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Background
The study of tensors with their various applications has attracted extensive attention and 
interest, since the work of Qi (2005) and Lim (2005). Lately, the research topic on struc-
ture tensors has also attracted much attention, such as symmetric tensors (Qi 2005), 
P(P0)-tensors (Song and Qi 2014), B(B0)-tensors (Song and Qi 2014), Z-tensors (Zhang 
et al. 2014), (strong) M-tensors (Zhang et al. 2014), H-tensors (Li et al. 2014) and so on. 
In the researches on tensors with its application, the reducibility and higher dimension 
of tensors are two important factors to cause difficulties. Therefore, it is interesting that 
how to translate problems of higher dimension reducible tensors into the corresponding 
problems of lower dimension irreducible tensors.

As we all know, the permutation transformation of matrices plays a very important 
role in linear algebra and matrix theory. Some problems of higher dimension reducible 
matrices can be translated into the corresponding problems of lower dimension irreduc-
ible matrices by using the permutation transformation of matrices. Inspired by this, we 
introduce permutation transformations of tensors, and discuss its basic properties and 
and their applications in this paper.

In the next section, we will introduce the permutation transformation of tensors 
and give its expression. In third section, we will discuss basic properties of permuta-
tion transformations of tensors. In fourth section, we will discuss the invariance under 
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permutation transformations for some important structure tensors such as symmet-
ric tensors, positive definite tensors, M-tensors, Hankel tensors, P-tensors, B-tensors, 
H-tensors and so on. In fifth section, we will give the canonical form theorem of tensors 
and a numerical example which shows that some problems of higher dimension tensors 
can be translated into the corresponding problems of lower dimension weakly irreduc-
ible tensors by using permutation transformations. Finally, we draw some conclusions in 
the last section.

Permutation transformations of tensors and its expression
For a positive integer n, let [n] = {1, 2, . . . , n}. An order m tensor A = (ai1...im) ∈

Cn1×n2×···×nm is a multidimensional array with n1n2 . . . nm entries, where ij ∈ [nj], j ∈ [m]. 
Especially, an order m dimension n tensor A = (ai1...im) over the complex field C (real field R)  
consists of nm complex (real) entries:

where ij ∈ [n] for j ∈ [m] (Chang et al. 2008; De Lathauwer et al. 2000; Liu et al. 2010; Ng 
et  al. 2009; Zhang and Golub 2001). It is obvious that a matrix is an order 2 tensor. We 
shall denote the set of all complex (real) order m dimension n tensors by C[m,n] (R[m,n], 
respectively).

Definition 1 Let A = (ai1...im) ∈ C[m,n],B = (bi1...im) ∈ C[m,n], and k ∈ C. Define

(i)   A+ B = (ai1...im + bi1...im).

(ii)  kA = (kai1...im).

Remark 1 Obviously, both C[m,n] and R[m,n] are linear spaces about the addition and the 
multiplication in Definition 1.

Definition 2 (Qi 2005) A tensor A = (ai1...im) ∈ R[m,n] is called a symmetric tensor if 
its entries ai1...im are invariant under any permutation of their indices.

Denote the set of all real order m dimension n symmetric tensors by S[m,n]. Further-
more, S[m,n] is a linear subspace of R[m,n]. An order m dimension n tensor is called the unit 
tensor (Yang and Yang 2010), denoted by I , if its entries are δi1...im for i1, . . . , im ∈ [n] , 
where

Let A = (ai1...im) ∈ R[m,n] and x ∈ Rn. Then Axm is a homogeneous polynomial of degree 
m, defined by

A tensor A ∈ R[m,n] is called positive semidefinite (Song and Qi 2014) if for any vec-
tor x ∈ Rn,Axm ≥ 0, and it is called positive definite if for any nonzero vector 
x ∈ Rn,Axm > 0.

ai1...im ∈ C (R),

δi1...im =

{
1, if i1 = · · · = im,
0, otherwise.

Axm =
∑

i1,...,im∈[n]

ai1...imxi1 . . . xim .
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Now, we give the definition of permutation transformation of tensors.

Definition 3 Let A = (ai1...im) ∈ C[m,n] and π be a permutation on [n], we define 
Pπ : C[m,n] → C[m,n] by

Pπ is called as a permutation transformation on C[m,n], and is simply called as a permuta-
tion transformation. Pπ (A) is called as the image of A under Pπ.

Remark 2 Pπ is called as a permutation transformation on R[m,n] if C[m,n] is replaced by 
R[m,n] in Definition 3.

Definition 4 Let A = (ai1...im) ∈ C[m,n] and π−1 be the inverse permutation of π on [n], 
we define P−1

π : C[m,n] → C[m,n] by

P−1
π  is called as the inverse permutation transformation of Pπ on C[m,n], and is simply 

called as the inverse permutation transformation.
For further discussing property of the permutation transformation of tensors, we 

introduce the following general product of two n-dimensional tensors defined in Shao 
(2013). For the sake of simplicity, we sometime use the following “condensed nota-
tion” for the subscripts of the tensor. For example, we will write ai1i2...im as ai1α, where 
α = i2 . . . im ∈ [n]m−1and [n]m−1 is m− 1 dimensional array whose every element varies 
from 1 to n.

Definition 5 (Shao 2013) Let A and B be order m ≥ 2 and order k ≥ 1, dimension n 
tensors, respectively. Define the product A · B (sometimes simplified as AB) to be the 
following tensor C of order (m− 1)(k − 1)+ 1 and dimension n,

where i ∈ [n],α1, . . . ,αm−1 ∈ [n]k−1.
Especially, when P = (pij) and Q = (qij) are both matrices, we have the following for-

mula (Shao 2013):

Definition 6 (Shao 2013) Let A, B ∈ C[m,n]. If there exists a permutation π on the set 
[n], and the corresponding permutation matrix P = (Pij) (where Pij = 1 ⇐⇒ j = π(i); 
Pij = 0, otherwise.) such that B = PAPT , then we say that A and B are permutational 
similar.

Remark 3 (Shao 2013) If A, B are permutational similar, then

Pπ (A) = (aπ(i1)...π(im)).

P−1
π (A) = Pπ−1(A).

ciα1...αm−1
=

∑

i2,...,im∈[n]

aii2...imbi2α1 . . . bimαm−1
,

(PAQ)i1...im =
∑

j1,...,jm∈[n]

aj1...jmpi1j1qj2i2 . . . qjmim .
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(i)   bi1...im = aπ(i1)...π(im),
(ii)  PIPT = I .

Definition 7 (Shao 2013) Let A,B ∈ C[m,n]. Suppose that there exist two matrices P 
and Q of dimension n with PIQ = I  such that B = PAQ, then we say that the two ten-
sors A and B are similar.

Now, we present the relationship between the permutation transformation of tensors 
and permutational similar.

Theorem 1 Let A,B ∈ C[m,n]. Then A and B are permutational similar if and only if 
there exists a permutation π on [n] such that B = Pπ (A).

Proof Assume that A and B are permutational similar. By Remark 3, there exists a per-
mutation π on [n] such that bi1...im = aπ(i1)...π(im). Define a permutation transformation 
Pπ : C[m,n] → C[m,n] by

which implies B = Pπ (A).
On the other hand, assume that there exists a permutation transformation Pπ such 

that B = Pπ (A), then

Let permutation matrix P = Pπ (Pij = 1 ⇐⇒ j = π(i); Pij = 0, otherwise.) correspond-
ing to π. Then

Hence, B = PAPT . Thus, A and B are permutational similar.  �

By Theorem 1 and Remark 3, we have the following expression theorem of permuta-
tional transformation of tensors.

Theorem 2 Let A ∈ C[m,n], and π be a permutation on [n]. Then

where Pij = 1 ⇐⇒ j = π(i); Pij = 0, otherwise.

Basic properties of permutation transformations
Now, we discuss basic properties of permutation transformation of tensors. Firstly, we 
present some definitions and a lemma, which are needed in the subsequent analysis. For 
an n-dimensional vector x = (x1, x2, . . . , xn), real or complex, we define the n-dimen-
sional vector:

Pπ (A) = (aπ(i1)...π(im)),

bi1...im = aπ(i1)...π(im).

(PAPT )i1...im =
∑

j1,...,jm∈[n]

aj1...jmPi1j1(P
T )j2i2 . . . (P

T )jmim

= aπ(i1)...π(im).

Pπ (A) = PAPT
,
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and the n-dimensional vector:

The following two definitions were first introduced and studied by Lim (2005) and Qi 
(2005).

Definition 8 (Lim 2005; Qi 2005) Let A ∈ R[m,n]. A pair (�, x) ∈ C× (Cn \ {0}) is 
called an eigenvalue-eigenvector (or simply eigenpair) of A if they satisfy the equation

We call (�, x) an H-eigenpair if they are both real.
The set of all eigenvalues of A is denoted by σ(A) and it is called the spectral of A. Let 

ρ(A) = max{|�| : � ∈ σ(A)}. It is called the spectral radius of A.

Definition 9 (Lim 2005; Qi 2005) Let A ∈ R[m,n]. A pair (�, x) ∈ C× (Cn \ {0}) is called 
an E-eigenvalue and E-eigenvector (or simply E-eigenpair) of A if they satisfy the equation

We call (�, x) an Z-eigenpair if they are both real.

Definition 10 (Zhang et al. 2014) A tensor A = (ai1...im) ∈ R[m,n] is called strictly diag-
onally dominant if

Definition 11 (Bu et  al. 2014) A tensor A ∈ Cn1×···×nk is said to have rank-one if 
there exist nonzero ai ∈ Cni(i = 1, . . . , k) such that A = a1 ⊗ a2 ⊗ · · · ⊗ ak, where 
a1 ⊗ a2 ⊗ · · · ⊗ ak is the segre outer product of a1 ∈ Cn1 , . . . , ak ∈ Cnk with entries 
ai1...ik = (a1)i1 . . . (ak)ik. The rank of a tensor A, denoted by rank(A), is defined to be the 
smallest r such that A can be written as a sum of r rank-one tensors. Especially, if A = 0 , 
then rank(A) = 0.

Lemma 1 (Qi 2005) Assume that A ∈ R[m,n] is an even-order symmetric tensor. The fol-
lowing conclusions hold for A,

(i)  A always has H-eigenvalues. A is positive definite (positive semidefinite) if and only if 
all of its H-eigenvalues are positive (nonnegative).

(ii) A always has Z-eigenvalues. A is positive definite (positive semidefinite) if and only if 
all of its Z-eigenvalues are positive (nonnegative).

Axm−1 :=




�

i2,...,im∈[n]

aii2...imxi2 . . . xim





1≤i≤n

,

x[m−1] :=

(

xm−1
i

)

1≤i≤n
.

(1)Axm−1 = �x[m−1]
.

(2)

{
Axm−1 = �x,

xTx = 1.

| aii...i |>
∑

i2,...,im∈[n],
δii2 ...im=0

| aii2...im |, ∀i ∈ [n].
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Next, we present some basic properties of permutation transformation of tensor as 
follows.

Theorem 3 Let A, B ∈ C[m,n] (R[m,n]), and π be a permutation on [n]. Then

 (i) Pπ (A+ B) = Pπ (A)+ Pπ (B).
 (ii) Pπ (kA) = kPπ (A), where k ∈ C (R).
 (iii) Pπ (I) = I .
 (iv) P−1

π (Pπ (A)) = A.
 (v) Pπ (P

−1
π (A)) = A.

 (vi) σ(Pπ (A)) = σ(A).
 (vii) ρ(Pπ (A)) = ρ(A).
 (viii) rank(Pπ (A)) = rank(A).
 (ix) If A ∈ S[m,n], then Pπ (A) ∈ S[m,n].
 (x) If A is a strictly diagonally dominant tensor, then Pπ (A) is also a strictly diagonally 

dominant tensor.
 (xi) If m is even and A ∈ S[m,n] is positive definite (positive semidefinite) tensor, then 

Pπ (A) ∈ S[m,n] and is also a positive definite (positive semidefinite) tensor.

Proof (i)   Pπ (A+ B)i1...im = aπ(i1)...π(im) + bπ(i1)...π(im) =
(
Pπ (A)+ Pπ (B)

)

i1...im
.

(ii) Pπ (kA)i1...im = kaπ(i1)...π(im) = kPπ (A)i1...im .

(iii)  Since Pπ (I)i1...im = Iπ(i1)...π(im) and δπ(i1)...π(im) = 1 if and only if δi1...im = 1, then 
Pπ (I) = I .

 From the Definition 3, it is easy to obtain (iv) and (v) are hold.
(vi)  By Theorem  1, Pπ (A) and A are permutational similar. By Theorem  2.1 in Shao 

(2013), 

  where φA(�) is the characteristic polynomial of the tensor A. In Qi (2005), Qi has 
proved that a number � ∈ C is an eigenvalue of A if and only if it is a root of φA(�). 
Hence, similar tensors have the same eigenvalues. Then 

(vii) It is easy to be got from the results of (vi).
(viii) Let rank(A) = r, and Pπ (A) = (aπ(i1)...π(im)), where π is a permutation on [n]. 

Case 1. If r = 1, then there exists ai ∈ Cni (i ∈ [m], ai �= 0) such that 

 which implies, 

 Therefore, 

  Hence, Pπ (A) = Pπ (a1)⊗ Pπ (a2)⊗ · · · ⊗ Pπ (am). Since Pπ (ai) ∈ Cni and  
Pπ (ai) �= 0, then rank(Pπ (A)) = 1.

φPπ (A)(�) = φA(�),

σ(A) = σ(Pπ (A)).

A = a1 ⊗ a2 ⊗ · · · ⊗ am

ai1...im = (a1)i1(a2)i2 . . . (am)im .

aπ(i1)π(i2)...π(im) = (a1)π(i1)(a2)π(i2) . . . (am)π(im)

= (Pπ (a1))i1(Pπ (a2))i2 . . . (Pπ (am))im .
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Case 2. If r > 1, then A can be written at least as a sum of r rank-one tensors. Let 
A =

∑

i∈[r]Ai, where Ai ∈ C[m,n], rank(Ai) = 1, i ∈ [r]. Then, 

 By the results of Case 1, we have 

  Hence, rank(Pπ (A)) ≤ r. Next, we will prove that rank(Pπ (A)) < r is impossible. 
Suppose that rank(Pπ (A)) = r′ < r. Then Pπ (A) can be written at least as a sum of 
r′ rank-one tensors as follows 

 and π−1 be the inverse transformation of π on [n]. Then from (iv), 

 From case 1, rank(P−1
π (Di)) = 1, so rank(A) ≤ r′ < r. It’s a contradiction. There-

fore, rank(Pπ (A)) = r.
(ix) It is easy to be proved from the definition of symmetric tensors.
(x) Suppose that A is a strictly diagonally dominant tensor, then 

 Thus, Pπ (A) is also a strictly diagonally dominant tensor.
(xi)  Suppose that A is positive definite (semidefinite), then all H-eigenvalues of A are 

positive (nonnegative). By (vi) and (ix) of Theorem 3, Pπ (A) is an even-order sym-
metric tensor, and σ(Pπ (A)) = σ(A). From the results above, we know that all 
H-eigenvalues of Pπ (A) are positive (nonnegative). Then, by Lemma 1, Pπ (A) is pos-
itive definite (positive semidefinite). �

Remark 4 By the results of (i) and (ii) of Theorem 3, we know that a permutation trans-
formation of tensor is a linear transformation on C[m,n] (R[m,n]).

Permutation transformation on some structure tensors
It is universally acknowledged that some structure tensors with good properties have been 
well studied, such as nonnegative tensor, symmetric tensor, positive definite (positive sem-
idefinite) tensor, Z-tensor, (strong) M-tensor, Hankel tensor, P(P0)-tensor, B(B0)-tensor  
and H-tensor. In this section, we discuss the invariance under permutation transforma-
tions for some important structure tensors.

Pπ (A) =
∑

i∈[r]

Pπ (Ai).

rank(Pπ (Ai)) = 1, i ∈ [r].

Pπ (A) =
∑

i∈[r′]

Di, where Di ∈ C
[m,n]

, rank(Di) = 1, i ∈ [r′],

A = P−1
π (Pπ (A)) =

∑

i∈[r′]

Pπ−1(Di).

| Pπ (A)ii...i | =| Aπ(i)π(i)...π(i) |

>
∑

i2,...,im∈[n],
δπ(i)i2...im=0

| aπ(i)i2...im |

=
∑

i2,...,im∈[n],
δii2 ...im=0

| Pπ (A)ii2...im |, ∀i ∈ [n].
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Definition 12 (Chang et al. 2008) A tensor A = (ai1...im) ∈ R[m,n] is called a nonnega-
tive tensor, denoted by A ≥ 0, if each entry is nonnegative.

Definition 13 (Zhang et al. 2014) We call a tensor A as an Z-tensor, if all of its off-
diagonal entries are non-positive, which is equivalent to write A = sI − B, where s > 0 
and B is a nonnegative tensor.

From Definition 12, we easily get the following two lemmas.

Lemma 2 Let A ∈ R[m,n] be a nonnegative tensor, π be a permutation on [n]. Then 
Pπ (A) is also a nonnegative tensor.

Lemma 3 Let A ∈ R[m,n] be an Z-tensor, and π be a permutation on [n]. Then Pπ (A) is 
also an Z-tensor.

Definition 14 (Zhang et  al. 2014) We call an Z-tensor A = sI − B(B ≥ 0) as an  
M-tensor if s ≥ ρ(B); we call it as a strong M-tensor if s > ρ(B), where ρ(B) is the spec-
tral radius of B.

Theorem 4 Let A ∈ R[m,n] be an (strong) M-tensor, and π be a permutation on [n]. Then 
Pπ (A) is also an (strong) M-tensor.

Proof Suppose that A ∈ R[m,n] is an (strong) M-tensor, then there exist a nonnegative 
tensor B and a real number s ≥ ρ(B)(s > ρ(B)) such that

From Remark 3,

By Lemma 3, Pπ (A) is an Z-tensor. It follows from (vii) of Theorem  3 that 
ρ(Pπ (B)) = ρ(B), which implies

Therefore, Pπ (A) is an (strong) M-tensor.  �

Definition 15 (Song and Qi 2014) Let A = (ai1i2...im) ∈ R[m,n]. We say that A is

(i)    a P0-tensor if for any nonzero vector x ∈ Rn, there exists i ∈ [n] such that xi �= 0 
and xi(Axm−1)i ≥ 0;

(ii)   a P-tensor if for any nonzero vector x ∈ Rn, maxi∈[n] xi(Axm−1)i > 0.
Lemma 4 (Song and Qi 2014) A symmetric tensor is a P(P0)-tensor if and only if it is 
positive (semi)definite.

Theorem 5 Let A ∈ S[m,n] be an even-order P(P0)-tensor, and π be a permutation on 
[n] . Then Pπ (A) is also an even-order symmetric P(P0)-tensor.

A = sI − B.

Pπ (A) = sI − Pπ (B).

s ≥ ρ(Pπ (B)) (s > ρ(Pπ (B))).
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Proof Suppose that A is an even-order symmetric P(P0)-tensor. According to Lemma 
4, A is positive (semi)definite. It follows from (ix) of Theorem 3 that Pπ (A) is positive 
(semi)definite. Hence, by Lemma 4, Pπ (A) is a P(P0)-tensor.  �

Definition 16 (Song and Qi 2014) Let A = (ai1i2...im) ∈ R[m,n]. We say that A is a B
-tensor, if for all i ∈ [n],

and

for all (j2, . . . , jm) �= (i, . . . , i). We say that A is a B0-tensor, if for all i ∈ [n],

and

for all (j2, . . . , jm) �= (i, . . . , i).

Theorem  6 Let A ∈ R[m,n] be a B(B0)-tensor, and π be a permutation on [n]. Then 
Pπ (A) is also a B(B0)-tensor.

Proof Suppose that A = (ai1i2...im) is a B-tensor, then for all i ∈ [n],

and

for all (j2, . . . , jm) �= (i, . . . , i).
Let Pπ (A) = (bi1i2...im). Then

∑

i2,...,im∈[n]

aii2...im > 0,

1

nm−1




�

i2,...,im∈[n]

aii2...im



 > aij2...jm ,

∑

i2,...,im∈[n]

aii2...im ≥ 0,

1

nm−1




�

i2,...,im∈[n]

aii2...im



 ≥ aij2...jm ,

∑

i2,...,im∈[n]

aii2...im > 0,

1

nm−1




�

i2,...,im∈[n]

aii2...im



 > aij2...jm ,

∑

i2,...,im∈[n]

bii2...im =
∑

i2,...,im∈[n]

aπ(i)π(i2)...π(im)

=
∑

π(i2),...,π(im)∈[n]

aπ(i)π(i2)...π(im) > 0,
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and

Hence, Pπ (A) is a B-tensor. Similarly, we can prove that the case of B0-tensor.  �

Definition 17 (Li et al. 2014) A tensor A = (ai1i2...im) ∈ C[m,n] is called an H-tensor if 
there is an entrywise positive vector x = (x1, x2, . . . , xn)

T ∈ Rn such that for all i ∈ [n],

Theorem 7 Let A ∈ C[m,n] be an H-tensor, and π be a permutation on [n]. Then Pπ (A) 
is also an H-tensor.

Proof Suppose that A = (ai1i2...im) is an H-tensor. Then there is an entrywise positive 
vector x = (x1, x2, . . . , xn)

T ∈ Rn such that for all i ∈ [n], the Inequality 3 holds. Let 
Pπ (A) = (bi1i2...im), where bi1i2...im = aπ(i1)π(i2)...π(im). Hence, for all i ∈ [n],

Thus, Pπ (A) is an H-tensor.  �

Canonical form of tensors
In this section, as an application of the permutation transformation of tensors, we would 
introduce some results which show that the canonical form theorem for matrices could 
be generalized to tensors. For the convenience discussion, we starts with the following 
definitions and lemmas.

Let A ∈ R[m,n] be a nonnegative tensor. The directed graph G(A) (Chang et al. 2013; 
Friedland et al. 2013) associated to A is the directed graph with vertices 1, 2, . . . , n and 
an edge from i to j if and only if aii2...im �= 0 for some il = j, l = 2, 3, . . . ,m.

1

nm−1




�

i2,...,im∈[n]

bii2...im



 =
1

nm−1




�

i2,...,im∈[n]

aπ(i)π(i2)...π(im)





=
1

nm−1




�

π(i2),...,π(im)∈[n]

aπ(i)π(i2)...π(im)





> aπ(i)π(j2)...π(jm) = bij2...jm .

(3)
|ai...i | x

m−1

i
>

∑

i2,...,im∈[n],

δii2 ...im=0

| aii2...im | xi2 . . . xim .

|bi...i | x
m−1

i
= | aπ(i)...π(i) | x

m−1

i

>
∑

i2,...,im∈[n],

δπ(i)i2...im=0

| aπ(i)i2...im | xi2 . . . xim

=
∑

i2,...,im∈[n],

δii2...im=0

| bii2...im | xi2 . . . xim

=
∑

i2,...,im∈[n],

δii2...im=0

| bii2...im | xi2 . . . xim .



Page 11 of 15Li et al. SpringerPlus  (2016) 5:2023 

Definition 18 (Chang et  al. 2013; Friedland et  al. 2013; Hu et  al. 2014) A nonnega-
tive tensor A ∈ R[m,n] is called weakly irreducible if the associate directed graph G(A) is 
strongly connected. A tensor A is said to be weakly irreducible if |A| is weakly irreduc-
ible, where |A| denote the tensor whose (i1, . . . , im)-th entry is defined as |ai1...im |.

Definition 19 (Shao et al. 2013) Let A = (ai1...im) ∈ R[m,n]. If there exists some integer 
k with 1 ≤ k ≤ n− 1 such that

for all i1 ≤ k and at least one of {i2, . . . , im} is greater than k, then A is called a k-lower 
triangular block tensor, or simply a lower triangular block tensor.

Definition 20 Let A ∈ R[m,n] and α ⊆ [n]. A principal subtensor A[α] of the tensor A 
is defined as an order m dimensional |α| tensor with entries

Definition 21 (Shao et al. 2013) Let A ∈ R[m,n], and n1, . . . , nr be positive integers with 
n1 + · · · + nr = n (r ≥ 1). Let

and write A[Ii] = Ai. Suppose that for each 1 ≤ i ≤ r − 1, the subtensor A[Ii ∪ · · · ∪ Ir] 
is a ni-lower triangular block tensor, then A is called a (n1, . . . , nr)-lower triangular block 
tensor with the diagonal blocks A1, . . . ,Ar.

Lemma 5 (Shao et al. 2013) Let A ∈ R[m,n] and m ≥ 2. Then there exists positive inte-
gers r ≥ 1 and n1, . . . , nr with n1 + · · · + nr = n(r ≥ 1) such that A is permutational sim-
ilar to some (n1 + · · · + nr)-lower triangular block tensor, where all the diagonal blocks 
A1, . . . ,Ar are weakly irreducible.

Lemma 6 (Shao et  al. 2013) Let r ≥ 2 and n1, . . . , nr be positive integers with 
n1 + · · · + nr = n. Let A be a (n1 + · · · + nr)-lower triangular block tensor with the diag-
onal blocks A1, . . . ,Ar. Then we have:

and thus

where φA(�) is the characteristic polynomial of the tensor A.

ai1i2...im = 0,

A[α] = (ai1...im), i1, . . . , im ∈ α.

I1 = {1, 2, . . . , n1},

Ii =










�

j∈[i−1]

nj



+ 1, . . . ,
�

j∈[i]

nj






⊆ [n] (i ∈ [r] \ {1}),

Det(A) =
∏

i∈[r]

(DetAi)
(m−1)n−ni

,

φA(�) =
∏

i∈[r]

(φAi(�))
(m−1)n−ni

,
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From Theorem 1, Lemmas 5 and 6, we can easily obtain the following theorems.

Theorem 8 Let A ∈ R[m,n], then there exists a permutation π on [n] such that Pπ (A) is 
a (n1 + · · · + nr)-lower triangular block tensor, where all the diagonal blocks A1, . . . ,Ar 
are weakly irreducible.

Remark 5 Theorem  8 could be called the “canonical form” theorem and the 
(n1 + · · · + nr)-lower triangular block tensor is called the “canonical form” of A.

Theorem 9 Let A ∈ R[m,n] and A be the “canonical form” of A. Then

Proof From Theorem 8 and (vi) of Theorem 3, we have

From Lemma 6, we have

Therefore, the conclusion holds.  �

Canonical form of tensors plays an important role in decomposition of symmetric ten-
sors as a sum of component rank-one tensors, which has numerous applications in elec-
trical engineering and higher order statistics (Brachat et al. 2009; Kolda and Bader 2009; 
Robeva 2016), such Independent Component Analysis (Comon 1992). Given a symmet-
ric tensor A ∈ R[m,n], the aim is to decompose it as

where v1, . . . , vk ∈ Rn and �1, . . . , �k ∈ R. Comon et al. (2008) showed that the decom-
position of the form (4) exists. Furthermore, in Brachat et  al. (2009) an algorithm for 
decomposition a symmetric tensor into a sum of component rank-one tensors was pre-
sented. However, for a tensor with large order or dimension the algorithm may result 
in large computing quantity. According to Theorem 8, and taking into account that A 
is symmetric, there exists a permutation π on [n] such that Pπ (A) is a diagonal block 
tensor, where all the diagonal blocks A1 ∈ R[m,n1], . . . ,Ar ∈ R[m,nr ](

∑

i∈[r] ni = n) are 
weakly irreducible. Therefore, we can use algorithm in Brachat et al. (2009) decomposi-
tion of lower dimensional symmetric tensor Aj , j ∈ [r] as follows

σ(A) = σ(A) =
⋃

i∈[r]

σ(Ai).

σ(A) = σ(A).

σ(A) =
⋃

i∈[r]

σ(Ai).

(4)A =
∑

i∈[k]

�iv
⊗

m
i ,

Aj =
∑

i∈[kj]

�jiv
⊗

m
ji , j ∈ [r], vji ∈ R

nj .
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Therefore,

where

thus, we obtain decomposition of the tensor A as follows.

We shall employ an example to illustrate this interesting property.

Example 1 Let A = (ai1i2i3i4 ) ∈ R[4,4] be a symmetric tensor defined by

By Theorem  8, we can obtain the canonical form of A as follows. Let π be a per-
mutation on {1, 2, 3, 4}, where π(1) = 1,π(2) = 3,π(3) = 2,π(4) = 4. Therefore, 
Pπ (A) = (bi1i2i3i4 ) ∈ R[4,4] reads as follows

It is easy to obtain that Pπ (A) is a diagonal block tensor with the diagonal blocks 
Pπ (A)[Ij], j ∈ {1, 2}, where I1 = {1, 2}, I2 = {3, 4}. By algorithm 1 in Brachat et al. (2009), 
we obtain the rank-one decomposition of the diagonal block tensors Pπ (A)[Ij], j ∈ {1, 2} 
as follows

where

Therefore

Pπ (A) =
∑

j∈[r]

∑

i∈[kj]

�jiω

⊗
m

ji ,

ωji = (

n1times
︷ ︸︸ ︷

0, . . . , 0, . . .

nj−1times
︷ ︸︸ ︷

0, . . . , 0, (vji)
T
,

nj+1times
︷ ︸︸ ︷

0, . . . , 0, . . . ,

nr times
︷ ︸︸ ︷

0, . . . , 0)T ∈ R
n
, j ∈ [r], i ∈ [kj],

A =
∑

j∈[r]

∑

i∈[kj]

�ji

(

P−1
π (ωji)

)⊗m
.

a1111 = 3, a2222 = 15, a3333 = 18, a1333 = a3133 = a3313 = a3331 = 6,

a1133 = a1313 = a1331 = a3113 = a3131 = a3311 = 6,

a2224 = a2242 = a2422 = a4222 = 9, a2444 = a4244 = a4424 = a4442 = 3,

a2244 = a2424 = a2442 = a4224 = a4242 = a4422 = 3, other, ai1i2i3i4 = 0.

b1111 = 3, b2222 = 18, b3333 = 15, b1222 = b2122 = b2212 = b2221 = 6,

b1122 = b1212 = b1221 = b2112 = b2121 = b2211 = 6,

b3334 = b3343 = b3433 = b4333 = 9, b3444 = b4344 = b4434 = b4443 = 3,

b3344 = b3434 = b3443 = b4334 = b4343 = b4433 = 3, other, bi1i2i3i4 = 0.

Pπ (A)[I1] = v
⊗

4

11 + 2v
⊗

4

12 ,

Pπ (A)[I2] = v
⊗

4

21 − v
⊗

4

22 ,

v11 = (1, 2)T , v12 = (1,−1)T , v21 = (2, 1)T , v22 = (1,−1)T .

Pπ (A) = ω

⊗
4

11 + 2ω

⊗
4

12 + ω

⊗
4

21 − ω

⊗
4

22 ,
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where

which implies the rank-one decomposition of tensor A given by

where,

Conclusions
In this paper, the definition of permutation transformation of tensors is introduced, 
and its properties are studied. As applications of permutation transformations, we give 
the canonical form theorem of tensors and a numerical example which show that some 
problems of higher dimension tensors can be translated into the corresponding prob-
lems of lower dimension weakly irreducible tensors by using the permutation transfor-
mation. There are many problems unsolved for permutation transformations of tensors 
and their applications. Hence, this paper is only a starting point for studying permuta-
tion transformations of tensors.
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