
Yadav et al. SpringerPlus (2016) 5:2111
DOI 10.1186/s40064-016-3732-x

CASE STUDY

Critical evaluation of reverse
engineering tool Imagix 4D!
Rashmi Yadav1*, Ravindra Patel1 and Abhay Kothari2

Abstract

Introduction: The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools
are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings.
The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people
who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently,
the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be
good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams,
metrics and, to a partial extent, dynamic visualizations.

Case description and evolution: We evaluated Imagix 4D with the help of a case study involving a few samples of
source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code
evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at
preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was
found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limita-
tions in dynamic visualizations, flow chart separation (large code) and parsing loops.

Conclusion: The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full
featured tools in the area of software reengineering/reverse engineering. It will also help the research community,
especially those who are interested in the realm of software reengineering tool building.

Keywords: Reverse engineering tool, Legacy code, Visualization

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
While developing any project, one uses the latest tools and
techniques, but with time, they become less useful. If it is
hardware, we can afford to dispose of it and buy a newer
version, but in case of software, choices may not be so eas-
ily available. Thus, we need to rebuild it and in some situa-
tions enhance it, i.e., add some functions to cope with the
current needs of the customer. To understand the legacy
code, which was developed years ago, and rebuild it in
accordance with present demands, reengineering is needed
(Rogers 2010). Reengineering has two phases. The first
phase is called reverse engineering and is concerned with
understanding the source code (it is most valuable arti-
facts), deriving the design and creating the requirements.

The second phase is forward engineering and is all about
taking the requirements from reverse engineering and
rebuilding the new software. In this paper, our focus was
only on reverse engineering. Various reengineering/reverse
engineering tools are available, but they are limited in their
functions. All tools have merits and demerits, and their
detailed evolution and comparison is available in a research
paper (Yadav et al. 2014). Here, as shown in Table 1 below,
we give a comparison of the tools on the basis of the input
taken by the tool and the output visualized by it. Table 1
comparison of the tools on the basis of the input taken by
the tool and the output visualized by it.

We observed that most of the tools focus on visualizing
the static arrangements of the code, but do not visualize
the dynamic arrangements (sequence diagram showing
object interactions) of the software product. Whereas
when we want to understand the code of legacy soft-
ware product it is necessary to understand the dynamic

Open Access

*Correspondence: rasneeluce@gmail.com
1 UIT, RGPV, Airport Bypass Road, Gandhi Nagar, Bhopal, India
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3732-x&domain=pdf

Page 2 of 12Yadav et al. SpringerPlus (2016) 5:2111

arrangement of software products, the author (Prasad
and Upadhyay 2015; Bellay and Gall 1998) assessed vari-
ous reengineering tools, and recommended the Imagix
4D tool. We also chose Imagix Corporation’s Imagix
4D tool for its features, and as it develops maximum
architecture from source code. But it does little work in
dynamic architecture generation as task collaboration
diagram. Therefore, there is a need to develop a full-
featured reverse engineering tool, especially, to capture
the dynamic arrangements of a code. We evaluated the

Imagix 4D tool thoroughly and prepared a critique that
will derive the requirement of full featured reengineer-
ing tool and guide the research community those who
are interested in tool building. Imagix 4D (Reniers et al.
2014) is a comprehensive static source code analysis
tool. It takes the code as an input and visually explores
the architecture of that code. A good feature of this tool
is the simultaneously display of code and visual win-
dow, and the display of relevant portions of source code
through Imagix 4D’s querying capabilities. Imagix 4D

Table 1 Comparison of the existing reengineering tools

S. no RE tools Input/extract

1 Rigi (Muller and Kienle 2010) Takes C, C++ code and visualizes only function and structure data type
through call graph

2 Doclike viewer (Suleiman 2005) Takes C, C++ code and extracts software artifacts and generate the
document and view module by module as per user selection

3 Sniff++ (Bellay and Gall 1998) Takes C, C++ program as an input and visualize the graph

4 Shrimp (Storey and Michaud 2001) Takes java Program and visualizes software hierarchies, architecture
with packages and class structures

5 Code crawler (Lanza 2003) Takes C, C++, Java, Small talk and visualize source code architecture
with metrics

6 Reverse Engineering tool (Bellucci et al. 2012) Takes Web applications, transform this web application and visualizes
them into model-based pattern

7 Solidsx (Auber et al. 2010) Takes C, C++, .NET/c#, and Java code bases and visualize treemaps,
table lences and hierarchical edge bundles in a single enviorment

8 Dalli (Kazman and Carriere 1999) Takes C, C++ code as an input and extract function call, file, processes
and their relationship

9 GUPRO (Ebert et al. 2002; Riediger 2000) Take C, C++, Java, and RDBMS and visualize the graph

10 The Code Structure Visualization Tool (Saha 2013) Takes Java code and analyze it, finally shows the hierarchical structure
of the entire program

11 DEFACTO (Basten and KLINT 2008) Takes wide programming language, C, C++, JAVA and extracts
elementary facts like variable declaration, procedure or method call
or control flow statements

12 COLUMB-S (Boerboom and Janssen 2006) Takes C/C++ projects and to extracts their UML Class Model and call
graph

13 Imagix 4D Bellay and Gall (1998). http://www.imagix.com Takes C, C++ and Java software, and generate the flow chart, call
graph, class diagram, task collaboration diagram and Metrics

14 Reveal Tool (Matzko et al. 2002) Takes C++ Code and output the Class Diagram

15 PL/SQL Engineering Tool (Habringer et al. 2014) Takes PL/SQL code, database schema with meta-data which is exported
from the Oracle database and provided as comma-separated files.
And Visualize the high-level representation(Graph)

16 Super Womble (Jackson and Waingold 2001) Takes Java byte code and generate object mode

17 Pilfer (Sutton and Maletic 2005) Takes C++ code and output the Class Diagram

18 REOffice (Yang 2003) Integration of PowerExcelRigi take as a input program the artifacts from
Rigi format program fact files, resulting from the use of Excel and
reproduce Rigi Graphs in PowerPoint

19 SVGgraph editor (Kienle et al. 2002) Takes web applications as input and visualizes the graph with the node
and linked representation

20 Code to visual flowchart. http://code-visual-to-flowchart-full-version.
software.informer.com

Takes C, C++, Java source code and generate the flowchart

21 WSAD (Kienle and Muller 2007) Takes J2EE web applications and produce facts with a table based and
graph based visualizer with the help of Eclipse

22 ReDA Review data Analyzer (Thongtanunam et al. 2014) Takes web application complex code and visualizes in the form of
graph

23 Solid* tools (Reniers et al. 2014) Takes C, C++, Java, or C# code base. Visualizes the edge bundles,
treemaps, table lenses, annotated text, and dense pixel

http://www.imagix.com
http://code-visual-to-flowchart-full-version.software.informer.com
http://code-visual-to-flowchart-full-version.software.informer.com

Page 3 of 12Yadav et al. SpringerPlus (2016) 5:2111

is divided into different major sub areas: Source Code
Analysis, Static Analysis, Metrics and Test, Delta Analy-
sis, and Automated Documentation. Imagix 4D generates
flowcharts, flow graphs, class diagrams, etc. We analyzed
the tool with the help of a case study.

Evaluatory case study of architecture developed
by Imagix 4D
Different programs which were in C, C++ and Java were
taken as input by Imagix 4D, flowcharts, flow graphs,
class diagrams were generated. Then, we discussed the
results from diverse perspectives.

Section I
 Here we took small programs such as finding out even/
odd number etc., after input this programs we investi-
gated architecture visualized by Imagix 4D.

Flowchart
We took some (small source codes) that were in C, C++,
Java, and which took them as inputs for Imagix 4D. The
flow charts were generated with the help of Imagix 4D,
and analysis of visualized flowcharts’ merits and demer-
its were presented for the functions, which consisted of
hundreds of lines of source codes. The flow charts can
help to quickly grasp the internal logic of the code. Some
symbols used by Imagix 4D to draw the flowchart are

shown in Appendix Fig. 1. Initially, we input program
(a) in Imagix 4D tool, and then we observed that it had
the flexibility to generate flowcharts in three ways. First,
a simple flowchart without displaying the code details
is presented in Fig. 2. This flowchart gives the internal
logic of the program, but not the coding details. This is
suitable when the source code is too large and we are
interested only in logic. In Fig. 3, we observed the flow-
charts’ block contains full coding details,and no blocks
of flowcharts were blank. It is very useful when we are
interested in internal coding details. Although, these
flowcharts are too big for large source codes. The third
type of flowchart is shown in Fig. 4. It displays source
code details with line number. It is very useful because
line number is a good tractability feature to understand
the code, especially in reverse engineering, when we
do maintenance or code enhancement. Next, we took
program (b) as an input and the flowchart generated is
shown in Fig. 5. Following that, we took program (c),
which is the same as program (b), the only difference
is that we removed some variable declaration, which
in turn meant that it was not complete or correct. The
flowchart generated for programs (c) is shown in Fig. 6,
where we observed that there was no variable declara-
tion in the input program despite containing the assign-
ment block, which meant it had no error detection and
correction mechanism. We give as an input program

Fig. 1 Symbol used in the flow chart by Imagix 4D

Page 4 of 12Yadav et al. SpringerPlus (2016) 5:2111

(d) the generated flowchart is shown in Fig. 7 we saw
that the Imagix 4D does not display the (for string m:ls)
whereas the code contains the (for string m:ls), in our
code also used if else conditional statements but it is
not displayed in the source code means it is not work
for advanced or extended loop. We gave as an input pro-
gram (e) in C++ and it contains more than one function
in program it required to generate the separate flowchart
of individual function including main function which
can be seen in Fig. 8, which display flowchart of main
function, Fig. 9 which displays flowchart for calculat-
ing function, Fig. 10 which displays the function prime,
Fig. 11 display the show function.

Class diagram
We have take some samples of codes given as an input
and study the visualize architecture. Class diagram gives
the static organization of software Project. The program
(f) given as an input, the generated diagram is shown in
Fig. 12, it is an abstract class diagram means it does not
give the internal details like data type and access mode.
When we do reengineering/reverse engineering we want to
understand the code and this is very difficult to understand
the code for person who see the limited details of class dia-
gram as displayed. So the class diagram needs to display
details about data type and access mode of member func-
tion. Imgix 4D does not draw the sequence diagram which
is very useful when we do code enhancement or mainte-
nance in reverse engineering. Sequence diagram shows the
timing sequence in which object communicates with each

Fig. 2 Flow chart of Prime Number Program without Source code

Fig. 3 Flow chart of Prime No Program with Source code without
Line Number

Fig. 4 Flow chart of Prime Number Program with Source code and
Line Number

Page 5 of 12Yadav et al. SpringerPlus (2016) 5:2111

other. Another missing feature of Imagix 4D is that it does
not generate the ER diagram for understanding the legacy
code ER diagram is very important. State machine diagram
is necessary to capture the dynamic behavior of the soft-
ware but Imagix 4D does not generate it.

Section‑II
In the previous section, the case study was with regard
to small pieces of codes. Here, we took large source
codes into account. gcc C parser code was taken to view
the performance of Imagix 4D. As with the small codes,
Imagix 4D performed equally well for the large code. It
provided the flexibility to generate codes as per the user’s
need in the form of flowcharts with code, without code,
and with line number. The parser of Imagix 4D worked
in same manner that it had done for small codes, but the

visualized architectures (flowcharts) were sometimes dif-
ficult to understand due to their large size, and splitting
the large output into distinct parts was also not system-
atic. As shown in Fig. 13, metrics visualization is another
strong factor of Imagix 4D. It shows different metrics of
code function such as McCabe cyclomatic complexity,
McCabe decision density, Trans Fan in, etc. These are
helpful for assessing design quality, performing reengi-
neering, determining the extent to which reengineering
is needed, and in software testing. It also provides the

Fig. 5 Flow chart of Program Find even No C++ with Variable
Declaration

Fig. 6 Flow chart of Program Find even No in C++ without Variable
Declaration

Fig. 7 Flow chart of Program Display Hello by pattern matching in
Java

Fig. 8 Flowchart through Imagix-4D for Prime No Program in C++
of Main Function

Page 6 of 12Yadav et al. SpringerPlus (2016) 5:2111

number of jump statements (goto), break or continue
statements used by the program that make it more dif-
ficult to understand the unstructured code, which is an
indication to reengineer the design. But some lines of
code is ignored by the analyzer of Imagix 4D due to pos-
sible mistakes of not including required files at the coding

level, or some syntax not being resolved by the analyzer,
show. Imagix 4D does not accurately identify certain
call made through function pointer in variable depend-
encies as shown in Fig. 14 this reports the variables and
files involving code which affects values of these vari-
ables. This could support traceability. With a limitation
of not reporting calls made through function pointer. It
also shows the dead code which consists of root function,
has no calling function, and remains unexecuted. But its
detection is not fully automated, as human involvement
is necessary to understand the dead code.

Conclusion
Imagix 4D is a good tool in terms of variety of language
supportability, graphical user interface, maximum dia-
gram generation, and provide choices for visualize infor-
mation by using filtering techniques. Still, there is a need
to enhance the parser, especially for error detection
mechanism, and to read and visualize some extended
conditional statement. Class diagrams generated by
Imagix 4D are not concrete in nature in terms of under-
standing codes. Our evaluation of Imagix 4D on the large
code of gcc C parser revealed its abilities to show dead
code, unstructured code, and code part written without
inclusion of required file. All these support the cause of
reengineering. The metrics regarding complexity, fan-in
density helps to understand the design quality, and type
and amount of testing need. Most reengineering/reverse
engineering tools, including Imagix 4D, generate static
diagram. They do not capture dynamic diagrams such
as sequence and Entity relationship diagrams. They are
important in code enhancement, code reuse, and reverse
engineering. This study has directed research attention to
build a full featured reverse engineering tool, and helps to Fig. 10 Flow chart of Prime Number Program in C++ of Prime

Function

Fig. 11 Flow chart of Prime Number Program in C++ of Show
Function

Fig. 9 Flow chart of Prime Number Program in C++ for calculating
Function

Page 7 of 12Yadav et al. SpringerPlus (2016) 5:2111

define the requirement set of a new, full featured, com-
prehensive reengineering/reverse engineering tool.

Evaluatory case presentation Appendix
Evaluatory case study of flowchart
In this section, we analyzed, in detail, the different small
codes taken by Imagix 4D as input, and studied the visu-
alized flowchart. Figure 1 displays the symbols used by
Imagix 4D.

(a) Prime number C Program This is a small code which
takes a number and displays whether it is prime or not.

When we input above program (a) in Imagix 4D, it read
that program in left to right, and top to bottom fashion
and generated the flowchart. Here, we noted that it pro-
vided flexibility in generating the flow chart according to
user’s choice.

Simple flow charts without display the code details
Figure 2 displays flowchart without source code details.
Here, the flowchart gave the internal logic of the pro-
gram, but not the coding details such as assignment
block. It only displayed input output function. Some
assignment blocks are empty. Figure 3 provides internal
code details. But, when a program is very large and we
want to see only the flow of programs Then the Flow-
charts without source code are useful as it optimizes the
flowcharts, reduces complexities, and helps in under-
standing the overall logic of the program.

Flow charts displaying the code details
 In Fig. 3, the generated flow chart displays the cod-
ing parts in detail. It is useful when reverse engineers or
developers want to comprehend the code details.

Fig. 12 Class diagram generated by Imagix 4D

#inc lude <s t d i o . h>
i n t main ()
{
i n t n , i , f l a g =0;
p r i n t f (” Enter a p o s i t i v e i n t e g e r : ”) ;
s can f (”\%d”,\&n) ;
f o r (i =2; i\<=n/2;++ i)
{
i f (n%i==0)
{
f l a g =1;
break ;
}}
i f (f l a g==0)
p r i n t f (” Number i s prime ” ,n) ;
e l s e
p r i n t f (” Number i s not prime ” ,n) ;
r e turn 0 ;}

Page 8 of 12Yadav et al. SpringerPlus (2016) 5:2111

Flow charts displaying code details with line numbers
In Fig. 4, the generated flow chart displays the cod-
ing parts in detail with line number. Line nuber is good
traceability feature to comprehend the code details.

(b) A program to find even no in C++

This program identifies the entered number is even or
not. It is implemented in C++, and checked and verified
to confirm all variable declarations are taken care of.

#inc lude<con io . h>
Void main ()
{
i n t i v a r i a b l e i d e c l a r a t i o n
While (i <=100)
{
i f (i \%2==0)
{
cout<<i ” i s even number ” ;
}}}

This program is inputed into Imagix 4D, and the
generated diagram is studied. In Fig. 5, the generated
flowchart is shown. Here, we saw the start block, then
the assignment block, and finally the conditional state-
ment. If the statement is false, it ends the flowchart.
On the other hand, if it is true, it checks, again, the
condition for a number to be prime. If the condition

is true, the number is prime, or else the number is not
prime.

(c) Program for Find even no in C++ without Variable
Declaration

#inc lude<con io . h>

Void main ()
{

// d e c l a r a t i o n o f v a r i a b l e i removed
whi l e (i <=100)
{
i f (i%2==0)
}}

This program is the same as previous program (b), i.e.,
to find out whether the entered number is even or not,
The only difference is that it is not a correct or complete
program, having removed the variable declaration. We
gave it as an input to Imagix 4D, and studied the gen-
erated diagram. In Fig. 6, we observed that in this pro-
gram, we remove the variable declaration. But it takes an
assignment block for variable declaration after the start
block. It has no error detection mechanism available.

(d) Program to Display Hello using pattern Matching
Implemented in Java

Fig. 13 Metrics visualization diagram generated by Imagix 4D

Page 9 of 12Yadav et al. SpringerPlus (2016) 5:2111

This is a small program in java for the pattern match-
ing. It was taken as input and study of generated diagram
was studied.

Fig. 14 Variable dependencies generated by Imagix 4D

In Fig. 7, we observed that Imagix 4D was not reading
the (for (String m: ls)). We also used If ELSE conditional
statements, but it is not displayed in the flow chart.

pub l i c s t a t i c void main (S t r ing [] a rgs) throws FileNotFoundException ,
IOException{
St r ing pattern =”[0−9]{10}”;
Pattern regPat = Pattern . compi le (pattern) ;
Matcher matcher = regPat . matcher (” ”) ;
LinkedHashSet<Str ing> l s=new LinkedHashSet<>();
BufferedReader reader=new BufferedReader (new Fi leReader (” f i l e . txt ”)) ;
S t r ing l i n e , l i n e 1 =””;
whi l e ((l i n e = reader . readLine ()) != nu l l) { l i n e 1+=” ”+ l i n e ;}
System . out . p r i n t l n (” l i n e ”+l i n e 1) ;
S t r ingToken i ze r s=new Str ingToken i ze r (l i n e1 ,”\\ ,\\ \\ :\\ −”);
whi l e (s . hasMoreTokens ()){
St r ing s t r=s . nextToken () ;
matcher . r e s e t (s t r) ;
i f (matcher . f i nd ()) {
System . out . p r i n t l n (s t r) ; l s . add (s t r) ;
}
e l s e
{System . out . p r i n t l n (” h i ”) ;
}}
pr in t the contents o f s e t
System . out . p r i n t l n (” s e t l ength”+ l s . s i z e ()) ;
f o r (S t r ing m: l s)
System . out . p r i n t l n (””+m) ;
}
}

Page 10 of 12Yadav et al. SpringerPlus (2016) 5:2111

(e) Prime No C++

This program is taken as an input for Imagix 4D, and
it is used for finding if the number is prime or not. It is
the same as program (a), but it is developed in C++. The
program used three user define functions Calculate (),
Show () and Prime (). If user defined functions are used in
the program given to Imagix 4D, it generates flowcharts
separately. It reads and divides codes into different avail-
able functions, including main (), and draws flowcharts
for individual functions.

#inc lude<con io . h>
Using namespace std ;
Class prime
{
i n t a , k , i ;\\ pub l i c :\\
prime (i n t x)
{
a=x ;
}
void c a l c u l a t e ()
{
k=1;
{
f o r (i =2; i<=a /2 ; i++)
i f (a%i==0)
{
k=0;
break ;
}
e l s e
{
k=1;
}}}
Void show ()
{
i f (k==1)
cout<< a i s Prime Number . ” ;
e l s e
cout<< a i s Not Prime Numbers . ” ;
}} ;
i n t main ()
{
i n t a ;
cout<<”Enter the Number : ” ;
c in<<;
prime obj (a) ;
obj . c a l c u l a t e () ;
obj . show () ;
getch () ;
r e turn 0 ;
}

We found that if one or more functions are available in
code, including the main function. The Imagix-4D gen-
erates separate the flow charts. Figure 8 shows the flow
chart for the main function, it first put the start block
and put the scope of the function. Then put all initiali-
zation and input, output statements into the initiali-
zation box, and then it uses the end symbol for return
statement.

Figure 9 displays the flowchart for calculating function.
It reads execution of each line and put into initializa-
tion box, then it gets the FOR loop and put into a con-
ditional statement.One thing is observed here FOR is
loop repeated two times first in initialization block and
again in the conditional statement.For large and complex
code this repetition create the extra overhead in code
understanding.

Figure 10 displays the flow chart of the prime function,
tool puts start symbol,reads the body of the function that
is assignment statements, put into the assignment box.
Loop or conditional statements are not there so no dia-
mond box is not used and there is no return type of the
function at the end, it shows the end of scope by a small
square.

Figure 11 displays flowchart of the function show
in this it puts the start symbol and then there is no
assignment operator and put it into the but it takes
the assignment operator and put into the assignment
block and displays the opening braces on that. This
made the diagram bulky and put extra overhead on
visualizer and person those who are interested in code
understanding.

Evaluatory case study of class diagram
In this section, we took program(f) as the sample code
given as an input to Imagix-4D. The resultant diagram is
further analyzed.

(f) Program in C++ to store student data

Page 11 of 12Yadav et al. SpringerPlus (2016) 5:2111

The class diagram generated by Imagix4d is shown in
Fig. 12 it does not give details such as class attributes,
member function, access mode and data type. These
details are needed when we want to understand the code
for reverse engineering of code.

Evaluatory case study of gcc C parser program
 In this section we analyzed the gcc c parser program
(large code) taken by the Imagix 4d as input and studied
the visualized architecture.

#inc lude<con io . h>

c l a s s student
{

protec ted :
i n t rno ,m1,m2;

pub l i c :
void get ()

{
cout<<”Enter the Rol l no : ” ;
c in>>rno ;
cout<<”Enter the two marks : ” ;
c in>>m1>>m2;

}
} ;
c l a s s spo r t s
{

protec ted :
kramstropS=ms//;mstni

pub l i c :
void getsm ()

{
cout<<”\nEnter the spo r t s mark : ” ;
c in>>sm ;

}
} ;
c l a s s statement : pub l i c student , pub l i c spo r t s
{

i n t tot , avg ;
pub l i c :
void d i sp l ay ()

{
to t=(m1+m2+sm) ;
avg=tot /3 ;
cout<<”\n\n\ tRo l l No:”<<rno<<”\n\ tTota l :”<< to t ;
cout<<”\n\ tAverage : ”<<avg ;
}

} ;
void main ()
{

c l r s c r () ;
statement obj ;
obj . get () ;
obj . getsm () ;
obj . d i sp l ay () ;
getch () ;

}

Page 12 of 12Yadav et al. SpringerPlus (2016) 5:2111

Metric visualization is generated by the Imagix 4D as
shown in Fig. 13. It is a very powerful feature of Imagix
4D. These metrics help to understand the quality of soft-
ware product.

Variable dependencies are visualized by the Imagix 4D
shown in Fig. 14. Imagix 4D is not able to accurately rec-
ognize certain call made through function pointer.

Authors’ contributions
RP substantially contributed to the survey of the existing tools, and identified
Imagix 4D tool for critical review. AK conducted the case study of flowcharts.
RY performed the case study of class diagrams, found the inadequacies and
finally prepared the manuscript. All authors read and approved the final
manuscript.

Author details
1 UIT, RGPV, Airport Bypass Road, Gandhi Nagar, Bhopal, India.
2 AITR, Mangliya, Indore, India.

Acknowledgements
We acknowledge the help of the Imagix 4D Corporation for providing us with
the Imagix 4D software. We also thank the departments of Computer Science
Engineering, Information Technology, and the department of Computer Appli-
cation of Rajiv Gandhi Technical University, Bhopal, for their support.

Competing interests
The authors declare that they have no competing interests.

Received: 28 May 2016 Accepted: 23 November 2016

References
Auber D, Melancon G, Munzner T, Weiskopf D (2010) SolidSX: a visual analysis

tool for software main tenance. In: Poster abstracts at eurographics/IEEE-
VGTC symposium on visualization

Basten HJS, Klint P (2008) DEFACTO, language-parametric fact extraction from
source code SLE, volume 5452 of Lecture Notes in Computer Science.
Springer, pp 265–284

Bellay B, Gall H (1998) An evaluation of reverse engineering tool capabilities. J
Softw Maint Res Pract 10:305–331

Bellucci F, Ghiani G, Paternò F, Porta C (2012) Automatic reverse engineering
of interactive dynamic web applications to support adaptation across
platforms In: IUI’12 Proceeding of ACM international conference on intel-
ligent User interfacesNew York ACM 978-1-4503-1048, pp 217–226

Boerboom FJA, Janssen AAMG (2006) Fact extraction, querying and visualiza-
tion of large C++ code bases. Master Thesis, Department of Mathemat-
ics and Computer Science, Technische Universiteit Eindhoven, Eindhoven

Ebert J, Kullbach B, Riediger V, Winter A (2002) GUPRO: generic understanding
of programs—an overview. Electron Notes Theor Comput Sci 72:47–56

Habringer M, Moser M, Pichler J (2014) Reverse engineering PL/SQL legacy
code. In: IEEE international conference on software maintenance and
evolution, pp 553–556, 1063–6773/14. doi:10.1109/ICSME

Jackson D, Waingold A (2001) Lightweight construction of object models from
bytecode. IEEE Trans Softw Eng 27:156–169. doi:10.1109/32.908960

Kazman R, Carriere SJ (1999) Playing detective: reconstructing software archi-
tecture from available evidence. J Autom Softw Eng 6:107–138

Kienle HM, Muller HA (2007) A WSAD-based fact extractor for J2EE web
projects. In: Proceedings of the 9th IEEE international symposium on web
systems evolution, Paris, France. doi:10.1109/WSE.2007.4380245

Kienle HM, Weber A, Muller HA (2002) Leveraging SVG in the Rigi reverse engi-
neering tool. In: SVG Open/Carto.net Developers Conference

Lanza M (2003) Codecrawler-lessons learned in building a software visualiza-
tion tool. In: 7th IEEE European conference on software maintenance and
reengineering (CSMR’03), pp 1–10

Matzko S, Clarke PJ, Gibbs TH, Malloy BA, Power JF (2002) Reveal: a tool to
reverse engineer class diagrams. In: Proceeding of the 40th international
conference on tools pacific: objects for internet, mobile and embedded
applications, Australia, 1 Feb, pp. 13–21

Muller HA, Kienle HM (2010) Rigi-an environment for software reverse engi-
neering, exploration, visualization, and redocumentation. Sci Comput
Progr 75:247–263

Prasad L, Upadhyay J (2015) Study of reverse engineering and assessment of
RIGI and Imagix 4D. Int J Comput Appl 5(5):2250–1797

Reniers D, Voinea L, Ersoy O, Telea A (2014) The Solid* toolset for software
visual analytics of program structure and metrics comprehension: From
research prototype to product. Science of Computer programming. A
special issue of the Workshop on Academic Software Development Tools
and Techniques, vol 79, pp 224–240

Riediger V (2000) Analyzing XFIG with GUPRO. In: 7th Working conference on
reverse engineering, Brisbane, 23–25 Nov 2000, pp 23–25. http://dx.doi.
org/10.1109/WCRE.2000.891466

Rogers S (2010) Pressman software engineering a practitioners approach, vol
5. McGraw-Hill, Newyork

Saha MK (2013) Code structure visualization tool for groovy. Master thesis,
Department of computer science University of Houston

Storey M-A, Michaud J (2001) Shrimp views: an interactive environment for
exploring multiple hierarchical views of a Java program, in ICSE 2001
(Workshop on Software Visualization)

Suleiman S (2005) Doclike Viewer: a software visualization tool. In: Proceeding
of 1st Malaysian software engineering conference (MySEC’05), Penang,
12–13 Dec 2005, pp. 263–265

Sutton A, Maletic JI (2005) Mappings for accurately reverse engineering UML
class moels from C++. In: WCRE’05: proceedings of the 12th working
conference on reverse engineering, Washington DC, 7 Nov, pp 175–184

Thongtanunam P, Yang X, Yoshida N, Kula RG, Cruz AEC, Fujiwara K, Iida H (2014)
ReDA: a web-based visualization tool for analyzing modern code review
dataset. In: IEEE international conference on software maintenance and
evolution ICME, 1063–6773/14, pp 605–608. doi:10.1109/ICSME

Yadav R, Patel R, Kothari A (2014) Reverse engineering tool based on unified
mapping method (RETUM): class diagram visualizations. Comput Com-
mun. doi:10.4236/jcc.2014.212005

Yang F (2003) Using Excel and PowerPoint to build a reverse engineering tool.
Master’s thesis, Department of Computer Science, University of Victoria

http://dx.doi.org/10.1109/ICSME
http://dx.doi.org/10.1109/32.908960
http://dx.doi.org/10.1109/WSE.2007.4380245
http://dx.doi.org/10.1109/WCRE.2000.891466
http://dx.doi.org/10.1109/WCRE.2000.891466
http://dx.doi.org/10.1109/ICSME
http://dx.doi.org/10.4236/jcc.2014.212005

	Critical evaluation of reverse engineering tool Imagix 4D!
	Abstract
	Introduction:
	Case description and evolution:
	Conclusion:

	Background
	Evaluatory case study of architecture developed by Imagix 4D
	Section I
	Flowchart
	Class diagram

	Section-II

	Conclusion
	Evaluatory case presentation Appendix
	Evaluatory case study of flowchart
	Simple flow charts without display the code details
	Flow charts displaying the code details
	Flow charts displaying code details with line numbers
	Evaluatory case study of class diagram
	Evaluatory case study of gcc C parser program

	Authors’ contributions
	References

