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Abstract

To study the D-genome of the wild wheat relative Aegilops tauschii Cosson at the hexaploid level, we developed a
synthetic doubled-haploid (DH) hexaploid wheat population, SynDH3. This population was derived from the
spontaneous chromosome doubling of triploid F; hybrid plants obtained from a cross between Triticum turgidum ssp.
dicoccon PI1377655 and A. tauschii ssp. strangulata AS66 X ssp. tauschii AS87. SynDH3 is a diploidization-hexaploid DH

population containing recombinant D chromosomes from two different A. tauschii genotypes, with A and B
chromosomes from T. turgidum being homogenous across the entire population. Using this population, we
constructed a genetic map. Of the 440 markers used to construct the map, 421 (96%) were assigned to 12 linkage
groups; these included 346 Diversity Arrays Technology (DArT) and 75 simple sequence repeat (SSR) markers. The total
map length of the seven D chromosomes spanned 916.27 cM, with an average length of 130.90 cM per chromosome
and an average distance between markers of 3.47 cM. Seven segregation distortion regions were detected on seven
linkage groups. Out of 50 markers shared with those on a common wheat map, 37 showed a consistent order. The
utility of the diploidization-hexaploid DH population for mapping qualitative trait genes was confirmed using the
dominant glaucousness-inhibiting gene W2’ as an example.
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Introduction

Common wheat, or bread wheat (Triticum aestivum L.,
2n = 6x = 42, AABBDD), arose from the hybridization of
T. turgidum L. 2n = 4x = 28, AABB) with the wild
wheat relative Aegilops tauschii Cosson (2n = 2x = 14,
DD). Because of an evolutionary bottleneck, genetic
diversity within the D-genome of A. fauschii is much
higher than within the D-genome of common wheat, as
most A. tauschii populations were not involved in common
wheat speciation. Although A. tauschii has been used for
improvement of common wheat (Reif et al. 2005;
Warburton et al. 2006; Van Ginkel and Ogbonnaya 2007;
Yang et al. 2009; Li et al. 2011; Reynolds et al. 2011), most
of its genetic potential, especially with respect to
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quantitative trait loci (QTL) controlling economically
important traits such as yield, flour quality, and stress
tolerance, remains unexploited.

Genetic mapping with molecular markers capable of
tracking introduced genomic regions is an important
tool for improving the transfer efficiency of alien traits.
Genetic maps, based on amplified fragment length
polymorphism (AFLP), restriction fragment length
polymorphism (RFLP), microsatellite (SSR), and/or
single-nucleotide polymorphism (SNP) markers, have
been constructed for the A. tauschii D-genome using
segregating populations derived from hybrids of A.
tauschii accessions (Gill et al. 1991; Boyko et al
1999; Ter Steege et al. 2005; Luo et al. 2009). Diversity
Arrays Technology (DArT), which uses microarray
hybridization to detect the presence or absence of DNA
fragments, is a highly effective genetic mapping technology
(Jaccoud et al. 2001; Wenzl et al. 2004; Akbari et al. 2006).
It has not been used for mapping of A. tauschii, however.
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legend on next page.)
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Figure 1 SynDH3 map obtained in this study and its comparison with a common wheat consensus map (Somers et al. 2004). Shared
markers between the two maps are indicated in blue. Map comparisons were performed using JoinMap 4.0 (Van Ooijen, 2006). The scale on the
left indicates distances in cM (Kosambi distances). The arrowheads indicate demarcation zones between two linkage groups.

Aegilops tauschii is diploid, whereas bread wheat is
hexaploid. Gene expression can be greatly altered by
different ploidy levels and/or the roles of homoeologous
genes (Qi et al. 2012 and cited references). To exploit the
genetic potential of A. tauschii for wheat improvement,
genetic analysis at the hexaploid level is consequently
important. Construction of a D-genome genetic map is
much more complicated for hexaploid wheat than for
diploid A. tauschii, however, because many homoeologous
(highly similar but non-allelic) sequences are present in
the homoeologous A- and B-genomes of hexaploid wheat.
Distinguishing homoeologous from homologous markers
is complicated and prone to error (Poole et al. 2007;
Barker and Edwards 2009; Allen et al. 2011). To reduce
this complexity, we developed a synthetic doubled-haploid
(DH) population (SynDH) in a hexaploid background
(Zhang et al. 2011; Luo et al. 2012) consisting of
genetically-recombined D-genome chromosomes from
two A. tauschii accessions under a background of
non-recombinant A- and B-genomes from a 7. turgidum
line. This diploidization-hexaploid SynDH population thus
differed from current hexaploid wheat populations in
which the A-, B-, and D-genomes are all involved in
recombination. Our goal was to evaluate the useful-
ness of a SynDH population in genetic studies by (i)
developing a genetic map of the A. tauschii genome
using DArT and SSR markers, (ii) comparing this
map with previously-reported ones, (iii) assessing the
presence and extent of segregation distortion, and (iv)
mapping the gene for glaucousness, as an example of a
qualitative trait gene.

Table 1 Marker distribution on D-genome chromosomes

Materials and methods

Plant materials

Plant materials used in this study included 39 lines of a
DH population and its three parents, T. turgidum ssp.
dicoccon PI377655, A. tauschii ssp. tauschii AS87, and
A. tauschii ssp. strangulata AS66. Aegilops tauschii
AS87 and T. turgidum PI1377655 are glaucous, with spike
and leaf sheath surfaces coated with a waxy whitish
substance, whereas A. tauschii AS66 is non-glaucous.
Triticum turgidum PI1377655 was pollinated with pollen
from diploid F; hybrids of A. tauschii AS66 x AS87 to
form triploid F; hybrids with ABD genomes. After
selfing of the triploid F; hybrid plants, DH lines were
obtained by spontaneous chromosome doubling via
union of unreduced gametes (Luo et al. 2012).

SSR and DArT genotyping

DNA was isolated from bulk leaf samples from five plants
for each DH and parental line using the 2xCTAB method
(Saghai-Maroofet et al. 1984). A total of 258 SSR mar-
kers (http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.
cgi?class=marker) were screened for polymorphism in the
parents. PCR amplifications and identification of amplified
SSR fragments were performed as described in Luo et al.
(2012).

Genomic DNA profiling of SynDH lines and parents
was carried out using DArT with a common wheat Pst]
(Tagql) v3.0 DArT array by Triticarte (Canberra,
Australia; http://www.triticarte.com.au/). For each sample,
each marker was scored as “1” (present), “0” (absent), or, if
it could not be reliably scored for that sample, as “-”

Chromosome No. of linkage Length (cM) Number of target markers Average distance Mean density**
groups Total SSR DAIT* between markers (cM)
wPt rPt tPt
1D 1 13761 54 14 39 1 - 255 6.26
2D 2 157.84 44 13 31 - - 351 6.31
3D 2 149.93 112 9 100 1 2 1.34 6.52
4D 2 45.10 14 7 7 - - 322 5.01
5D 1 109.38 14 9 5 - - 7.81 9.12
6D 1 137.08 29 9 20 - - 4.73 857
7D 3 17933 154 14 138 1 1 1.16 6.64
Total 12 916.27 422 75 340 3 3 347 6.92

* wPt, rPt, and tPt indicate markers derived from wheat, rye, and triticale, respectively.
** equal to L/(n-1), where n is the number of unique markers per chromosome length L.
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(missing). DArT calls were converted into “A” (AS66),
“B” (AS87), and “-” (missing data) by comparison against
parental scores.

Map construction

Map construction and comparison were carried out as de-
scribed in Zhang et al. (2012), and segregation data were
analyzed using QTL IciMapping v3.1 (Li et al. 2007; http://
www.isbreeding.net/software/?type=detail&id=3). Markers
were classified into linkage groups based on a logarithm of
odds (LOD) score threshold of 4.7. Markers within each
group were then ordered using RECORD (Van Os et al.
2005) and marker order verified using the RIPPLE com-
mand with the SARF (sum of adjacent recombination fre-
quencies) option. Graphical genotypes were examined in
Excel 2003 (Additional file 1: Table S1). At this step, sin-
gletons (single loci in a progeny line that appear to have
recombined with both directly-neighboring loci) were re-
placed by missing values in the data set, and calculations
were repeated until no singletons were found.
Ungrouped markers (uncorrected data) were anchored
to previous linkage groups by using an LOD > 2.0. All
calculations were repeated for new linkage groups. Inde-
pendent linkage groups on the same chromosome with
Kosambi distances between subsequent markers less
than 50 c¢cM were integrated as one linkage group.
The x> analysis, map drawing, and map comparison
were performed using JoinMap 4.0 (Van Ooijen 2006).
A x* goodness-of-fit analysis was performed for each
marker to test for deviation from expected 1:1 segrega-
tion ratios in the doubled haploids at a significance level
of P < 0.05. Any region with at least three adjacent loci
showing significant segregation distortion was defined as
a segregation distortion region (SDR) (Paillard et al. 2003).

Results

Genetic map construction

Because the only recombinant chromosomes in the DH
population were those involving D-genomes derived
from A. tauschii accessions AS66 and AS87, markers
showing polymorphism between the two A. tauschii
parents were used to genotype the DH population for
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genetic map construction. A set of 440 polymorphic
markers, consisting of 79 SSR and 361 DArT markers,
was obtained. Of these, 19 (4.3%) were removed from
the data set during map construction because anchor
markers were lacking. The remaining 421 markers (75
SSRs and 346 DArTs) were successfully mapped onto
the final map, forming 12 linkage groups (Additional file 1:
Table S1; Figure 1). Based on the shared marks between
our map with previous reported D-genome maps for com-
mon wheat (Somers et al. 2004), the 12 linkage groups
were assigned to 1D-7D chromosomes, respectively. Each
D chromosome contained one to three linkage groups
(Table 1). The order of multiple linkage groups on same
chromosome were decided according to the shared mar-
kers in common wheat consensus map (Figure 1). The
total map length of the seven D chromosomes spanned
916.27 cM, with an average length of 130.90 cM per
chromosome and an average distance between markers
of 347 cM.

Segregation distortion

Out of 421 mapped markers, 48 (11.4%), including 35
DArT (10.1%) and 13 SSR (17.3%) markers, were signifi-
cantly distorted (P < 0.05) from expected Mendelian
segregation ratios. Segregation distortion (SD) was ob-
served on five chromosomes (Additional file 1: Table S1),
with frequencies of 9.3% (5 of 54 markers) for chromo-
some 1D, 13.3% (6/45) for 2D, 10.7% (12/112) for 3D,
24.1% (7/29) for 6D, and 11.7% (18/154) for 7D. In this
study, a biological segregation distortion region (SDR) was
defined as any region that included at least three un-
interrupted markers showing SD. Based on this crite-
rion, seven SDRs were detected within seven linkage
groups (Table 2). The SDR on chromosome 1D favored
A. tauschii AS87 alleles, whereas the six SDRs on the
other four chromosomes were skewed toward AS66
alleles (Additional file 1: Table S1).

Map comparisons

To evaluate the quality of the genetic map developed in
this study, 50 markers were identified that also appeared
on a common wheat consensus map (Somers et al. 2004).

Table 2 Segregation distortion regions (SDRs) in the SynDH3 population

Chromosome Linkage group  Location  No. of markers in linkage group  No. of distorted markers ~ SDR name  Parental skew

1D 1D 81.58-92.84 5 5 Qsd.scau-1D AS87
2D 2D2 18.03-37.78 6 6 Qsd.scau-2D AS66
3D 3D1 5.28-10.77 12 9 Qsd.scau-3D AS66
6D 6D 65.57-74.37 4 4 Qsd.scau-6D AS66
7D 7D1 0-7.16 3 3 QSd.scau-7D1 AS66

7D1 35.38-51.55 9 9 QSd.scau-7D2 AS66

7D2 0-16.46 6 6 QSd.scau-7D3 AS66
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The orders of these shared markers were compared
between the two maps (Figure 1). Among them, 37 (74%)
showed a consistent order on chromosomes 1D (6), 2D
(7), 3D (2), 4D (3), 5D (6), 6D (4), and 7D (9). Differences
in marker order, including reversed order, were also
detected; these discrepancies were found on all chromo-
somes except for 7D.

Gene identification

The glaucousness character was surveyed in DH and
parental plants during the heading stage. Aegilops tauschii
AS87 and T. turgidum PI377655 were glaucous, whereas
A. tauschii AS66 was non-glaucous. AS66 x AS87 F;
hybrids were also non-glaucous, indicating that the
glaucousness of AS87 was inhibited by the epistatic
influence of the dominant inhibitor gene in AS66. W2/,
the gene for this trait, was further mapped to the distal
region of 2DS, and was linked to the DArT marker
wPt-2330 within 5.91 cM (Figure 1).

Discussion

Genetic maps of the A. tauschii D-genome have previously
been constructed using segregating populations in diploid
backgrounds (Gill et al. 1991; Boyko et al. 1999; Ter Steege
et al. 2005; Luo et al. 2009). In contrast, our map of the
D-genome of A. tauschii was constructed in a hexaploid
background. Although the DH population used in this
study was small—only 39 lines, 96% of 440 polymorphic
DNA markers were mapped onto the final A. tauschii
D-genome map. This high genetic map construction
efficiency may be a consequence of the unique genetic
structure of the hexaploid DH population used in this
study, in which only D-genome chromosomes between
A. tauschii accessions AS66 and AS87 were involved in
genetic recombination under a background of non-
recombinant A- and B-genomes from the 7. turgidum line
P1377655 (Luo et al. 2012). Interference due to A- and
B-genome polymorphism was thus avoided (Poole et al.
2007; Barker and Edwards 2009; Allen et al. 2011).
When 50 shared markers were compared between this
map and a consensus map constructed by Somers et al.
(2004), 37 exhibited consistent orders. The orders of the
remaining 13 differed, however, perhaps as a result of
small structural rearrangements (such as translocations,
deletions, and inversions) and/or because of the small
number of DH lines used.

To evaluate the usefulness of the hexaploid wheat DH
population for gene identification in A. tauschii, we
analyzed the morphological trait of glaucousness.
Glaucousness in A. tauschii is controlled by a dominant
gene, W2, located on chromosome arm 2DS. This
phenotype is inhibited by the epistatic influence of
the dominant inhibitor gene W2’ found on the distal
region of 2DS (Watanabe et al. 2005; Liu et al. 2007).
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In our study, the non-glaucous trait was also mapped
to 2DS. This result suggests that the diploidization-
hexaploid DH population has value as a tool for mapping
qualitative trait genes.

Segregation distortion is a common phenomenon in
plants and can be influenced by various factors affecting
the fertility of either gametes or zygotes (Lyttle 1991). In
a previous study on 54 F, diploid plants derived from
two A. tauschii accessions (Faris et al. 1998), 57 (29%)
out of 194 RFLP markers were significantly distorted
(P < 0.05) from expected segregation ratios, with segre-
gation distortion regions (SDRs) detected on chromo-
somes 1D, 3D, 4D, 5D, and 7D. In the present study, 48
(11.4%) out of 422 markers showed distorted segregation
(P < 0.05), and seven SDRs were detected on chromo-
somes 1D, 2D, 3D, 6D, and 7D. The longest SDR was
QSd.scau-7D3, with a length of 16.46 cM including the
centromere, and favoring the A. tauschii parent AS66
(Additional file 1: Table S1). There may be an important
locus associated with this SDR, as a similar SDR has also
been detected on a homoeologous chromosome, 7E, in
another species (Cai et al. 2011). Out of seven SDRs, six
skewed in favor of A. tauschii AS66, the maternal parent
in the cross with A. tauschii AS87. This is consistent with
the observations of Faris et al. (1998) that loci affecting
gametophyte competition in male gametes via nucleo-
cytoplasmic interactions may play a role in SDR produc-
tion. Allelic variation associated with the production
of wide-hybrid plants may have also contributed to
the segregation distortion observed in our study, as
these hexaploid DH lines were derived from the wide
hybridization of T. turgidum PI377655 with diploid F;
hybrids of A. tauschii AS66 x AS87. For example,
allelic variations in loci that control crossability
between different species can affect seed-setting of
interspecific crosses (Tixier et al. 1998). Allelic varia-
tions related to hybrid seed germination and plant
vigor may also affect the production of DH lines (Ter
Steege et al. 2005). During the production of the DH
lines used in our study, only 16.5% (71/430) of F;
hybrid seeds germinated; from these seeds, 39 vigor-
ous haploid plants possessing ABD genomes were
obtained (Luo et al. 2012).

We demonstrated in this study that diploidization-
hexaploid DH population can be used to generate
genetic maps. However, the limitation of a small DH
population with only 39 lines should be pointed out.
The present study identified 12 linkage groups which
were significantly larger than the number of the 7 haploid
chromosomes of D genome. The small population could
result in more linkage groups and could be one of factors
for segregation distortion and inconsistent marker order.
To generate a better genetic map, a larger size of mapping
population is needed.
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