
a SpringerOpen Journal

Ogata and Matsuura SpringerPlus 2013, 2:134
http://www.springerplus.com/content/2/1/134

RESEARCH Open Access

A reviewmethod for UML requirements
analysis model employing system-side
prototyping
Shinpei Ogata1* and Saeko Matsuura2

Abstract

User interface prototyping is an effective method for users to validate the requirements defined by analysts at an early
stage of a software development. However, a user interface prototype system offers weak support for the analysts to
verify the consistency of the specifications about internal aspects of a system such as business logic. As the result, the
inconsistency causes a lot of rework costs because the inconsistency often makes the developers impossible to
actualize the system based on the specifications. For verifying such consistency, functional prototyping is an effective
method for the analysts, but it needs a lot of costs and more detailed specifications. In this paper, we propose a review
method so that analysts can verify the consistency among several different kinds of diagrams in UML efficiently by
employing system-side prototyping without the detailed model. The system-side prototype system does not have
any functions to achieve business logic, but visualizes the results of the integration among the diagrams in UML as
Web pages. The usefulness of our proposal was evaluated by applying our proposal into a development of Library
Management System (LMS) for a laboratory. This development was conducted by a group. As the result, our proposal
was useful for discovering the serious inconsistency caused by the misunderstanding among the members of the
group.

Keywords: Business logic, Check-list, Prototyping, Object-oriented analysis, Review, Unified modeling language

Introduction
Defects of a requirements specification for a business
software bring on disastrous failure for the software devel-
opment project because the defects can consume 70
percentage to 85 percentage of all project rework costs
(Wiegers 2003). Therefore, it is important to validate and
verify the requirements specification sufficiently at the
requirements analysis phase. User interface prototyping
(ACM 1982) is an effective method to facilitate users’ val-
idation to the requirements specification. Analysts often
make the users confirm the requirements specification by
using a user interface prototype system at an early stage
of a development for an interactive software such as a
business application because the users can understand the
requirements intuitively by operating the user interface.

*Correspondence: ogata@cs.shinshu-u.ac.jp
1Department of Computer Science and Engineering, Facluty of Engineering,
Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
Full list of author information is available at the end of the article

We have proposed a method for generating a user inter-
face prototype system from Unified Modeling Language
(UML) requirements analysis (RA) model (Ogata and
Matsuura) so that the analyst can accept the advan-
tage of the user interface prototype system easily. This
UML RA model is a kind of a use-case-based model
and consists of activity diagrams, a class diagram and
object diagrams. However, the user interface prototype
system can not visualize internal aspects of a system such
as business logic. Therefore, the analysts can not verify
the requirements specification about the internal aspects
efficiently. On the other hand, a functional prototype
system enhances the efficiency of the analysts’ verifica-
tion because the analysts can confirm the response of
the system actually to inputs via implemented functions
and functions. However, the cost for the functional pro-
totyping is expensive because more implementation and
detailing are needed. Here, more implementation implies
that the functions and methods for the functional pro-
totype system actually are implemented. More detailing

© 2013 Ogata and Matsuura; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 2 of 11
http://www.springerplus.com/content/2/1/134

also implies that the specification corresponding with
the functional prototype system is detailed. If an invalid
functional prototype system is created based on the mis-
understanding among the analysts to the specification,
few of the large costs which were spent for creating such
functional prototype systemwill contribute to the product
directly. Moreover, it is difficult to prevent such inconsis-
tency in a development by a group because the members
of the groups may not share the comprehension to the
requirements specification sufficiently. Especially, the part
of the specification which a certain member of the group
manages directly is hard to be understood by the rest
of the members who do not manage the part directly.
To improve such problems, we propose a review method
based on the UML RA model for clearing the misunder-
standing among analysts about the definition of business
logic so that the analysts can discover such inconsistency
among each diagram sufficiently and intuitively before
detailing the specification and creating a functional pro-
totype system or product. We also propose a check-list
and system-side prototyping used in this review method.
The check-list is for discovering two kinds of inconsisten-
cies in the activity diagrams mainly. One is mismatches of
pre/post-conditions between actions. The other is inade-
quate relations between an action and objects. The check-
list is used by each analyst so that he can understand his
part of the UMLRAmodel precisely. The system-side pro-
totype system does not have any functions to achieve busi-
ness logic, but visualizes the result of integration among
three kinds of the diagrams in the UML RA model. The
system-side prototype system is used when the analysts
of a group share and verify each part of the specifica-
tion managed by each of the analysts. The usefulness of
our proposal was evaluated by applying our proposal to a
development of Library Management System (LMS) for a
laboratory. As the result, the analysts could discover the
serious inconsistent interpretations of the UMLRAmodel
which were caused by the misunderstanding among the
members of the group. In “Background” section, we intro-
duce the necessary of our proposal and compare our pro-
posal with related work. In “Method” section, we explain
our proposal based on the UML RA model described as
“The UML RAmodel” section. Then, we explain the result
of an evaluation of the effectiveness of our proposal in
“Results and discussion” section. Finally, we describe the
conclusion of this paper in “Conclusion” section.

Background
The following points are important in order to develop
the enterprise system so as to satisfy the requirements of
users.

1. A way to validate a requirements specification should
be shaped so that the users can validate the

requirements specification sufficiently and intuitively
because the users are not experts of a software
development generally. User interface prototyping is
one of the effective methods for validating the
requirements specification by the users sufficiently.

2. IEEE 830 (IEEE 1998), which is an international
standard for requirements specification,
recommends that the requirements specification
should contain not only the external aspects such as
user interfaces but also internal aspects of a system
such as business logic. We call the internal aspects of
a system as the internal aspects simply in this paper.
Therefore, analysts must define the business logic so
that software designers and test planners can
sufficiently and precisely understand the requirement
specification about the internal aspects of the system
under development.

To support the validation and verification for the require-
ments specification, there are a lot of researches (Choi
and Watanabe 2005; Diaz et al. 1996; Elkoutbi et al.
2006; Thelin et al. 2003). However, even if the methods
above-mentioned researches propose are applied into
requirements analysis, it is difficult to verify the internal
aspects sufficiently. We explain its reasons at next two
subsections.

Themisunderstanding of specifications in group work
A lot of developments are conducted by groups or orga-
nizations. It is impossible for each member to understand
all of the software specification in such group work.
Therefore, the various consensus-building processes
such as assessment, review and testing is conducted con-
stantly between users and developers or between analysts
and designers, etc. The user interface prototyping is an
effective method for users to validate the requirements
specification about users’ operation efficiently and intu-
itively, but the users can not confirm the validity of the
internal aspects mostly. Therefore, the users often agree
the requirements specification through user interface
prototype system even if the system can not be actualized
based on the specification. On the other hand, the more
a development becomes large-scale, the more analysts are
needed. In a large-scale development, the misunderstand-
ings among analysts to the specification will cause serious
reworking because invalid product is created based on the
inconsistent specification as the result of the misunder-
standings. Therefore, it is important for each analyst to
have common understanding of the specification among
all of the analysts sufficiently so as to prevent defining
inconsistent specifications. Support of the verification
of the specification without detailing is also necessary
for analysts so that the analysts can clear the misunder-
standing to the specification constantly before causing

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 3 of 11
http://www.springerplus.com/content/2/1/134

the serious reworking. The methods for generating a user
interface prototype system from a requirements specifi-
cation (Diaz et al. 1996; Elkoutbi et al. 2006) are useful
for analysts to make users validate the external aspects
of the system. (Elkoutbi et al. 2006) proposed how to
write use cases by using UML collaboration diagrams, a
UML class diagram and UML state machine diagrams.
(Diaz et al. 1996) also proposed how to write use cases
by using a UML use case diagram, message sequence
charts and state transition diagrams. However, the sup-
port of these methods for verifying the internal aspects
is weak because the generated prototype system visual-
izes external aspects only and does not have functions to
achieve business logic. Therefore, the misunderstandings
among the analysts for the internal aspects are hard to
be cleared by each of the analysts. We try to improve this
problem by visualizing the definition of the requirements
specification about the internal aspects. Model checking
techniques are useful for developers to validate a model
based on specifications which are expressed as temporal
logic efficiently and exhaustively. Such techniques are a
promised approach to discover defects of the model early
and sufficiently. Some researches try to detect defects
of specifications or source codes (Aoki and Matsuura
2011; Choi and Watanabe 2005) by using model checking
tools such as UPPAAL (UPPAAL 2010). (Choi et al. 2005)
propose how to use the model checking technique for
checking the consistency of a class specification and a
page flow diagram, and for checking the consistency of
the class specification and activity diagrams. The activity
diagrams are a use-case-based behavioral model, so the
activity diagrams contain brief definition for the internal
aspects. However, this method can not verify the internal
aspects because this method focuses on the checking for
the external aspects. One of the essential difficulties for
the model checking techniques is how the analysts define
adequate temporal logic formulas. The consistency of
the formulas is difficult to be kept by the analysts if the
analysts define the formulas by distributed work with the
misunderstanding of the way of design. To improve this
problem, support of enhancing common understanding
among the analysts is inevitable in order to share the
understanding to the requirements specification precisely
even if useful model checking techniques are used. Our
approach aims for enhancing common understanding
of the requirements specification for the analysts, and
focuses on the internal aspects.

Detailed specifications
The testing such as unit test or join test is normally per-
formed in order to confirm the validity of the internal
aspects. Such testing requires test cases, test data, and the
source codes of a product of developers basically. Such low
level artifacts often require detailed specifications so that

the product can be executed. However, the cost of detail-
ing specifications may come to nothing if such detailed
specifications were created based on above-mentioned
misunderstanding among the analysts. Therefore, we pro-
pose a way to review the UML RA model based on sce-
narios which imply test cases and test data for integration
test without detailing the UML RA model. At least, the
UML RA model should represent the data flow of essen-
tial data such as entities and the relation between actions
and data, but the analysts do not need to detail the actions
until the actions can be executed. Namely, the analysts
concentrate their effort on defining the scenarios based
on the UML RA model. There are reading techniques
(Thelin et al. 2003) to discover defects on the documents
such as requirements or design documents. (Thelin et al.
2003) proposed Use case Based Reading (UBR). The UBR
is to find defects the documents created at upper pro-
cess according to use cases prepared before using UBR.
The objective of UBR is to efficiently discover defect of
the documents which are ranked by selecting use cases.
The UBR is more effective than Checklist Based Read-
ing (CBR) to efficiently find defects within limited time.
The use case should be correct to effectively use the UBR
because the UBR relies on the use case completely. The
focus is different between these methods and our pro-
posal because our proposed reviewmethod focuses on the
verification for the use cases not design documents. In
the CBR, reviewers check the documents by the checklist
which is created based on past experience of development.
Therefore, the checklist tends to be generalized indepen-
dent from each application so that reviewer can reuse to
various application. However, such check-list sufficiently
deals with defects on each application. Our proposed
reviewmethod can deals with such defects by using object
diagrams which represent concrete users’ expectation.

The UML RAmodel
Figure 1 shows the process of requirements analysis by
using the UML RA model. We have provided analysts
with a CASE tool for generating the user interface pro-
totype system so that the analysts can make the users
validate the UML RA model intuitively and efficiently by
using the generated prototype system. The CASE tool also
enhances the efficiency of the iteration of users’ validation
easily by automatically generating a user interface proto-
type system based on modified UML RA model in the
iteration. Then, the analysts refine the UML RA model
until the generated user interface prototype system meets
the users’ expectation.

UML diagrams in the UML RAmsodel
Figure 2 shows an example of an UML RA model and
the generated user interface prototype system. This UML
RA model depicts a use case “Ask For Returning A Book”

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 4 of 11
http://www.springerplus.com/content/2/1/134

Figure 1 The process of requirements analysis by using the UML RAmodel. Analysts refine a UML RA model iteratively by making users
validate the model. The users operate generated prototype system when they validate the UML RA model.

Figure 2 An image of the generation of a user interface prototype system from the UML RAmodel. Three kinds of diagrams are transformed
into a user interface prototype system by using the rules of corresponding between UML elements and user interface components.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 5 of 11
http://www.springerplus.com/content/2/1/134

of Library Management System (LMS). The top of the
Figure 2 shows the UML RA model which consists of
activity diagrams, a class diagram and object diagrams. In
the activity diagram defined by analysts, there are three
kinds of actors as partitions such as “User”, “Interaction”
and “System.” In this example, the “User” implies “Labora-
toryMember”, the “Interaction” implies “Interaction” and
the “System” implies “LibraryManagementSystem.” The
“User” and “Interaction” partitions represent the user-side
process on user interfaces so that the users can under-
stand the capability about users’ operation to the system.
The series of actions of the “User” such as “single-select
lackingBooks” represent operation steps for each user
interface. The series of object nodes of the “User” such as
“inputOfMemberForAsking” represent input/output data
on each user interface.
The series of actions of the “Interaction” such as “require

<inputOfMemberForAsking>” represent the system pro-
cess for accepting or outputting the input/output data.
The “System” partition represents the fundamental pro-
cess of business logic so as to clarify the important aspects
for interactive software such as the data flow of entities
and the process for the entities. The series of actions of the
“System” such as “retrieve the borrowers of the selected
book” represent business logic briefly. The series of object
nodes of the “System” such as “borrowersOfSelected-
Book” represent entities handled by the business logic. In
the left of Figure 2, the classes are assigned into the object
nodes by the analysts so as to clarify the relation between
a structure and objects. There are two types of objects in
the activity diagrams. One is “entity” class whose objects
appear at the partition of “System.” The “entity” objects
are corresponding with the conceptual model represented
as a class diagram. The other is “boundary” class whose
objects appear at the partition of “User” or “Interaction.”
The “boundary” objects are derived from the “entity”
objects because the “boundary” objects exist for inputting
or displaying the “entity” objects. In the right of Figure 2,
the analysts define the object diagram for each object node
so that the users and analysts can understand the value
format and range of each structure enough.

User interface prototype system
The right and bottom of Figure 2 shows a part of the
user interface prototype system generated from above-
mentioned UML RA model. In this generation, the
elements of the “User” and “Interaction” partitions are
transformed into elements of the generated prototype
system. The actions are transformed into user interface
components such as text boxes, radio buttons, buttons,
links, etc. The left and bottom of Figure 2 shows the
rules for transforming from the verb of an action to a
user interface component. For example, the “single-select
candidates” action is transformed into radio buttons

named “candidates.” The class corresponding with object
nodes is also transformed into a table expression so as to
represent data structure. For example, the “InputOfMem-
berForAsking” class which is assigned to the “input-
OfMemberForAsking” object node is transformed into
the table named “inputOfMemberForAsking” in Figure 2.
The instance specification corresponding with a class is
transformed into a concrete instance for each attribute of
the class. For example, the “Candidate1” instance spec-
ification is transformed to a concrete instance for the
“candidates” attribute of the “InputOfMemberForAsking”
class. In addition, a usage scenario can be also expressed
by defining object diagrams for each object node on a path
of the flow of activity diagrams. The analysts can repre-
sent the state change of the object in the pathmore exactly
by the usage scenario so that the users can understand the
UMLRAmodel intuitively and easily. This scenario can be
also transformed into the user interface prototype system.

Method
In this section, we propose a review method of the UML
RA model about the internal aspects so that the ana-
lysts can verify the consistency among each diagram
intuitively and efficiently. Each of analysts in a group
analyzes a part of the UML RA model separated by a
certain unit of behavior such as several use cases and
functions with distributed work. Therefore, the review
of the model is needed to verify the consistency among
each model defined by different analysts because there are
few cases that all of the analysts understand the entire
model precisely. The internal aspects are also defined
briefly to enhance its understandability for the users and
analysts at an early stage of the software development
(Cockburn 2000) but its definition is easy to become
ambiguous. So, we assume two fundamental steps to
review the model effectively with group work. The first
step is that each of analysts understand his/her ownmodel
in distributed work because he/she can not recognize
the inconsistency between other parts of the model and
his/her own model if he/she does not understand his/her
own model. Here, the inconsistency implies mismatches
of pre/post-conditions between actions, and inadequate
relations between an action and objects. Then, the sec-
ond step is that all of the analysts understand each part of
the model so that each analyst can recognize the inconsis-
tency among each part of the model easily and intuitively.
By the way, the usage scenario is a concrete example which
shows the result of inserting concrete data into each object
node so as to fit the pre and post conditions of each action.
Therefore, we assume that the analysts can recognize the
inconsistency sufficiently by using the usage scenarios.
Our proposal consists of two artifacts for supporting ana-
lysts’ verification of the internal aspects defined in the
UML RA model. The two artifacts are also considered so

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 6 of 11
http://www.springerplus.com/content/2/1/134

as to support above-mentioned two steps of the review.
One is a check-list for understanding the definition of
internal aspects by each analyst so that each analyst can
understand own definition precisely by self. The other is
a system-side prototype system for visualizing the result
of integrating three kinds of the diagrams in the UML RA
model so that the analyst can understand the entire UML
RA model efficiently and intuitively. Here, the three kinds
of the diagrams are activity diagrams, a class diagram and
object diagrams, which imply the usage scenarios. Figure 3
shows the process of the review of the UML RA model by
using our proposed method. Figure 3 implies the process
after performing the process of Figure 1. We describe the
steps of the review as follows.

1. Each analyst applies our proposed check-list to each
part of the UML RA model, and refines his/her part
of the UML RA model based on the check-list. Here,
it has few problems if the UML RA model as the
premise was defined by other analysts who do not
use our proposed review method. But, if there are
unclear definitions, the analysts who review the
model may interact with the original modeler to
clarify those definitions. The analysts should also
target the UML RA model after finishing the
refinement of the model based on users’ validation
because the structure of the operation steps strongly
influences the internal aspects.

2. Each analyst creates usage scenarios in order to
check whether the UML RA model contains defects
in the range of his/her part. He/she firstly clarifies
unclear actions, then checks whether the
inconsistencies are contained.

3. After each analyst corrects such defects of his/her
part, each analyst generates each system-side
prototype system from his/her part of the UML RA
model by using our proposed CASE tool.

4. All of the analysts as the reviewers verify the entire
UML RA model. In addition, designers and/or test
planners may participate into the review in order to
support confirming the feasibility of the model.

As the result of applying our proposed method to the
review of a UML RAmodel, it is expected that the design-
ers and test planners can obtain the model which does
not contain serious inconsistency and which enhances the
assurance of the feasibility of the model. And such model
can be obtained efficiently because the analysts do not
need to detail UMLRAmodel. The analysts need to define
the usage scenarios but we think that this cost is inevitable
because this definition has the same meaning of the test
planning.

Check-list for precise understanding of the UML RAmodel
Generally, analysts divide huge tasks into small set of
the tasks, then each of the analysts do each set of the
tasks as group work in a large-scale software develop-
ment. The use case is often used as a unit of distributed
work at an early stage of a software development. Our
proposed check-list is applied to such situation with dis-
tributed work. The check-list is used for understanding
the internal aspects in the UML RA model. As the result,
it is expected that unclear actions and the inconsisten-
cies such as mismatch of pre/post conditions between
actions, and inadequate relations between an action and
objects are discovered. Table 1 shows all of the check

Figure 3 The process of the review of the UML RAmodel by using our proposedmethod. Each analyst firstly understands his/her part of the
UML RA model about the internal aspects by using our proposed check-list. Then, all of the analysts review the entire model by using generated
system-side prototype systems after each analyst refined his/her part of the model based on the check-list.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 7 of 11
http://www.springerplus.com/content/2/1/134

Table 1 Our proposed check-list for precisely understanding the UML RAmodel

Diagrams Check points Elements Properties

Activity diagram (1) Are input objects of actions expressed? Action Name

(2) Are output objects of actions expressed? Action, Object node Location

(3) Are derived relations between objects expressed? Object node Derived relation

(4) Are pre/post conditions of actions expressed? Action Pre/post condition

(5) Are there inappropriate objects about singular/collection? Object node Classifier, Name

(6) Are conditional branches omitted? Decision node Guard

Class diagram (7) Is each range of values expressed? Attribute of class Invariant

(8) Is each format of values expressed? Attribute of class Invariant

(9) Are there inconsistencies between a type and values? Class, Instance spec. Type of attribute, Value of slot

This check-list is used by each analyst to understand his/her part of the UML RAmodel about the internal aspects precisely.

items we propose. This check-list lets analysts express
the properties of each element by considering the usage
scenarios. In Table 1, “Diagrams” implies the kinds of
UML diagram in the UML RA model. “Check Points” are
the queries to be answered by each analyst for his/her
part of the model. “Elements” implies that the analysts
should focus on the basic elements to check based on
the “Check Points.” “Properties” implies that the analysts
should focus on the properties of the focused basic ele-
ments. Figure 4 also shows the order of applying the check
points to the UML RA model. (1) of the “Check Points”
implies that the action which needs input objects repre-
sents the name of the input objects in the contents of the
action. (2) also implies that the action which need needs
an output object represents the object node immediately
after the action. An example of satisfying these two points
is shown in Figure 5. Figure 5 depicts a part of a func-
tion of login. The action “search user from inputtedAu-
thentication” needs “inputtedAuthentication” as the input
object. And “inputtedAuthentication” is corresponding
with the object node “inputtedAuthentication: Authenti-
cation.” Therefore, this action satisfies (1). This action also
contains the verb of “search.” Generally, the “create” and
“read” actions outputs created/read object. And the object
node “searchedUser : User” is located immediately after
the action. Therefore, this actions satisfies (2).
Figure 6 shows a part of the class diagram related

to above-mentioned function of login. (3) implies that

Figure 4 The order of applying the check points to the UML RA
model. This shows the order to applying the check-list in Table 1 to
the checking of the internal aspects of the UML RA model.

the derived relations between related object nodes
each other are decided based on the attributes of the
classes. The object nodes of “inputtedAuthentication” and
“searchedUser” have the following relations: inputtedAu-
thentication.id == searchedUser.id; inputtedAuthentica-
tion.pass == searchedUser.password. It is important for
the analysts to understand these relations precisely rather
than write these relations rigorously. These relations will
be finally defined as formal language such as Object Con-
straint Language (Object Constraint Language 2012) after
the relations were fixed by using our proposed review
method. (4) implies that pre/post conditions of each
action are decided based on above-mentioned derived
relations. For example, the pre-condition of the action

Figure 5 A part of a function of login. This is a simple example and
shows the internal part of the function of login.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 8 of 11
http://www.springerplus.com/content/2/1/134

Figure 6 A part of the class diagram related to the function of
login. These classes are entities related to the function of login.

“search user from inputtedAuthentication” is to need the
object “inputtedAuthentication.” And the post conditions
of the action is to read the object “searchedUser” so as
to satisfy the derived relations mentioned at (3) in all
instances of “User” class of the system.
Then, (5), (7), (8) and (9) are considered by the ana-

lysts based on the results from (1) to (4). (5) implies

checking the validity of the type of classes. In the case
that a class is the collection type but the analysts mis-
understand the class as the singular type, it takes expen-
sive cost for modification afterwards. (7) and (8) imply
checking the invariants of attributes of classes. These
invariants can be decided by seeing common properties
from above-mentioned derived relations and the concrete
values of usage scenarios. (9) implies is verifying the con-
sistency between a type and values. If concrete value is
“5 Apr. 2012” and its type is Integer, the type or value
is inadequate because the value is the type of String.
Finally, (6) implies discovering omissions of conditional
branches. These omissions are discovered by seeing the
pre/post conditions of actions basically. Although there
are pre/post conditions of actions, that is the omission of
guards of the flow if the model does not consider the case
of that exceptional flows lack for some of the pre/post
conditions.

System-side prototype system
Figure 7 shows an example of the system-side prototype
system generated from the internal aspects defined in the
UML RA model. This prototype system aims for visu-
alizing the invisible aspects for the users. The analysts
can understand the internal aspects intuitively and effi-
ciently because the system-side prototype system shows
the result of integrating three different types of diagrams
such as activity diagrams, a class diagram and object

Figure 7 An example of the system-side prototype system generated from the internal aspects defined in the UML RAmodel. This
prototype system is not functional one but offers support of enhancing the ease of understanding to the analysts because three kinds of diagrams
are integrated to a kind of Web pages.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 9 of 11
http://www.springerplus.com/content/2/1/134

Table 2 The scale of the UML RAmodel of LMS

Elements Number

Use case 5

Class(Boundary) 27

Class(Entity) 6

Action 207

Activity flow 406

Usage scenario 114

Object diagram for all of the usage scenarios 1154

Instance specification for all of the object
diagrams for all of the usage scenarios

4331

This shows the scale of the UML RAmodel from the viewpoints of the number
of elements.

diagrams shown in Figure 7. The way to transform the
UML RA model into the system-side prototype system
is constructed based on the algorithm of the transforma-
tion of the user interface prototype system basically. In the
system-side prototype system, user interface components
are shown above the horizontal line. The actions of the
system are transformed into text messages such “System
search user from inputtedAuthentication” simply.

Results and discussion
We have evaluated the effectiveness of our proposed
review method through a case study. As the result,
serious inconsistencies were discovered by using our
proposed review method through a software develop-
ment of Library Management System (LMS) for a small
laboratory.

Participants and process
There are six participants for this case study. One
participant plays a role of the user of LMS, and another
participant plays a role of the primary analyst to create

initial RA model. The rest of participants play roles of
the reviewers and secondary analysts. An initial UML RA
model was created by the primary analyst. He performed
the process in Figure 1. Then, the secondary analysts
refine the initial UML RA model using our proposed
review method. In this evaluation, the primary analyst
understood the entire UML RA model but each of the
secondary analysts understood his/her part of the UML
RA model until all of the secondary analysts review the
entire UML RA model by using the generated system-
side prototype systems for each part of the UML RA
model. The initial UML RA model was also manually
verified by the primary analyst because he wants not to
add the defects into the RA model. The primary analyst
did not use any systematical methods for the review of
the UML RA model. Therefore, the effectiveness of our
proposed review method is shown if the secondary ana-
lysts can discover defects of the initial UML RA model
by using our proposed review method, because the pri-
mary analyst could not discover defects sufficiently by
the heuristic way of him to review. There are also three
characteristics of this case study to emphasize the ver-
satility of our proposed review method. One is that the
reviewers are not the creator of the initial UML RA
model i.e. the reviewers do not completely understand the
entire UML RA model at first. Second is that three of
four secondary analysts are the novices to use the UML
RA model because the three secondary analysts have not
ever dealt with the UML RA model. Third is that the
three secondary analysts had few experience of require-
ments analysis because they are bachelor students. The
scale of the UML RA model of the LMS is shown in
Table 2.

Results and consideration
As the result of this case study, the number of the defects
which the secondary analysts discovered by using our

Figure 8 The responsibility of use cases assumed by A. This shows the assumption of A for the UML RA model of the LMS.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 10 of 11
http://www.springerplus.com/content/2/1/134

Figure 9 The responsibility of use cases assumed by B and C. This shows the assumption of B and C for the UML RA model of the LMS.

proposed check-list was 44 as total. The time cost is 39
man-hours for defining all of the usage scenarios. On the
other hand, the time cost is also 36 man-hours for the
review. The secondary analysts also discovered the seri-
ous inconsistency caused by the misunderstanding among
the analysts for the use cases, by using our proposed
system-side prototype system. Figure 8 shows assumption
of the responsibility of use cases to a class “Summary-
OfLendingHistory” by A. Figure 9 shows the assumption
by B and C. Figure 10 shows the UML RA model defined
actually. Here, A, B and C mean three of the secondary
analysts.
The class “SummaryOfLendingHistory” represents a

history of borrowing or returning of a book. Therefore, it
seems that the life-cycle of this history is corresponding to
the life-cycle of the book which is used by several different
use cases such as “Create book list for purchase,” “Regis-
ter books,” “Borrow books” and “Return books,” as shown
in Figure 8. On the other hand, these histories are used in

only one use case “Create book list for purchase” so that
the users can discover the lacks of books, then choose the
books for purchase. Therefore, it also seems that the life-
cycle of this history is closed completely in the use case
“Create book list for purchase” because these histories are
used by only this use case, as shown in Figure 9.
On this background, the serious inconsistency was

caused as shown in Figure 10 by the misunderstanding
between the second analysts. Figure 10 implies that the
instances of “SummaryOfLendingHistory” can be read
although any instances of the class can not be created.
Such serious inconsistencies jeopardize the feasibility
of the UML RA model. Our proposed review method
contributed for discovering such inconsistencies. The
enhancement of the efficiency of the review by using
our proposed method is explained without detailing the
model. And the effectiveness of our proposed method is
explained by that the inconsistencies were discovered by
novice analysts through the system-side prototype system.

Figure 10 Actual definition of the UML RAmodel. This shows an actual definition of the UML RA model of the LMS.

Ogata and Matsuura SpringerPlus 2013, 2:134 Page 11 of 11
http://www.springerplus.com/content/2/1/134

Conclusion
We proposed a review method to efficiently discover
serious inconsistencies manually at an early stage of a
software development focusing on the brief definition of
the internal aspects. As the result of the case study, our
proposed review method contributed to discover seri-
ous inconsistencies whichmake the developers impossible
to implement the product based on the model. If such
inconsistencies are overlooked, disastrous reworking will
be caused at implementation or testing phase. As future
work, we consider to automate a part of check items in our
proposed check-list. For example, the validity of relations
between an action and an object node can be system-
atically decided by using the notation of UML. We also
consider a way to detail the conditions such as pre/post-
conditions gradually based on our proposed check-list.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SO gave the basic idea of this review method, and also implement the CASE
tool for supporting this method. SM supervises about the steps of the review,
and also gave the basic idea of the way to the evaluation. All authors read and
approved the final manuscript.

Author details
1Department of Computer Science and Engineering, Facluty of Engineering,
Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan.
2Division of Electrical Engineering and Computer Science, Graduate School of
Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku,
Saitama, Saitama, 337-8570, Japan.

Received: 10 November 2012 Accepted: 1 March 2013
Published: 26 March 2013

References
ACM (1982) ACM SIGSOFT Software Engineering Notes - Special issue on rapid

prototyping 7(5). ACM, New York
Aoki Y, Matsuura S (2011) A method for detecting unusual defects in

enterprise system using model checking techniques. In: Bojkovic Z,
Kacprzyk J, Mastorakis N, Mladenov V, Revetria R, Zadeh LA AZ (eds). In:
Proceedings of the 10th WSEAS international conference on Software
engineering, parallel and distributed systems: 20-22 February 2011,
165–171. WSEAS Press 2011, Cambridge

Choi EH, Watanabe H (2005) Model checking class specifications forWeb
applications. In: Proceedings of the 12th Asia-Pacific Software Engineering
Conference: 15-17 Dec. 2005, 67–75. IEEE Computer Soc 2005, Taipei,
Washington

Cockburn A (2000) Writing effective use cases. Addison-Wesley Professional,
Boston

Diaz JS, Lopez OP, Fons JJ (1996) From user requirements to user interfaces: a
methodological approach. In: Ditrich KR, Geppert A, Norrie MC (eds).
Proceedings of the 13th Conference on Advanced Information Systems
Engineering: 4-8 June 2001; Interlaken, 1996:60–75. Springer, Berlin
Heidelberg

Elkoutbi M, Khriss I, Keller RK (2006) Automated prototyping of user interfaces
based on UML scenarios. J Automated Software Engineering 13(1): 5–40

IEEE (ed) (1998) IEEE Std 830-1998: Recommended practice for software
requirements specifications. IEEE Comput Soc:1–40

Jacobson I (1992) Object-oriented software engineering: A use case driven
approach. Addison Wesley Longman Publishing Co. Inc., Redwood City,
CA, USA

Object Constraint Language (2012). [http://www.omg.org/technology/
documents/modeling_spec_catalog.htm#OCL]

Ogata S, Matsuura S (2008) A UML-based requirements analysis with
automatic prototype system generation. J Commun SIWN 3: 166–172

Ogata S, Matsuura S (2010) A method of automatic integration test case
generation from UML-based scenario. J WSEAS Trans Info Sci Appl
7(4): 598–607

Thelin T, Runeson P, Wohlin C (2003) An experimental comparison of
usage-based and checklist-based reading. IEEE Transactions on Software
Engineering 29(8): 687–704

UPPAAL (2010). [http://www.uppaal.com/]
Wiegers KE (2003) Software Requirements. Microsoft Press, Washington

doi:10.1186/2193-1801-2-134
Cite this article as: Ogata and Matsuura: A reviewmethod for UML require-
ments analysis model employing system-side prototyping. SpringerPlus
2013 2:134.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.uppaal.com/

	Abstract
	Keywords

	Introduction
	Background
	The misunderstanding of specifications in group work
	Detailed specifications

	The UML RA model
	UML diagrams in the UML RA msodel
	User interface prototype system

	Method
	Check-list for precise understanding of the UML RA model
	System-side prototype system

	Results and discussion
	Participants and process
	Results and consideration

	Conclusion
	Competing interests
	Authors' contributions
	Author details
	References

