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Background
Newtonian fluids obey Newtons law of viscosity and are usually described by Navier 
Stokes equations. Examples of Newtonian fluids are water, air, ethanol, alcohol, ben-
zene, and mineral oils. In general, all gases and most liquids with a simpler molecular 
formula and low molecular weight, such as water, benzene, ethyl alcohol, hexane and 
most solutions of simple molecules, are Newtonian fluids. The problems of Newtonian 
fluids are complicated due to the non-linearity of Navier Stokes equations. This difficulty 
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further increases when the Newtonian fluid incorporates advanced transport phenom-
ena such as heat and mass transfer. Studies of Newtonian fluids in the presence of heat 
transfer are scarce, more specifically when one is interested in exact solutions. The study 
of heat transfer in Newtonian fluids, especially due to convection, is important in many 
engineering applications, such as automatic control systems consisting of electrical and 
electronic components, regularly subjected to periodic heating and cooled by a free con-
vection process (Manna et al. 2007; Sajid et al. 2008; Sahoo et al. 2010; Chandran et al. 
2005; Chaudhary and Jain 2006; Deka and Das 2011; Narahari and Nayan 2011).

Furthermore, the wide applications of the disk flows problem in industrial and tech-
nological fields, such as rotating machinery, viscometry, spin coating, use of computer 
disks, and in various rotating machinery components, have attracted concentration of 
many researchers. Moreover, the subject of non-coaxial rotation has also attracted the 
attention of many authors due to its significant contribution to boundary layer con-
trol and the performance in engineering devices, e.g. in food processing such as mixer 
machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, 
pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysi-
cal flows. Amongst them, Hayat et  al. (2001) studied the non-coaxial rotation of vis-
cous fluid in the presence of magnetohydrodynamic (MHD) flow. The rotating disk was 
considered porous. Both cases of suction and injection were studied using the Laplace 
transform method, where the exact solutions of the governing equations were obtained. 
In addition, the study of accelerated porous disks in non-coaxial rotation of MHD sec-
ond grade has been investigated by Asghar et al. (2007). They also used a Laplace trans-
form method for the solution of the governing problem. Guria et al. (2007) observed the 
effect of Hall current on non-coaxial rotation of a porous disk. After that, Guria et al. 
(2010) extended their problem by taking the porous disk with a slip condition. From 
the observation, it was found that the primary velocity increases while the secondary 
velocity decreases when increasing the slip parameter. Exact solutions to this problem 
were obtained by using the Laplace transform technique. Ahmad (2012) investigated a 
problem that was similar to that of Guria et al. (2010). However, they did not consider 
the effects of Hall current but they concentrated on the effect of porous medium in the 
fluid flow. Das et  al. (2013) examined unsteady MHD flow of a viscous fluid between 
two parallel disks executing non-coaxial rotation. They obtained an analytical solution 
describing the flow for large and small times using the Laplace transform technique, and 
provided the physical interpretations for the emerging parameters using various plots. 
In subsequent investigations, Das et al. (2012) and Das and Jana (2014) used the same 
methodology and analyzed the effect of Hall current on MHD flow in a non-coaxial 
rotating frame. They found that both primary and secondary velocities were increasing 
when the value of the Hall parameter was increased. Lakshmi and Muthuselvi (2014) 
also used the Laplace transform technique and obtained the exact solutions to unsteady 
viscous flow induced by a sudden coincidence of the axes of a disk and the fluid at infin-
ity rotating with the uniform angular velocity. Besides the above authors, Ersoy has 
reported excellent results for different fluid flows induced by eccentric-concentric rota-
tion of a disk and the fluid at infinity for both Newtonian (Ersoy 2003) and non-Newto-
nian fluids, e.g. second-grade fluid and Maxwell fluid (Ersoy 2010, 2014). Similar to the 
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previous authors, Ersoy (2003, 2010, 2014) have also investigated these problems using 
the Laplace transform technique.

Furthermore, Stokes second problem of the flow of an incompressible fluid has great 
importance to fluid dynamics, which states that the oscillating fluid motion is induced 
due to oscillating boundary motion (Erdogan 1999; Hayat et  al. 2003, 2004; Das et  al. 
2014; Ersoy 2015). The study of the flow of a viscous fluid over an oscillating plate not 
only is of fundamental theoretical interest, but also occurs in many applied problems, 
such as acoustic streaming around an oscillating body, an unsteady boundary layer with 
fluctuations. After the pioneering work of Panton (1968) and Erdogan (2000), where they 
obtained closed-form transient solutions to Stokes second problem, Corina et al. (2008) 
obtained new exact solutions to Stokes second problem and this investigation received 
great attention of the researchers, as these solutions are regarded as the first exact solu-
tions to Stokes second problem, which were simpler than those obtained by Panton 
(1968) and Erdogan (2000) and directly presented as a sum of steady-state and tran-
sient solutions. After that, Stokes second problem was investigated by various research-
ers for different fluid models. For instance, Mohammed et  al. (2012) and Mohammed 
et  al. (2014) examined Stokes second problem of viscous and second-grade fluids for 
momentum transfer. Ali et al. (2012) studied Stokes second problem due to sine oscil-
lation of the plate in the absence of heat transfer, whereas Ali et al. (2014) studied the 
second-grade fluid in the presence of heat transfer due to free convection flow. Recently, 
Hussanan et al. (2014), Khalid et al. (2015a, b) have also investigated Stokes second prob-
lem of free convection flow of Casson fluid with Newtonian heating and constant wall 
temperature conditions. In another investigation, Khalid et al. (2015c) analysed Stokes 
second problem of free convection flow of nanofluids with ramped wall temperature. 
However, Stokes second problem of non-coaxial rotation of the disk in the presence 
of heat transfer has not been investigated yet. Therefore, this study aims to make such 
an attempt. More precisely, in this research we will study the unsteady free convection 
flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillat-
ing vertical plate with constant wall temperature. Exact solutions to this problem will be 
obtained by using the Laplace transform technique, and results will be displayed graphi-
cally in several plots and discussed in detail for embedded parameters.

Mathematical formulation of the problem
Consider a Cartesian coordinate system where an incompressible viscous fluid is filling 
semi-infinite space z ≥ 0 and the heat transfer occurs due to free convection. The x-axis 
is taken in an upward direction along the disk and the z-axis is taken normally to the 
plane of the disk. The axes of rotation for both the disk and the fluid are assumed to be in 
plane x = 0. Initially, at t = 0 the disk and fluid at infinity are rotating about the z′-axis 
with the common angular velocity �. After time t > 0, the disk suddenly starts to rotate 
about the z-axis with uniform angular velocity �, while the fluid at infinity continues to 
rotate about the z′-axis with the same angular velocity as that of the disk. The disk exe-
cutes oscillations in its own plane and is non-conducting and non-porous. The distance 
between axes of rotation is equal to ℓ. Thus, we seek a solution in the form of:

(1)u(z, t) = −�y+ f (z, t),
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The physical model with a coordinate system is shown in Fig. 1.
Therefore, the mathematical modelling of this problem is governed by the following 

continuity and momentum equations:

where div is the divergent operator, V = (u, v,w) is the velocity field, ρ is the con-

stant density of fluid, 
d

dt
=

(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)

 is the substantial derivative, 

b = (bx, by, bz) is the body force, and T is the Cauchy stress tensor in terms of the sec-
ond-order tensor. The Cauchy stress tensor for viscous fluid can be defined as:

with

where p is pressure, I is the identity tensor, µ is the dynamic viscosity, A1 is the Riv-
lin Ericksen tensor, and (T) indicates the matrix transpose. In this problem, the velocity 
field can be defined as:

Thus, by using Eq. (7), the continuity in Eq. (3) results in:

(2)v(z, t) = �x + g(z, t),

(3)divV = 0,

(4)ρ

dV

dt
= divT+ ρb,

(5)T = −pI+ µA1,

(6)A1 =
(

gradV
)

+
(

gradV
)T

,

(7)V = [u(z, t), v(z, t),w(z, t)].

(8)
∂w

∂z
= 0,

Fig. 1 Physical model and coordinate system
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which upon integration gives

where c1 is a constant of integration. As we have assumed that the disk is non-porous 
(rigid), we choose c1 = 0. Therefore, we obtained w = 0 for velocity in the z-direction. 
Then, Eq. (7) becomes V = [u(z, t), v(z, t), 0]. Using V and Eqs. (5), (6), the momentum 
in Eq. (4) in component forms can be written as follows:

1. x-coordinate: 

2. y-coordinate: 

Moreover, by substituting Eqs. (1) and (2) for Eqs. (10) and (11), it gives:

Since the free convection flow happens in the x-direction, bx = −gx and by = 0. There-
fore, Eqs. (12) and (13) can be written as:

The pressure gradient terms −
∂p

∂x
+ ρ�

2x and −
∂p

∂y
+ ρ�

2y in Eqs. (14) and (15) can 

be simplified by using the equation of r2 = x2 + y2 and obtained as p∗∗ = p− ρ

1

2
�

2r2 . 
Using this modified pressure gradient in Eqs. (14) and (15), it yields:

In the momentum equation, the modified pressure gradient p∗∗ can be written as a sum 
of two terms (Jaluria 1980), as follows (dropping the ** notation):

where pa is hydrostatic pressure and pd is dynamic pressure. By using Eq. (18) in Eqs. 
(16) and (17), it obtains:

(9)w = c1,

(10)ρ

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −
∂p

∂x
+ µ

∂
2f

∂z2
+ ρbx,

(11)ρ

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −
∂p

∂y
+ µ

∂
2g

∂z2
+ ρby,

(12)ρ

(

∂f

∂t
−�g

)

= −
∂p

∂x
+ ρ�

2x + µ

∂
2f

∂z2
+ ρbx,

(13)ρ

(

∂g

∂t
+�f

)

= −
∂p

∂y
+ ρ�

2y+ µ

∂
2g

∂z2
+ ρby.

(14)ρ

(

∂f

∂t
−�g

)

= −
∂p

∂x
+ ρ�

2x + µ

∂
2f

∂z2
− ρgx,

(15)ρ

(

∂g

∂t
+�f

)

= −
∂p

∂y
+ ρ�

2y+ µ

∂
2g

∂z2
.

(16)ρ

(

∂f

∂t
−�g

)

= −
∂p∗∗

∂x
+ µ

∂
2f

∂z2
− ρgx,

(17)ρ

(

∂g

∂t
+�f

)

= −
∂p∗∗

∂y
+ µ

∂
2g

∂z2
.

(18)p = pa + pd ,
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Using (Jaluria 1980):

in Eqs. (19) and (20), it obtains:

Equation (22) can be simplified as:

and the density differences are estimated by the thermal buoyancy as:

where β is the volumetric coefficient of thermal expansion and T is the temperature of 
the fluid. Therefore, Eq. (24) becomes:

The relevant initial and boundary conditions are (Erdogan 1999; Hayat et al. 2003, 2004; 
Das et al. 2014; Ersoy 2015):

where U is the amplitude of the disk oscillations, H(t) is a Heaviside function, and ω is a 
frequency of oscillation. After substituting Eqs. (1) and (2) for initial and boundary con-
ditions [Eqs. (27)–(29)], it obtains:

(19)ρ

(

∂f

∂t
−�g

)

= −
∂pa

∂x
−

∂pd

∂x
+ µ

∂
2f

∂z2
− ρgx,

(20)ρ

(

∂g

∂t
+�f

)

= −
∂pa

∂y
−

∂pd

∂y
+ µ

∂
2g

∂z2
.

(21)
∂pa

∂x
= −ρ∞gx and

∂pa

∂y
= 0,

(22)ρ

(

∂f

∂t
−�g

)

= ρ∞gx −
∂pd

∂x
+ µ

∂
2f

∂z2
− ρgx,

(23)ρ

(

∂g

∂t
+�f

)

= −
∂pd

∂y
+ µ

∂
2g

∂z2
.

(24)ρ

(

∂f

∂t
−�g

)

= −
∂pd

∂x
+ µ

∂
2f

∂z2
+ (ρ∞ − ρ)gx

(25)ρ∞ − ρ = βρ(T − T∞),

(26)ρ

(

∂f

∂t
−�g

)

= −
∂pd

∂x
+ µ

∂
2f

∂z2
+ βρgx(T − T∞).

(27)u(z, 0) = −�

(

y− ℓ

)

and v(z, 0) = �x, for all z ≥ 0,

(28)

u(0, t) = −�y+UH(t) cos(ωt)

or

u(0, t) = −�y+U sin(ωt); for all t > 0,

v(0, t) = �x; for all t > 0

(29)

u(∞, t) = −�

(

y− ℓ

)

; for all t > 0,

v(∞, t) = �x; for all t > 0,

(30)f (z, 0) = �ℓ and g (z, 0) = 0, for all z > 0,
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The energy equation is expressed as (Sahoo et al. 2010; Chandran et al. 2005; Chaudhary 
and Jain 2006; Deka and Das 2011; Narahari and Nayan 2011):

subjected to initial and boundary conditions:

where k is thermal conductivity and cp is the specific heat capacity of the fluid at con-

stant pressure. In order to find the value of dynamic pressure gradients 
∂pd

∂x
 and 

∂pd

∂y
 in 

Eqs. (23) and (26), the boundary conditions in Eqs. (32) and (34) will be used at z → ∞ , 

where there is no shear stress acting on fluid at infinity. Here, we obtain 
∂pd

∂x
= 0 and 

∂pd

∂y
= −ρ�

2
ℓ. Therefore, Eqs. (26) and (23) can be written as:

Now, by using F = f + ig, Eqs. (35) and (36) can be combined as:

subjected to initial and boundary conditions:

Solution of the problem
In order to solve the governing equations, transform these equations into a non-dimen-
sional form and introduce the following dimensionless variables:

(31)

f (0, t) = UH(t) cos(ωt) or f (0, t) = U sin(ωt); for all t > 0,

g(0, t) = 0; for all t > 0,

(32)

f (∞, t) = �ℓ; for all t > 0,

g(∞, t) = 0; for all t > 0.

(33)

∂T

∂t
=

k

ρcp

∂
2T

∂z2

(34)

T (z, 0) = T∞; for all z > 0,

T (0, t) = Tw; for all t > 0,

T (∞, t) = T∞; for all t > 0,

(35)ρ

(

∂f

∂t
−�g

)

= µ

∂
2f

∂z2
+ βρgx(T − T∞),

(36)ρ

(

∂g

∂t
+�f

)

= µ

∂
2g

∂z2
+ ρ�

2
ℓ.

(37)ρ

∂F

∂t
+ ρ�iF = µ

∂
2F

∂z2
+ ρ�

2
ℓ+ βρgx(T − T∞),

(38)F(z, 0) = �ℓ, for all z > 0,

(39)F(0, t) = UH(t) cos (ωt) or F(0, t) = U sin (ωt); for all t > 0,

(40)F(∞, t) = �ℓ; for all t > 0.

(41)F∗ =
F

�ℓ

− 1, z∗ =
√

�

υ

z, t∗ = �t, ω
∗ =

ω

�

, T ∗ =
T − T∞

Tw − T∞
.
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into Eqs. (37) and (33). The dimensionless momentum and energy equations are written 
as (dropping the * notation):

where Gr =
gxβ(Tw − T∞)

�
2
ℓ

 is a Grashof number and Pr =
µcp

k
 is a Prandtl number. The 

corresponding initial and boundary conditions [Eqs. (38)–(40)] and Eq. (34) become:

where U0 =
U

�ℓ

 is a dimensionless parameter of amplitude of the plate oscillations. 
Exact solutions of the coupled partial differential in Eqs. (42) and (43) subject to initial 
and boundary conditions in Eqs. (44)–(49) are obtained by using the Laplace transform 
technique. Thus, the following transform equations in the (z, q)-domain are obtained:

Here, subscripts c and s in Eqs. (50) and (51) refer to cosine and sine oscillations of the 
disk. The inverse Laplace transform of Eqs. (50)–(52) is obtained as:

(42)
∂
2F

∂z2
−

∂F

∂t
− iF = −GrT ,

(43)
∂T

∂t
=

1

Pr

∂
2T

∂z2
,

(44)F(z, 0) = 0, for all z > 0,

(45)F(0, t) = −1+ U0H(t) cos (ωt) or F(0, t) = −1+ U0 sin (ωt); for all t > 0,

(46)F(∞, t) = 0; for all t > 0,

(47)T (z, 0) = 0; for all z > 0,

(48)T (0, t) = 1; for all t > 0,

(49)T (∞, t) = 0; for all t > 0,

(50)

F̄c(z, q) =
Gr

a1

1

q(q − b1)
exp

(

−z
√

q + i
)

+ U0
q

q2 − (−iω)2
exp

(

−z
√

q + i
)

−
1

q
exp

(

−z
√

q + i
)

−
Gr

a1

1

q(q − b1)
exp

(

−z
√

q Pr
)

,

(51)

F̄s(z, q) =
Gr

a1

1

q(q − b1)
exp

(

−z
√

q + i
)

+ U0
ω

q2 − (−iω)2
exp

(

−z
√

q + i
)

−
1

q
exp

(

−z
√

q + i
)

−
Gr

a1

1

q(q − b1)
exp

(

−z
√

q Pr
)

,

(52)T̄ (z, q) =
1

q
exp

(

−z
√

Pr q
)

.

(53)Fc(z, t) = F1(z, t)− F2(z, t)+ F3(z, t)+ F4(z, t)− F5(z, t)+ F6(z, t),

(54)Fs(z, t) = F1(z, t)− F2(z, t)+ F7(z, t)− F8(z, t)− F5(z, t)+ F6(z, t),
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with

where a1 = Pr−1, b1 =
i

a1
, b2 =

Gr

a1b1
, b3 =

U0

2
, b4 = b2 + 1 and b7 =

U0

2i
. Clearly, from 

solutions in Eqs. (53) and (54), they are not valid for Pr = 1. Therefore, to make these 
solutions valid for Pr = 1, Eqs. (42) and (43) need to be solved and after using Eq. (52) 
with Pr = 1, these solutions are obtained as:

with

where b5 =
Gr

i
 and b6 = b5 + 1.

(55)
T (z, t) = erfc

(

z
√
Pr

2
√
t

)

,

F1(z, t) =
b2

2
exp (b1t)





exp
�

−z
√
b1 + i

�

erfc
�

z
2
√
t
−

√
(b1 + i)t

�

+ exp
�

z
√
b1 + i

�

erfc
�

z
2
√
t
+

√
(b1 + i)t

�



,

F2(z, t) =
b4

2





exp
�

−z
√
i
�

erfc
�

z
2
√
t
−

√
it
�

+ exp
�

z
√
i
�

erfc
�

z
2
√
t
+

√
it
�



,

F3(z, t) =
b3H(t) exp (iωt)

2





exp
�

−z
√
iω + i

�

erfc
�

z
2
√
t
−

√
iωt + it

�

+ exp
�

z
√
iω + i

�

erfc
�

z
2
√
t
+

√
iωt + it

�



,

F4(z, t) =
b3H(t) exp (−iωt)

2





exp
�

−z
√
i − iω

�

erfc
�

z
2
√
t
−

√
it − iωt

�

+ exp
�

z
√
i − iω

�

erfc
�

z
2
√
t
+

√
it − iωt

�



,

F5(z, t) =
b2 exp (b1t)

2









exp
�

−z
√
Pr b1

�

erfc

�

z
2

�

Pr
t −

√
b1t

�

+ exp
�

z
√
Pr b1

�

erfc

�

z
2

�

Pr
t +

√
b1t

�









,

F6(z, t) = b2erfc

�

z

2

�

Pr

t

�

,

F7(z, t) =
b7

2
exp (iωt)





exp
�

−z
√
iω + i

�

erfc
�

z
2
√
t
−

√
iωt + it

�

+ exp
�

z
√
iω + i

�

erfc
�

z
2
√
t
+

√
iωt + it

�



,

F8(z, t) =
b7

2
exp (−iωt)





exp
�

−z
√
i − iω

�

erfc
�

z
2
√
t
−

√
it − iωt

�

+ exp
�

z
√
i − iω

�

erfc
�

z
2
√
t
+

√
it − iωt

�



,

(56)Fc(z, t) = F3(z, t)+ F4(z, t)− F9(z, t)+ F10(z, t),

(57)Fs(z, t) = F7(z, t)− F8(z, t)− F9(z, t)+ F10(z, t),
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Skin friction and Nusselt number
The skin friction is defined as:

which after dimensionless analysis reduces to:

where τ ∗ =
τ

√
υ

µℓ�

3
2

. Finally, Eq. (59), in view of Eqs. (53) and (54), gives (* sign is dropped 

for simplicity):

where

Similar to the case of Pr = 1, the skin friction of Eqs. (56) and (57) can be written as:

(58)τ = −
[

µ

∂F

∂z

]

z=0

,

(59)τ = −
[

∂F∗

∂z∗

]

z∗=0

(60)τc(t) = τ1(t)− τ2(t)+ τ3(t)+ τ4(t)− τ5(t)+ τ6(t),

(61)τs(t) = τ1(t)− τ2(t)+ τ7(t)− τ8(t)− τ5(t)+ τ6(t),

τ1(t) = −b2
exp (b1t)
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,
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where

The Nusselt number is defined as:

which upon incorporating Eq. (55) yields:

Results and discussion
In order to understand the physical aspects of the problem, the numerical results for 
velocity [Eqs. (53, 54)] and temperature [Eq. (55)] are computed and plotted graphically 
for different values of time t, Grashof number Gr, Prandtl number Pr, phase angle ωt, 
and amplitude of the plate oscillations U0. All of these graphs are displayed for a real part 
of velocity (primary velocity) and for an imaginary part of velocity (secondary veloc-
ity). Figures 2, 3, 4, 5 and 6 showed the physical graphs for cosine and sine oscillation, 
whereas Fig.  7 illustrated the temperature profiles. The behaviour of both oscillations 
for all parameters involved is the same, except for the phase angle. All results obtained 
satisfy all of the initial and boundary conditions [Eqs. (44)–(46)]. Firstly, the behaviour of 
velocity towards time changing is discussed in Fig. 2. From an observation, the velocity 
increased when the value of t increased. During the changing of time, the flow is getting 
energy from an external source. This external source is produced by a buoyancy force 
that will increase the velocity when time is increasing. If there is no external source, the 
velocity decreases because the inertial forces oppose the increase in velocity.

Figure 3 illustrated the effect of Gr on velocity profiles. It can be observed that velocity 
increased when the value of Gr was increased. Physically, Gr is a ratio of buoyancy force 
to viscous force. Therefore, during the free convection process, the buoyancy force is 
dominant and leads Gr to increase, consequently increasing velocity. The influence of Pr 
on velocity profiles is shown in Fig. 4. As clearly shown, when Pr increased, the velocity 
decreased. Prandtl number Pr is the ratio of kinematic viscosity to thermal diffusivity. 
Therefore, when Pr increased, the kinematic viscosity increased but thermal diffusiv-
ity decreased. Thus, the velocity will decrease due to the increase in kinematic viscos-
ity. Furthermore, as we have mentioned before, the behaviours of velocities in Fig.  5 
are different. In Fig. 5, in the case of cosine oscillation, the velocity decreased when ωt 
increased. However, there is quite an opposite behaviour observed for sine oscillation, 
where the velocity increased when values of ωt increased. Clearly, these figures satisfied 

(62)τc(t) = τ3(t)+ τ4(t)− τ9(t)+ τ10(t),

(63)τs(t) = τ7(t)− τ8(t)− τ9(t)+ τ10(t),

τ9(t) = −
b6

2

[√
ierfc

(

−
√
it
)

−
√
ierfc

(√
it
)

+
2

√
π t

exp (−it)

]

τ10(t) = −
b2√
π t

(64)Nu =
[

∂T

∂z

]

z=0

(65)Nu =
√
Pr

√
π t

.
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the boundary conditions, which showed the accuracy of the results. The effect of U0 
on velocity was displayed in Fig. 6. Obviously, U0 is the maximum extent of oscillation. 
Therefore, when U0 increased, the velocity of the fluid also increased.

Figure 7b shows the temperature profiles increasing when t increased, but decreasing 
for larger values of Pr (Fig. 7a). The effects of dimensionless time t, Grashof number Gr, 
Prandtl number Pr, phase angle ωt, and amplitude of the plate oscillations U0 on skin 
friction and the Nusselt number corresponding to isothermal velocities are presented 
in Tables 1, 2 and 3. An increase of values t, Gr and U0 decreases the isothermal skin 
frictions on the surface. On the other hand, Nusselt number Nu is found to increase 

Fig. 2 Velocity profiles for different values of t with Gr = 5.0, Pr = 0.71, ω = 0 and U0 = 3.0. a Primary velocity. 
b Secondary velocity
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for large values of Pr, but decrease when increasing t. In order to check the accuracy 
of the results as shown in Fig.  8, the validation process has been done by comparing 
the cosine and sine oscillations (graph shown by solid line) with those of Guria et  al. 
(2010) (graph shown by circles). By allowing the parameters of slip condition, suction S 
and magnetic M2 to be equal to zero in Eq. (32) (Guria et al. 2010): it is found that the 
result was identical to Eq. (53) when ωt = π/2, U0 = Gr = Pr = 0 and Eq. (54) when 
ωt = U0 = Gr = Pr = 0. These solutions are called limiting cases. In addition, the 
accuracy of the results is also verified by comparing with numerical results as shown in 
Tables 4 and 5. Equations (42–49) have been solved numerically by using Gaver–Stehfest 

Fig. 3 Velocity profiles for different values of Gr with t = 1.0, Pr = 0.71, ω = π/3 (cosine), ω = π/2 (sine) and 
U0 = 3.0. a Primary velocity. b Secondary velocity
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algorithm for inverse Laplace transform (Villinger 1985; Stehfest 1970). This table shows 
that results of primary and secondary velocities for the cosine case from exact [Eq. (53)] 
and numerical solutions are found to be in good agreement.

Fig. 4 Velocity profiles for different values of Pr with t = 1.0, Gr = 5.0, ω = π/3 (cosine), ω = π/2 (sine) and 
U0 = 3.0. a Primary velocity. b Secondary velocity
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Fig. 5 Velocity profiles for different values of ωt with t = 1.0, Gr = 5.0, Pr = 0.71 and U0 = 3.0. a Primary 
velocity. b Secondary velocity
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Conclusion
In this paper an exact solution is performed to investigate the unsteady viscous fluid due 
to non-coaxial rotation over an isothermal oscillating vertical plate. The dimensionless 
governing equations are solved by using the Laplace transform method. The results for 

Fig. 6 Velocity profiles for different values of U0 with t = 1.0, Gr = 5.0, ω = π/3 (cosine), ω = π/2 (sine) and 
Pr = 0.71. a Primary velocity. b Secondary velocity
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velocity and temperature are plotted and discussed graphically. The numerical results for 
skin friction and the Nusselt number are calculated in tables. The main conclusions of 
this study are as follows:

Fig. 7 a Temperature profiles for different values of Pr with t = 1.0. b Temperature profiles for different values 
of t with Pr = 0.71
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1 Velocity increases when increasing t, Gr, U0 and ωt for the sine case, whereas it 
decreases when increasing values of Pr and ωt for the cosine case.

2 Temperature increases when increasing t, whereas it decreases when Pr is increased.

Table 1 Variation of skin friction of cosine oscillation for different parameters in primary 
and secondary velocities

Italic values indicate the different value selected for each parameter studied

t Pr Gr ω U0 τ (primary) τ (secondary)

1.00 0.71 5.00 π/3 3.00 −3.851 −1.167

1.50 0.71 5.00 π/3 3.00 −4.602 −1.457

1.00 7.00 5.00 π/3 3.00 −2.428 −0.772

1.00 0.71 8.50 π/3 3.00 −5.916 −1.540

1.00 0.71 5.00 π 3.00 −5.858 −0.682

1.00 0.71 5.00 π/3 4.00 −3.934 −1.561

Table 2 Variation of  skin friction of  sine oscillation for  different parameters in  primary 
and secondary velocities

Italic values indicate the different value selected for each parameter studied

t Pr Gr ω U0 τ (primary) τ (secondary)

1.00 0.71 5.00 π/2 3.00 −1.126 −1.285

1.50 0.71 5.00 π/2 3.00 −1.637 −1.805

1.00 7.00 5.00 π/2 3.00 −0.297 −0.890

1.00 0.71 8.50 π/2 3.00 −3.191 −1.658

1.00 0.71 5.00 π 3.00 −7.402 −0.808

1.00 0.71 5.00 π/2 4.00 −0.300 −1.717

Table 3 Variation of Nusselt number for different parameters

Italic values indicate the different value selected for each parameter studied

t Pr Nu

1.00 0.71 0.475

2.00 0.71 0.336

1.00 7.00 1.493
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Fig. 8 Comparison of velocity f(z, t) in Eqs. (53) and (54) with Eq. (32) of Guria et al. (2010). a Cosine solution. 
b Sine solution

Table 4 Comparison of the primary velocity results (cosine case)

z t Pr Gr ω U0 Exact Numerical

0 1.00 0.71 5.00 π/3 3.00 0.5000 0.4986

1 1.00 0.71 5.00 π/3 3.00 1.6750 1.6740

2 1.00 0.71 5.00 π/3 3.00 0.8470 0.8468

3 1.00 0.71 5.00 π/3 3.00 0.2500 0.2501

4 1.00 0.71 5.00 π/3 3.00 0.0490 0.0490

5 1.00 0.71 5.00 π/3 3.00 0.0067 0.0067
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3 Skin friction increases when increasing values of Pr and ωt for the cosine case, 
whereas it decreases when increasing values of t, Gr, U0 and ωt for the sine case.

4 The Nusselt number increases when increasing Pr, whereas it decreases when 
increasing t.

5 Solutions in Eqs. (53) and (54) are found to be in excellent agreement with those 
obtained by Guria et al. (2010).

Abbreviation
MHD: magnetohydrodynamic.
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