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Background
PERFORMACNE test of the China Fusion Engineering Test Reactor (CFETR) central 
solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the 
CFETR magnet performance in relevant operation conditions (Ren et  al. 2015a). A 
superconducting magnet of the coil test facility for CFETR magnet is being designed. 
The superconducting magnet consists of two parts, i.e. the inner part with Nb3Sn coil 
and the outer part with NbTi coil. Both coils are designed based on the Cable-In-Con-
duit Conductor (CICC) technology. The superconducting magnet has a stored energy 
of 436.6  MJ and a maximum magnetic field of 12.59 T. The superconducting magnet 
will be cooled with supercritical helium at 4.5 K inlet temperature. During the opera-
tion, the AC losses due to changing magnetic fields and the heat leak from the envi-
ronment will increase the operating temperature and minimize the temperature margin 
(Ren et  al. 2012). Therefore, the temperature margin behavior of the superconducting 
magnet needs to be analyzed in relevant operating conditions. Once the operating tem-
perature exceeds the current sharing temperature, a large hot spot temperature in the 
normal zone region can be developed. It is very important to make every effort to avoid 
quench of the superconducting magnet from the electromagnetic and heat disturbance. 
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However, the appropriate quench design is mandatory to avoid the severe failure due 
to the overheating of the cable and the overstressing of the jacket during a quench 
(Wang et al. 2004; Meuris et al. 2010; Takahashi et al. 2006). In addition, the appropriate 
quench protection circuit is required to distinguish between quench signal and noise 
(Gaio et al. 2013; Takahashi et al. 2005; Martovetsky and Radovinsky 2006; Lacroix et al. 
2013). The parametric analysis on the hot spot temperature and helium pressure behav-
ior is required to understand the influence of the initial some initial thermal–hydraulic 
parameters for the quench analysis (Nicollet et al. 2013).

To reduce the quench voltage of the coil terminals and to accelerate the current decay 
during a quench, the ST-08 stainless steel with positive temperature coefficient will be 
adopted as the material of dump resistor (Ren et al. 2015b). The 1-D GANDALF code 
was used to analyze the temperature margin and quench propagation behavior (Bottura 
1996).

In this paper, the temperature margin behavior and the quench propagation behavior 
of the superconducting magnet are described.

Results
Description of the superconducting magnet

The superconducting magnet consists of the inner module with Nb3Sn coil and the 
outer module with NbTi coil. The Nb3Sn cable is made of 864 Nb3Sn and 432 copper 
strands inserted into a round-in-square modified 316LN stainless steel jacket with low 
carbon content to form a CICC conductor. The NbTi cable is made of 1440 NbTi strands 
inserted into a round-in-square 316L stainless steel jacket to form a CICC conductor. 
The Nb3Sn coil, which is layer-wound winding, has eight layers with eight cooling chan-
nels. The NbTi coils are pancake wound to minimize the length of the cooling channel. 
There are ten cooling channels for NbTi coils; each cooling channel has two pancakes. 
Table 1 lists the design parameters of the superconducting magnet. Figure 1 shows the 
cross section of a winding pack of the superconducting magnet. Figure 2 shows the mag-
netic field distribution of the superconducting magnet.  

Table 1 Design parameters of the superconducting magnet

Superconductor Nb3Sn NbTi

Jacket 316LN 316L

Inner diameter (mm) 1.4000 2.3808

Outer diameter (mm) 2.3608 3.5288

Height (mm) 1.7050 1.1510

Turn insulation (mm) 1.0 1.0

Layer/pancake insulation (mm) 2.0 1.0

Layer/Pancake 8 20

Turns per layer or pancake 30 10

Void fraction in the CICC 0.3 0.34

Current (kA) 56

Inductance (H) 0.2784

Stored energy (MJ) 436.6

Maximum field (T) 12.59 5.455
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The Nb3Sn CICC conductors are cooled with the forced flow supercritical helium at 
0.55  MPa pressure, 12  g/s mass flow rate and 4.5  K temperature at the coil inlet. The 
NbTi coils are cooled with supercritical helium at inlet pressure of 0.55 MPa, mass flow 
rate of 8 g/s and 4.5 K temperature at the inlet. The hydraulic parameters of the Nb3Sn 
and NbTi CICCs for the superconducting magnet can be shown in references (Ren et al. 
2015a; ITER 2009).

The scaling law and the scaling parameters of the Nb3Sn superconductor can be shown 
in Ref. (ITER 2009; Godeke et  al. 2006). The effective filament diameter is 30  μm for 
the Nb3Sn strand (Bottura 2000). The longitudinal strain of the Nb3Sn strand is mainly 
composed of the thermal strain from the thermal contraction and the strain from the 
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Fig. 1 Cross section of the winding pack of the superconducting magnet

Fig. 2 Magnetic field distribution of the superconducting magnet at 56 kA (Unit: T)
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magnetic loading. The thermal strain of the Nb3Sn strand in a CICC with 316LN stain-
less steel jacket was assumed as −0.664% (ITER 2009). The cables in the CICCs are 
assumed to be fully bonded to the inner surface of the jacket for the mechanical behav-
ior analysis. The 316LN stainless steel jacket with isotropic material properties and the 
insulation material with orthotropic material properties are used for the mechanical 
behavior analysis, which can be described in Ref. (Jong and al 2009). The effective mate-
rial properties in the cable regions, which consists of Young’s modulus, shear modulus, 
thermal contraction and Poisson ratio, can be obtained with the finite element meth-
ods based on the homogeneous theory (Kaminski and Schrefler 2000). A linear elastic 
analysis using the relevant stress–strain model is performed to analyze the strain of the 
cable. The strain generated by the magnetic force is shown in Fig. 3. The critical current 
density of the NbTi superconductor can be obtained by using the single pinning model 
(Bottura 2000). The scaling law and the scaling parameters of the critical current density 
in NbTi superconductor can be shown in relevant expressions (Bottura 2000; Zani et al. 
2005). The effective filament diameter is about 8 μm for the NbTi strand. It is hard to 
accurately evaluate the coupling time constant of the CICC conductors. The coupling 
time constants of the CICC conductors are usually dependent on the local magnetic 
forces, the load cycle process, void fraction, cable layout, aspect ratio, coating material 
of the cable, and the magnet ramp rate, etc. (Bruzzone et al. 2006; Bruzzone et al. 2009; 
Hamada et al. 2004; Ilyin et al. 2010; Cau and Bruzzone 2010; Cau et al. 2009). For sim-
plicity, the coupling time constants with nτ values of the Nb3Sn and NbTi CICC conduc-
tors were selected as 0.075 and 0.15 s for evaluating AC losses respectively (ITER 2009). 
The pressure drop in the central channel and the bundle for the CICC using the relevant 
expressions can be described in (1–3) (Cau et al. 2009; Hamada et al. 2002; Nicollet and 
al 2014).

where dp/dx is the pressure gradient, f is the friction factor, fbundle and fcentral are friction 
factors of the bundle and the central channel, ρ is the density of the helium, v is the flow 
speed, vf is the void fraction, Re is the Reynolds number, Dh is the hydraulic diameter.

Thermal–hydraulic analysis of the superconducting magnet
Current sharing temperature of the superconducting magnet

The maximum magnetic field is located at the innermost layer for the Nb3Sn coil. The 
temperature margin and quench propagation behavior of the innermost layer of the 
Nb3Sn coil were analyzed. For the NbTi coils, the temperature and quench behavior 
of the top channel was analyzed due to the lowest value of the minimum temperature 
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margin is located at the top and bottom channels symmetrically. Here, we refer the 
innermost layer of the Nb3Sn coil and the top channel of the NbTi coil as A1 and B1 
channels, as shown in Fig. 1. Figure 4 shows the current sharing temperature of the A1 
channel and the B1 channel when the operating current reaches the rated current. The 
minimum current sharing temperature are about 6.3 and 6.4 K for both channels.

The superconducting magnet has a chance to operate in a cyclic operation to evalu-
ate the conductor performance. Here, we selected a typical cyclic operation mode when 
the magnet is linearly ramped up to the rated field and then ramped down to zero field, 
cycle after cycle. The ramp rate of 280 A/s was firstly assumed in this case. Figures 5 and 
6 show the maximum cable temperature, outlet temperature and minimum temperature 
margin evolution as functions of time for both channels. The analysis results are shown 
that the lowest values of the minimum temperature margin for the A1 and B1 channels 
are 1.50 and 1.70 respectively.

A parametric analysis was performed to evaluate the minimum temperature margin 
sensitivity to the current ramp rate for both channels. Figure  7 shows the minimum 
temperature margin as a function of the ramp rate for cyclic operation. It is shown that 
the continuous cyclic operations can be allowed for the current ramp rate below 280 
A/s. With increasing the current ramp rate, the minimum temperature margin will drop 
below 1.0 K for the current ramp rate of 500 A/s.

Quench analysis of the superconducting magnet

The superconducting magnet will store a large magnetic energy of about 436.6 MJ at 56 
kA. To avoid the overheating from the hot spot temperature, an appropriate quench pro-
tection is required. The quench protection circuit is composed of the DC power supply, 

Fig. 3 Hoop strain distribution of the superconducting cables at 56 kA
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quench detection circuit, coil isolation amplifiers, dump resistor, diode stack, breaker 
control system, switch control system and emergency dump breakers etc. The quench 
detection circuit will be used to monitor the voltage of the superconducting magnet. The 
high speed DC circuit breakers are used to protect the superconducting coils in case of 
a quench. The input power will be interrupted by opening the emergency dump circuit 
breakers.

The quench propagation behavior was analyzed with the 1 D Gandalf code, together 
with the adiabatic hot spot temperature criterion. The allowable maximum hot spot 
temperature is about 150  K with the 1-D Gandalf code. The allowable maximum hot 
spot temperature is about 250 K by considering only the heat capacity of the cable for 
the adiabatic hot spot temperature criterion. The initial quench triggering point can be 
taken place in Nb3Sn coil or NbTi coil. So, the quench propagation behavior of the A1 
channel and B1 channel needs to be analyzed.

The normal zone length and quench voltage can be obtained with the 1 D GAN-
DALF code. To trigger a quench, a rectangular heat input (1 m, 0.1 s) was exerted into 
the cable to drive the cable into the normal state. The triggered energy adopted is about 
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2 times the energy needed to cause an irreversible quench. Figure 8 shows the normal 
zone length and quench voltage as functions of time for the A1 and B1 channels. It takes 
about 1.80 s to reach the quench voltage of 0.4 V for the A1 channel. It takes about 2.78 s 
to reach the quench voltage of 0.4 V for the B1 channel. To open the circuit breaker, it 
will take about 0.5 s. As a first step, the adiabatic hot spot temperature criteria, together 
with the quench voltage behavior calculated by the 1 D GANDALF code was adopted 
to obtain the maximum holding time. The holding time represents the period between 
quench detection and breaker opening. The total equivalent thermal time constant of 
the A1 channel and B1 channel are about 9.8 and 8.2 s respectively.

The discharge time constant is selected as 2.8 s for the superconducting magnet. The 
maximum holding time can be obtained as 6.1  s by taking into account the threshold 
voltage of 0.4 V if the quench originated from the A1 channel. The maximum holding 
time can be obtained as 3.52 s by taking into account the threshold voltage of 0.4 V and 
the discharge time constant of 2.8  s if the quench originated from the B1 channel. As 
shown in Ref. (Martovetsky et  al. 2016), the cable temperature differs from the jacket 
temperature as a result of the quench propagation with delay. Therefore, a relatively less 
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holding time was selected for limiting the hot spot temperature of the cable. The thresh-
old voltage and holding time can be designed as 0.4 V and 2.0 s respectively.

Figure 9 shows the cable temperature and helium pressure evolution along the cooling 
length of the A1 channel as functions of time with the holding time of 2.0 s, initial dis-
turbance length of 1 m and quench threshold voltage of 0.4 V. The maximum cable tem-
perature is about 78.9 K, which is well below the ITER design criterion. The maximum 
helium pressure inside the 316LN jacket is about 4.2 MPa, which is well below the ITER 
design criterion of 25 MPa.

Figure 10 shows the evolution of the cable temperature and helium pressure inside the 
jacket of the B1 channel along the cooling length for different times with the holding 
time of 2.0 s, initial disturbance length of 1 m and quench threshold voltage of 0.4 V. It 
is shown that the maximum cable temperature of the NbTi cable is about 76.7 K, which 
is well below the ITER design criterion. The maximum helium pressure inside the 316L 
jacket is about 1.66 MPa, which is well below the ITER design criterion of 25 MPa.

To evaluate the sensitivity of the maximum cable temperature and maximum helium 
pressure inside the jacket to the holding time, the initial disturbance length, and the 
threshold voltage, the parametric analysis was performed for both channels. The analysis 
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results are shown in Tables 2, 3 and 4. The maximum cable temperature increases with 
increasing the holding time and threshold voltage for both channels. The disturbance 
length has the opposite effects on the maximum cable temperature. The threshold volt-
age and the holding time have a negligible impact on the maximum helium pressure 
while the initial disturbance length has a substantial impact on the maximum helium 
pressure. The maximum helium pressure is about 7.22 MPa for the threshold voltage of 
0.4 V, the holding time of 2.0 s and the disturbance length of 10.0 m for the A1 channel. 
The maximum cable temperature is about 106.4 K for the threshold voltage of 0.4 V, the 
holding time of 4.0 s and the disturbance length of 1.0 m for the A1 channel. The maxi-
mum cable temperature is about 111.1  K for the threshold voltage of 0.4  V, the hold-
ing time of 4.0 s and the disturbance length of 1.0 m for the B1 channel. Therefore, the 
superconducting magnet can be protected with the threshold voltage of 0.4 V and hold-
ing time of 2.0 s.
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Conclusion
The temperature margin behavior and quench propagation behavior of the supercon-
ducting magnet are analyzed. The analysis results show that the magnet has the suf-
ficient minimum temperature margin. The quench analysis is shown that the hot spot 
temperature and the helium pressure inside the jacket are well below the ITER design 
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Table 2 Sensitivity of maximum cable temperature and maximum helium pressure to dis-
turbance length for the A1 and B1 channels

Disturbance length 
(m)

A1 channel B1 channel

Max. cable tem-
perature (K)

Max. helium pres-
sure (MPa)

Max. cable tem-
perature (K)

Max. helium 
pressure (MPa)

0.5 84.0 4.17 82.8 1.63

1.0 (Ref.) 78.9 4.18 76.6 1.66

10.0 58.0 7.22 50.3 2.93
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criteria. Therefore, the quench protection parameters selected can be designed to safely 
protect the superconducting magnet.
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