et al.
(2008)

• Grid-based interpolation scheme

Memik
et al. (2008)

• Uniform allocation: interpolation
scheme

• Non-uniform allocation: improved
k-means clustering algorithm

Nowroz
et al. (2010)

• Min-cut placement techniques:
recursively allocating the sensors to the
different die regions depending on their
spectral energy

Reda et al.
(2011)

• Hard sensor allocation techniques:
Heuristic iterative approach to
approximate an NP-hard problem

• Soft sensor computation techniques:a
weighted linear combinations of the
measurements of the hard sensors

Full thermal
reconstruction

Cochran
et al. (2009)

• Spectral techniques

Li et al.
(2011)

• Inverse distance weighting method
based on a dynamic Voronoi diagram
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to reduce manufacturing costs, die area and design com-
plexity. In addition, allocating arbitrarily large number of
sensors employed by the monitoring infrastructure,
constructing the sensor networks will also pose a chal-
lenge (Long et al. 2008). An ideal goal is to monitor the
highest temperatures on a microprocessor with allocating
a minimum number of thermal sensors. As a result, how
to provide accurate thermal monitoring in a given system
while maintaining a reasonable number of sensors
becomes crucial.
In this paper, we propose systematic and effective tech-

niques for determining the fewest number of thermal sen-
sors and the optimal locations based on dual clustering
algorithm to provide a high fidelity thermal monitoring.
The organization of this paper is as follows. Related

Work section overviews some of the recent relevant
methods in the literature. In Proposed Thermal Sensor
Allocation and Placement Techniques section we pro-
vide an overview of our methodology, where we intro-
duce the thermal gradient calculation method in
Thermal Gradient Calculation section and propose ef-
fective technique for thermal sensor allocation based on
the dual clustering algorithm in Sensor Allocation
Scheme section, and in Sensor Placement Strategies sec-
tion we identify an optimal strategy for thermal sensor
placement. We demonstrate the effectiveness of our
methods through an extensive set of experimental re-
sults in Experimental Results section. Finally, Conclusion
section summarizes the main conclusions of this work
and indicates directions for future work.
Related work
It is intriguing to observe that several recent studies
aiming to address thermal sensor allocation problem
and reconstruct the full thermal characterization seemed
to have a few works. For thermal sensor allocation and
full thermal reconstruction, some representative tech-
niques have been proposed shown in Table 1.
Proposed thermal sensor allocation and
placement techniques
Although it is a clear trend in elevating the number of
thermal sensors in high performance microprocessors
(Long et al. 2008), allocating the number of sensors arbi-
trarily will create several overheads as mentioned earlier.
Reducing the number of sensors may help relieve these
overheads. However, this will cause inaccuracies. Our
goal is to provide accurate thermal monitoring while
maintaining a reasonable number of sensors. In this sec-
tion we first introduce the thermal gradient calculation
method, and then we propose systematic and effective
thermal sensor allocation and placement techniques to
overcome this challenge.
Thermal gradient calculation
Thermal gradient describes that in which direction and
at what rate the temperature changes the most rapidly
around a particular location. The magnitude of the ther-
mal gradient determines how fast the temperature
changes in the corresponding direction rather than the
value of the temperature at the measuring point.
Any representation in computer memory must be

discretized, we utilize the classical Sobel operator (Wang
2009) to calculate an approximation of the gradient of
the thermal map. At each point in the thermal map, the
result of the Sobel operator is either the corresponding
gradient vector or the norm of this vector. The Sobel
operator is implemented using the following two 3 × 3
matrixes which are convolved with the original thermal
map to calculate approximations of the derivatives: one
for horizontal changes, and the other for vertical.

Mx ¼
�1 0 1
�2 0 2
�1 0 1

2
4

3
5 and My ¼

�1 �2 �1
0 0 0
1 2 1

2
4

3
5

ð1Þ

If we define T as the source thermal map, at each point
in the thermal map, the approximation of the magnitude
of the thermal gradient is expressed as follows:

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx

�T
� �2

þ My
�T

� �2
r

ð2Þ

where ‘*’ here denotes the 2-dimensional convolution
operation.
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Memik et al. (2008) indicated that the thermal gradi-
ent around a high-temperature location is larger than
that at a low-temperature point. However, our experi-
mental results find that the thermal gradient at one
point has no relation with its own temperature. For
example, we simulated the bzip2 benchmark (Henning
2000) using the experimental flow shown in Simulation
Infrastructure section. Figure 1 (a) exhibits the full ther-
mal characterization, and Figure 1 (b) shows the ther-
mal gradient distribution calculated by Sobel operator.
It’s observed that the RUU block has relatively high
temperatures, while attaining lower values in thermal
gradient distribution.
Sensor allocation scheme
In general, placing sensors at the hot spot locations for
one application will cause large temperature errors for
other applications (Memik et al. 2008; Mukherjee &
Memik 2006). Our objective is to address this deficiency
by systematically analysis of thermal maps across a wide
set of applications. We formulate the sensor allocation
problem as a dual clustering of the points of interest in
the spatial and non-spatial domains. We try to partition
the hot spot data set into several groups, so that these
groups form nonoverlapping compact regions in the
spatial domain while minimizing the dissimilarity of the
data points in a group on the non-spatial domain (Lin
et al. 2005). Then, each group will be allocated one sen-
sor, which will monitor the hot spot points associated
with that group. In the remaining part of this section,
we will first briefly introduce the basic concept of the
dual clustering. Based on the dual clustering, we propose
an effective sensor allocation algorithm.
RUU

(a) true thermal status

Figure 1 Thermal gradient calculation for bizp2 (Henning 2000). a: tru
Dual clustering
The dual clustering (Jiao et al. 2011) can be defined as:
given a set of objects {o1, o2, …, on}, each object has two
attribute domains, i.e., spatial domain and non-spatial
domain, as shown in Equation 3.

on ¼ g 1ð Þ
n ;…; g Lð Þ

n ; a 1ð Þ
n ;…; a Tð Þ

n

n o
ð3Þ

Where g 1ð Þ
n ;…; g Lð Þ

n

n o
is the spatial location (L is usually

set to 1, 2 or 3), and a 1ð Þ
n ;…; a Tð Þ

n

n o
is the non-spatial

attributes (T is the number of non-spatial attributes).
The spatial distance between two objects is defined as
Euclidean distance, and the non-spatial distance between
two objects is given by Equation 4.

D Að Þ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

wt a tð Þ
i −a tð Þ

j

� �2

vuut ð4Þ

Where D Að Þ
ij is the non-spatial distance between object i

and object j, a tð Þ
i and a tð Þ

j represent the values of attribute t

for object i and object j, wt is the weight of attribute t,

and
XT
t¼1

wt ¼ 1.

Dual clustering is the process of partitioning the object
data set into several groups, while clustering dispersion
in the non-spatial domain is less than the given threshold
and each group is a connective cluster (Jiao et al. 2011).
The result of dual clustering should be spatial continuous
and attributively aggregative.
(b) thermal gradient distribution

e thermal status; b: thermal gradient distribution.
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Sensor allocation algorithm
Based on dual clustering, we devise an effective sensor
allocation algorithm. Initially, we construct a Voronoi
diagram (Bhattacharya & Gavrilova 2007) according to
the locations of all the hot spots on the die. After that,
the hot spot fields are divided into subregions of
Voronoi cells, and each stationary hot spot node is
within a Voronoi cell shown in Figure 2.

Definition 1. If the Voronoi cells of two hot spots
share a Voronoi edge (have more than a single
point in common), then the two hot spots are
considered neighbor, i.e., the hot spots H2, H3, H4,
H6 and H8 are Voronoi neighbors of hot spot H1
in Figure 2.
Definition 2. Set the number of non-spatial attributes T
to 1 and the non-spatial attribute is defined as the
temperature of hot spot.
Definition 3. If two hot spots are neighbor to each
other and the non-spatial distance between them is
less than the given threshold D Að Þ

max, then the
Voronoi cells of the two hot spots are merged into
a new cluster, i.e., in Figure 2, the Voronoi cells of
hot spot H1 and H6 are merged into a cluster
when D Að Þ

H 1;H6
< D Að Þ

max
.

Definition 4. Set the threshold of non-spatial distance
to:

D Að Þ
max ¼ α� εmax � 1

n

Xn
i¼1

ai ð5Þ

Where α is a correction coefficient, εmax is an
expected hot spot temperature error accuracy, n is the
number of hot spots in a cluster and ai is the value of
non-spatial attribute at each hot spot in a cluster.
Figure 2 Illustration of using Voronoi diagram to detect and
merge adjacent cells.
Our sensor allocation algorithm can be presented as
follows:

1. Select a hot spot with maximum value of thermal
gradient as initial cluster center.

2. Apply the definition 3 to obtain a new cluster Cnew.
3. Set the hot spots in cluster Cnew to new cluster

centers and go to Step 2.
4. If the cluster Cnew cannot be merged with other

cells, it is defined as an integrated cluster, then
allocate one sensor to it.

5. Perform the Step 1–4 in residual hot spots until
each hot spot belong to a certain cluster.

The details of sensor allocation algorithm are shown
in Figure 3.

Sensor placement strategies
Once we finish the hot spot clustering, the allocation
number of sensors is determined. Then we need to de-
termine the physical location of thermal sensors. In this
section we identify two different strategies for thermal
sensor placement.

� Geometric-Center Sensor Placement. In this
strategy, a sensor is placed at the geometric center
of each cluster region.

As we know, ideal thermal sensor placement methods
that focus on placing sensors only near potential loca-
tions which have the highest absolute temperatures will
achieve the best results for hot spot temperature estima-
tion. However, these methods might lead to poor results
for full thermal reconstruction as they will have no in-
formation at the locations which temperatures change
the most rapidly. Thus, we choose thermal gradient, in-
stead of absolute temperature, as the base for sensor
placement method. We propose here another strategy-
which is inspired by improved k-means clustering
method (Memik et al. 2008; Mukherjee & Memik 2006)-
that takes into account the diversity of thermal gradients
within a cluster.

� Thermal-Gradient-Attraction Sensor Placement. The
basic idea behind this strategy is to move the
sensors closer to the relatively higher thermal
gradient hot spots. This is equivalent to the sensor
being attracted to the hot spots with high thermal
gradient values by a larger force (Memik et al. 2008;
Mukherjee & Memik 2006). The details of this
strategy are described as follows:

For each addition of hot spot hi of cluster Cj, the sensor
coordinates are the cumulative sum of the corresponding



Figure 3 Pseudocode for the sensor allocation algorithm.
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member coordinates. The cumulative sum computation is
shown in Equation 6.

sjx;y ¼ sjx;y þ hix;y þ β hix;y−sjx;y=niteration
� �

� hig−sjg=niteration
� �

sjg ¼ sjg þ hjg

ð6Þ
Where sjx,y, hix,y and sjg, hig are the coordinates and

thermal gradient of sensor sj and hot spot hi, respect-
ively. niteration is the number of iterations, and β is an at-
traction coefficient. We have determined experimentally
that an attraction coefficient value β = 0.3 performs best.
The (x, y) coordinates of the sensor sj are closer to the
hot spot hi if the g dimension of sj is less than that of hi,
otherwise the sensor moves further from the position of
hi. The illustration for the thermal gradient attraction
approach in the n + 1 iteration is shown in Figure 4
(γ = β(hig − sjg/niteration)). After iterating over all the
hot spots in cluster Cj, the final position of sj is updated as
shown in Equation 7.

sjx;y ¼ sjx;y=size Cj
� � ð7Þ

Experimental results
In the following two sections we first describe our ex-
perimental methodology and then we present our
results.

Simulation infrastructure
To evaluate the effectiveness of our methods, we design
an experimental flow that simulates thermal distribu-
tion for a 65 nm microprocessor based on Alpha EV6
architecture. We first give the definition of power
consumption (Shauly 2012) and then we describe our
experimental flow.



Figure 4 Illustration for the thermal gradient attraction approach. a: when hig is greater than sjg/n; b: when hig is less than sjg/n.

Figure 5 Experimental flow for simulating thermal distribution.
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Power consumption
There are two main components that constitute the
power used by a CMOS integrated circuit: static power
and dynamic power. Static power essentially consists of
the power used when the transistor is not in the process
of switching. Typically, CMOS technology has been
praised for its low static power. However, as devices are
scaled, gate oxide thicknesses decrease and there is
increased probability of tunnelling, resulting in larger
and larger leakage currents. Therefore, static power (also
called leakage power) dissipation will become increas-
ingly significant. Dynamic power is the sum of transient
power consumption and capacitive load power con-
sumption. The total power dissipation is summarized as
shown in Equation 8:

Ptotal ¼ Pdynamic þ Pstatic

¼ Pshort þ Pswitchð Þ þ Pstatic

¼ ISCV dd þ ψCLV
2
ddf þ IleakageV dd ð8Þ

Pshort is the power consumed during gate voltage tran-
sient time, that in CMOS technology is only related to
the direct path short circuit current (ISC) which flows
when both the NMOS and PMOS transistors are simul-
taneously active, conducting current directly from supply
to ground. Significant short circuit power dissipation
can be avoided if the output rise/fall time of a gate is
much longer than the input rise/fall time. Pswitch refers
to the dynamic component of power, where CL is the
total loading capacitance, f is the clock frequency, and ψ
is the average switching activity factor. Pstatic is due to
the leakage current Ileakage. Imperfect cut-off of the tran-
sistor leads to leakage (Ileakage) and power dissipation
(Pstatic) even without any switching activity.
Experimental flow
The complete experimental flow shown in Figure 5 is
performed using the following tools:

� We use the Alpha EV6 as our base processor
(Kessler 1999) with a 3 GHz clock frequency. The
Alpha EV6 is an out-of-order speculative execution
core that is commonly used as a test-bench core in
thermal management research.

� For workloads, we simulated the SPEC2000
benchmark (13 floating points and 12 integer
benchmarks) suite (Henning 2000), using Simple
Scalar (Burger & Austin 1997) 3.0e. The Simple
Scalar simulates a superscalar processor with out-of-
order issue and execution. For each application, we
simulated 10 million instructions.

� For dynamic power estimation, we use Wattch
(Brooks et al. 2000), a power simulator for analyzing
and calculating microprocessor power dissipation at



Table 2 Dimensions and thermal properties of different package layers

Layer Area (mm2) Thickness (mm) Mesh length (mm) Specific heat (J/kg°C) Density (kg/m3) Thermal conductivity (W/m°C)

Die 10 × 10 0.8 0.08 712 2330 148

TIM1 10 × 10 0.4 0.08 230 7310 30

IHS 30 × 30 2.4 0.2 385 8930 390

TIM2 30 × 30 0.4 0.2 2890 900 6.4

HeatSink 60 × 60 6.4 0.4 385 8930 360
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the architecture-level. We integrate the Wattch
power model into Simple Scalar simulator in order
to gain the power statistics in each time interval. For
each functional unit in the processor, we add an
access counter to record the access information,
which is fed into the Wattch power model to
calculate the dynamic power traces. In our
experiments, we assume clock gating to all
components and that clock gating can reduce
dynamic power by 75%, as proposed by Liao et al.
(2005). For leakage power estimation of processor
core units, we construct a leakage model (Liao et al.
2005) and use CACTI 5.0 (Wilton & Jouppi 1996) to
accurately model cache leakage power.

� We utilize HotSpot (Huang et al. 2006) version 5.0
for thermal simulation in the grid level (discretized
into 128 × 128 grids). The floor-plan of Alpha EV6
and the workload power traces from Wattch are
used as inputs to the HotSpot, and finally the
steady-state temperatures for a set of grid locations
can be produced as output. This type of grid level
thermal modelling is useful for capturing spatial
temperature variation within a processor unit. The
initial temperature of processor, which represents
the die temperature if the processor was already
Figure 6 Sketch of a microprocessor package assembly.
executing instructions prior to execution of
benchmarks to model the warm up period, was
assumed to be 60°C. The ambient temperature is set
to 45°C. For 3GHz clock frequency, HotSpot calling
interval of 10 K cycles gives the best trade-off
between precision and overhead (Mukherjee &
Memik 2006). The package assembly model in
HotSpot, whose physical and thermal properties of
all packaging layers are evaluated according to a
practical packaged high-performance
microprocessor shown in Table 2 (Lin et al. 2007),
was also created shown in Figure 6.

The point of interest for our experiments is the hottest
point per component. For each benchmark, each com-
ponent will exhibit a hot spot. As the location of this
hot spot may change for different applications as verified
by Memik et al. (2008), we first combine these locations
to find the distribution of hot spots across different
benchmarks. Figure 7 depicts the distribution of hot
spots for each processor block, which was obtained from
our simulations across the SPEC2000 benchmarks in the
same Alpha EV6 architecture. Dotted lines represent the
Figure 7 Distribution of the hot spots (marked with squares)
for each processor block for SPEC2000 benchmarks.



Figure 8 Allocation number of thermal sensors using various sensor allocation and placement methods.
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region of L2 cache blocks containing the hot spots. We
partition the L2 cache into three regions: L2_left,
L2_right and L2_bottom. Across 25 benchmarks and 20
different components of the processor, the theoretical
number of block-level hot spots is 500. However, some
hot spots reoccur due to correlation of activity and
power density, and the temperatures of some hot spots
are obviously lower than those of other hot spots in the
same block, leaving us with 132 distinct points. Based
on this distribution we make decisions of the allocation
number and locations of sensors using our proposed
thermal sensor allocation and placement techniques as
described in Proposed Thermal Sensor Allocation and
Placement Techniques section.

Results
Extensive experiments are conducted to examine the ef-
fectiveness of our proposed thermal sensor allocation and
placement techniques. All experiments are implemented
by MATLAB code and run on a Pentium 3.0 GHz PC with
Figure 9 Maximum hot spot estimation temperature error using vario
1GB SDRAM. In our experiments we report the following
three metrics:

� Number of thermal sensors. Given a maximum
allowable hot spot temperature error accuracy: for
our proposed thermal sensor allocation and
placement techniques, we determine the number of
integrated cluster and each integrated cluster will be
allocated one sensor; for improved k-means
clustering technique (Memik et al. 2008), we
iteratively perform the improved k-means clustering
algorithm until the maximum hot spot estimation
error is less than the given allowable hot spot
temperature error (initially, set the value of k to 1).
Finally, the value of k is the number of thermal
sensors.

� Hot spot estimation error. The computation of the
hot spot estimation error is equal to the difference
between the hot spot temperatures in the true
temperature distribution signals as obtained by
us sensor allocation and placement methods.



Table 3 Hot spot temperature error and corresponding
number of sensors using different sensor allocation and
placement approaches

Approach Allowable error
%

Average error
%

Number of
sensors

IKmC 5 4.24 4

4 3.33 13

3 2.64 24

2 1.32 32

1 0.53 46

GC 5 4.73 4

4 3.55 12

3 2.78 20

2 1.61 27

1 0.66 39

TGA 5 4.80 2

4 3.93 8

3 2.97 15

2 1.87 24

1 0.76 35
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executing the experimental flow and the
temperatures at the locations of the thermal sensors.

� Full thermal reconstruction error. For each
application, we reconstruct the full thermal
characterization with the different strategies for
thermal sensor placement, using the inverse distance
weighting method based on a dynamic Voronoi
diagram (Li et al. 2011). Then, we compute the
average absolute temperature error between the true
temperatures and the estimated temperatures
calculated by the reconstruction method. We report
Figure 10 Optimal values of correction coefficient using various sens
the average absolute error computed for all 25
benchmarks.

In our first set of experiments, we determine the allo-
cation number of thermal sensors while varying the
maximum allowable hot spot temperature error accur-
acy from 1% to 5%. We compare three different
methods for thermal sensor allocation and placement:
improved k-means clustering (IKmC) (Memik et al. 2008),
geometric-center (GC) and thermal-gradient-attraction
(TGA). The plot in Figure 8 gives the allocation number
of thermal sensors while satisfying different maximum al-
lowable hot spot temperature error accuracy. Comparing
the results, it’s observed that our proposed thermal
gradient attraction method gives the fewest number of
thermal sensors and all of our proposed methods sig-
nificantly outperform the improved k-means clustering
(Memik et al. 2008). Allocating arbitrarily large number
of sensors will not only create a significant area over-
head, but constructing the sensor networks will also
pose a challenge. Thus, reduce the number of thermal
sensors to a great extent while satisfying the maximum
allowable hot spot temperature error accuracy is a desir-
able property for microprocessors.
In the second set of experiments we demonstrate that

the maximum hot spot estimation temperature error
obtained by our proposed sensor allocation and place-
ment techniques is assuredly less than the corresponding
maximum allowable hot spot temperature error. We re-
peat this experiment using different maximum allowable
hot spot temperature errors and report the errors in hot
spot estimation in Figure 9. The results are summarized
in Table 3. The results show that our proposed sensor
allocation and placement methods give close results to
improved k-means clustering (Memik et al. 2008), while
or allocation and placement methods.



Figure 11 Number of thermal sensors and full thermal reconstruction error as a function of thermal sensor allocation and
placement methodology.
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reducing the number of sensors to a great extent as
shown in Figure 8. The difference between thermal gra-
dient attraction and geometric center is that thermal
gradient attraction method gives relatively poor results
compared with geometric center method, while requir-
ing a fewer number of thermal sensors.
The optimal value of correction coefficient α as a func-

tion of the maximum allowable hot spot temperature
error is given in Figure 10. Note that the relationship be-
tween them is an increasing function. The reason is that
when the maximum allowable hot spot temperature
error increases, the non-spatial distance correspondingly
increases and as the relationship between the threshold
of non-spatial distance and correction coefficient is
linear as defined in Sensor Allocation Algorithm section,
the value of correction coefficient also increases. In
addition, the optimal values of correction coefficient of
thermal gradient attraction method are larger than those
of geometric center method, which illuminates that ther-
mal gradient attraction method achieves the hot spot
estimation error limit bounded by the corresponding
maximum allowable hot spot temperature error even
with larger threshold of non-spatial distance.
The objective of our third set of experiments is to

determine the full thermal reconstruction error while
varying the maximum allowable hot spot temperature
error accuracy from 1% to 5%. Figure 11 summarizes the
errors in full thermal reconstruction and the corre-
sponding allocation number of thermal sensors. It’s clear
that thermal gradient attraction method gives the super-
ior results: obtaining the least full thermal reconstruc-
tion error and requiring the fewest number of thermal
sensors. The reason for the superior performance of the
thermal gradient attraction strategy is that the sensor’s
attraction towards steep thermal gradient is maximized.
The difference between geometric center method and
improved k-means clustering (Memik et al. 2008) is that
geometric center method gives relatively poor results
compared with improved k-means clustering (Memik
et al. 2008), while requiring a fewer number of thermal
sensors.
In conclusion, using our proposed thermal gradient

attraction method, the allocation number of thermal
sensors are 2, 8, 15, 24, 35, and the average absolute
full thermal reconstruction errors are 9.34%, 4.12%,
2.88%, 1.65%, 0.91%, depending on different maximum
allowable hot spot temperature error accuracy of 5%,
4%, 3%, 2%, 1%, respectively. These values confirm that
our proposed thermal sensor allocation and placement
techniques are capable of accurately characterizing the
temperature of microprocessors, while requiring the
fewest number of thermal sensors.
Conclusion
In this paper, we have proposed systematic and effective
techniques for determining the fewest number of ther-
mal sensors and the optimal locations based on dual
clustering algorithm in a complex microprocessor sys-
tem. Our goal is to provide accurate thermal monitoring
while maintaining a reasonable number of sensors. We
first develop method based on dual clustering algorithm
that can reduce the number of sensors to a great extent
while satisfying an expected accuracy. Then we identify
an optimal physical location for each sensor such that
the sensor’s attraction towards steep thermal gradient is
maximized.
The effectiveness of our techniques has been evaluated

on a sophisticated experimental setup. Experimental
results indicate the superiority of our techniques and con-
firm that our proposed thermal sensor allocation and
placement techniques are capable of accurately character-
izing the temperature of microprocessors, while requiring
the fewest number of thermal sensors. The significance of
our techniques will allow dynamic thermal management
scheme to implement the accurate temperature monitor-
ing with small number of embedded thermal sensors-a
desirable property for microprocessors.
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Our future work will focus on investigating the impact
of calibration errors in the thermal sensor measurements
(Zhang & Srivastava 2009; Zhang & Srivastava 2011) on
the results of our proposed methods.
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