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Background
Multiscale methods for decomposing a signal into several significant modes with simple 
forms have been widely studied for last two decades. Since the decomposition procedure 
reduces the complexity of a signal and at the same time, enhances interpretability of its 
components, the information embedded in a signal can be easily recovered.

Spectral analysis (Priestley 1981) and wavelet analysis (Mallat 2009; Daubechies 1992; 
Vidakovic 1999) are popular multiscale methods for signal decomposition. Huang 
et al. (1998) proposed a data-adaptive procedure called empirical mode decomposition 
(EMD), and Daubechies et al. (2011) proposed an alternative method of EMD, termed 
synchrosqueezed wavelet transforms, which are based on reassignment methods of 
wavelet coefficients. These multiscale decomposition methods implicitly assume that 
a signal is observed at equally spaced time points. Since the local behavior of a signal 
can evolve over time, by utilizing the local information observed at equally spaced time 
points, it is useful for identifying the amount of variation at different scale and time loca-
tion and for extracting each superimposed component. However, for many signals, miss-
ing values occur quite common. In practice, large amount of missing values may occur at 
random, for example, for intermittent wireless signal caused by malfunction of network 
device for one-dimensional signal and partial fingerprint due to incomplete touch in dig-
ital scanner for two-dimensional image. The problem we concern in this paper is that 
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when some observations are missing, most multiscale decomposition methods produce 
ineffective outcome. Especially, since EMD depends on the behavior of local extrema, 
missing of local extrema causes severe distorted results. The brief review of EMD proce-
dure will reveal this aspect more clearly.

 Huang et al. (1998) proposed a data-driven multiscale procedure for sequentially sep-
arating each superimposed component from a given signal s(t) as follows. First, identify 
local extrema and construct two functions called upper and lower envelopes by interpo-
lating local maxima and local minima, respectively. Second, take a mean of upper and 
lower envelopes, which produces a signal with a lower frequency than that of the origi-
nal signal s(t). Third, subtract the mean envelope from the signal s(t) and obtain a highly 
oscillatory wave h(t). Such an oscillatory wave h(t) is defined as an intrinsic mode func-
tion (IMF) if it satisfies two conditions: (1) the number of extrema and the number of 
zero-crossings of h(t) is equal or differ by one and (2) the local average of h(t) is zero. If 
the wave h(t) does not satisfy the above conditions, then the same procedure is repeated 
for h(t) until the conditions are satisfied. This iterative process is called sifting. Through 
sifting the original signal s(t) is decomposed into the highest frequency imf1(t) and a 
residual signal r1(t) = s(t)− imf1(t). As the sifting is applied to the residue, the signal 
is sequentially decomposed into several signals having different frequencies from the 
highest-frequency component imf1(t) to the lowest-frequency component imfn(t) and 
a residual signal r(t). After decomposition, we finally have n IMFs and a residual signal

In the literature, there have been many studies to enhance the performance of the con-
ventional EMD. Boudraa and Cexus (2007) separated the high-frequency components 
using a filtering method. Wu and Huang (2009) developed the ensemble EMD (EEMD) 
by averaging the simulated signals. The variants of EEMD have been proposed by sev-
eral authors. The complementary ensemble EMD (CEEMD) (Yeh et al. 2010) was intro-
duced by adding pairs of positive and negative noises into a signal and applying EEMD. 
Torres et al. (2011) proposed the complete ensemble EMD with adaptive noise (CEEM-
DAN). EEMD is applied to each stage of decomposition by adding a noise to a signal and 
a residue after each IMF extraction. The improved complete ensemble EMD (ICEEMD) 
(Colominas et al. 2014) controlled noise level between the added noise and a residue for 
CEEMDAN process. Xu et al. (2009) proposed a hybrid extrema estimation algorithm 
based on Fourier interpolation to decompose signals with lower sampling rate. Diop 
et  al. (2010) suggested a PDE-based approach to compute envelopes. Barnhart et  al. 
(2011, 2012) provided a methodology for discontinuous data by applying EMD on each 
individual continuous data segment, and by adapting mirroring approach for the discon-
tinuous data gaps. Kim et al. (2012a) introduced the statistical EMD adapting smoothing 
of local extrema instead of interpolation. Komaty et al. (2014) suggested a signal-filtering 
approach based on a combination of EMD and a similarity measure for noise removal. 
Park et al. (2015) applied a quantile smoothing method to a signal itself instead of inter-
polating local extrema of a signal for sifting. The extension of EMD to two-dimensional 
image has been developed by several authors. Damerval et al. (2005) employed moving 

s(t) =

n∑

i=1

imf i(t)+ r(t).
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window and Nunes et  al. (2005) used morphological operation for two-dimensional 
extrema detection. Bhuiyan et al. (2008) proposed order-statistics filter method for enve-
lope estimation of two-dimensional image. Kim et  al. (2012b) proposed a two-dimen-
sional EMD through the smoothing sifting of two-dimensional local extrema.

As observed in the aforementioned EMD procedure, when some missing values are 
present, EMD produces distorted decomposition results due to two reasons: (1) when 
the observations are not equally spaced, it is difficult that the local behavior of a signal 
can be captured in a balanced way and (2) especially if missing occurs in local extrema, 
the sifting fails to capture upper and lower envelopes properly.

We consider a simulated example that clarifies the above-mentioned problem of the 
conventional EMD and provides a motivation of the proposed method. The left panel of 
Fig. 1 illustrates a signal of three components sin(π t)+ sin(2π t)+ sin(6π t)(t ∈ [0, 30]) 
and sifting process. Figure 1b shows upper and lower envelopes constructed by inter-
polating the local maxima and minima (black points), respectively, and its mean enve-
lope denoted by dotted line on t ∈ [15, 20]. By subtracting the mean envelope from the 
original signal, a candidate IMF h is obtained as in Fig. 1c. The sifting process continues 
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until the first IMF imf1 in Fig. 1d is extracted. On the other hand, the right panel of Fig. 1 
shows the sifting process for a signal with 40% missing values denoted by red points. By 
observing the location of local extrema and missing values in Fig. 1e, we notice that the 
overall pattern of the original signal cannot be captured between two envelopes. Espe-
cially, on the area around t = 17 in Fig.  1f, the lower envelope is distorted due to the 
missing values. This phenomena eventually produces improper candidate IMF h and 
the first IMF imf1 as displayed in Fig. 1g, h. Thus, the conventional EMD does not work 
properly to decompose the three component signal with missing values, and hence, fails 
to extract the sinusoid component sin(6π t) effectively.

To improve EMD algorithm in the presence of missing values, we propose a new 
method by adapting the concept of self-consistency that recursively imputes missing val-
ues and decomposes the imputed signal efficiently under EMD framework. For practical 
implementation, we provide a modified EMD algorithm which consists of two alternat-
ing steps, imputation and decomposition. In addition, we discuss some remarks of the 
algorithm such as the fitting method, the selection of smoothing parameter in the fitting 
method, the choice of initial values, and so on. Furthermore, we extend the proposed 
method to a two-dimensional signal with missing values, so that this extension provides 
a meaningful influence on image decomposition.

The rest of the paper is organized as follows. In “Methods” section, we briefly review 
the self-consistency principle, and propose a new method for signal decomposition in 
presence of missing values with a practical algorithm. To evaluate empirical perfor-
mance of the proposed method, simulation studies for one-dimensional signal are con-
ducted in “Numerical study” section, and a real data example is presented in this section. 
Furthermore, in “Extension to image” section, the extension to two-dimensional signals 
is discussed. Lastly, conclusions are addressed in “Conclusions” section.

Methods
Review: self‑consistency

Tarpey and Flury (1996) introduced the self-consistency as a fundamental concept in 
statistics, which is inspired by Hastie and Stuetzle (1989) for developing principal curves.

Definition 1 (Tarpey and Flury 1996) A random signal f is self-consistent for g if 
E(f |g) = g almost surely.

As pointed out in Tarpey and Flury (1996), there is a close connection between the 
concept of self-consistency and Expectation-Maximization (EM) algorithm of Dempster 
et al. (1977). The EM algorithm generates a sequence of self-consistent random variables 
and the maximum likelihood estimator satisfies the self-consistency condition. Further, 
Lee and Meng (2007) considered a self-consistent regression estimator with incomplete 
data. They proposed an estimate f̂obs of f given observed data Xobs that is the solution of 
the following self-consistent equation

(1)E(f̂com|Xobs, f = f̂obs) = f̂obs,
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where f̂com denotes an estimate of f based on the imaginary complete data 
X com = (Xobs,Xmis) and Xmis is missing data. Since Eq.  (1) does not depend on the 
method for estimation, it can be applicable for EMD approach with missing data.

Proposed algorithm

Suppose that a signal s(t) is observed at equally spaced time points, but there are some miss-
ing values at a set of time points tm. Let tc = (to, tm) be the set of time points in the complete 
data s(tc), where to denotes the set of time points for the observed signal. Thus, it follows 
that s(tc) = (s(to), s(tm)). Suppose for the moment that, given s(tc), we have a decomposi-
tion by EMD as s(tc) =

∑n
i=1 imf i(tc)+ r(tc). In practice, the values s(tm) are not available, 

and hence, given imputed values ŝ(tm), we consider an estimated decomposition as

Thus, it is required to have a method to fit the data at the observed locations and predict 
ŝ(tm) at the missing locations, which are used for imputed values.

For this purpose, we consider the self-consistent Eq. (1) under this framework as

Suppose that f̂ (·) satisfies the above equation. Then the imputed values can be obtained 
by ŝ(tm) := f̂ (tm), and hence, we finally obtain the decomposition in (2). In fact, the 
rationale to employ Eq. (3) for our missing problem can be explained as follows. Let 
f̂com be the estimator based on the complete data and f̂  be the estimator based on the 
observed data. For any f̂  and a set of missing time points tm, it follows that, under the 
assumption that the missing pattern is random,

Hence, the minimization of �s(tm)− f̂ (tm)�
2 over f̂  at the set tm is equivalent to mini-

mization of �E[f̂com(tm)|s(to), f̂ (tm)] − f̂ (tm)�
2, which is obtained by the solution of (3).

Here we propose a simple and fast algorithm to implement (2) and (3) as follows. 
Given initial values ŝ(0)(tm),

1. Iterate, until convergence, the following alternating steps for ℓ = 1, 2, . . . ,

1.1.  Imputation Step: Fit f̂ (ℓ−1)(to) at the observed locations to, impute by prediction 
ŝ(ℓ)(tm) := f̂ (ℓ−1)(tm) at the missing locations tm and construct a complete data 
ŝ(ℓ)(tc) := (s(to), ŝ

(ℓ)(tm)).
 1.2. Decomposition Step: Apply EMD procedure to ŝ(ℓ)(tc) and obtain 

(2)ŝ(tc) = (s(to), ŝ(tm)) =

n∑

i=1

îmf i(tc)+ r̂(tc).

(3)E(f̂com|s(to), f̂ ) = f̂ .

�s(tm)− f̂ (tm)�
2 = �s(tm)− f̂com(tm)+ f̂com(tm)− f̂ (tm)�

2

= �s(tm)− f̂com(tm)�
2 + �f̂com(tm)− f̂ (tm)�

2

= �s(tm)− f̂com(tm)�
2 + �f̂com(tm)− E[f̂com(tm)|s(to), f̂ (tm)]�

2

+ �E[f̂com(tm)|s(to), f̂ (tm)] − f̂ (tm)�
2.

ŝ(ℓ)(tc) =

n∑

i=1

îmf
(ℓ)

i (tc)+ r̂(ℓ)(tc).
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1.3. The iteration stops if ||ŝ
(ℓ+1)−ŝ(ℓ)||
||ŝ(ℓ)||

≤ δ for some tolerance level δ > 0.
2. Take the converged IMFs as the final IMFs.

We have some remarks regarding the aforementioned algorithm:

  • For the fitting method, we consider various nonparametric function estimation 
methods such as smoothing splines, kernel smoothing, and the local polynomial 
regression. The asymptotic results of the equivalent kernel described in Silverman 
(1984) support the fact that both a spline-type estimator and kernel smoother includ-
ing local polynomial regression estimator can be written 

 where w(t, ti) denote weights at time point ti. In this study, we employ the smoothing 
splines with a smoothing parameter chosen by generalized cross-validation.

  • In this study, we use the local mean values as ŝ(0)(tm) for the choice of initial values.
  • Note that the imputation step does not depend on the dimension of s. Thus it can 

be easily extended to two-dimensional image. The only modification required is to 
replace the 1-dimensional smoothing method in the imputation step by a 2-dimen-
sional method such as thin-plate smoothing splines.

Numerical study
Simulation study

Here we discuss results from a simulation study that was designed to assess the practi-
cal performance of the proposed method. In this simulation study, we compare the pro-
posed method with two other methods:

1. EMD.obs: the conventional EMD algorithm with observed data,
2. EMD.self: the proposed EMD algorithm described in “Proposed algorithm” section, 

and
3. EMD.com: the conventional EMD algorithm with imaginary complete data.

Note that EMD.com is used as a benchmark for comparison. We consider two 
test functions, (1) a composite sine function of the form S1(t) = sin(π t)+

sin(2π t)+ sin(6π t)+ 0.05t(t ∈ [0, 30]), and (2) a chirp signal of the form 
S2(t) = exp(−0.01t) cos(π t/4)+ 0.002t(t ∈ [0, 500]). Figure  2 displays two test func-
tions and their components.

To evaluate how the proposed algorithm performs according to missing data percent-
age, we consider five different missing percentages: 10, 20, 30, 40 and 50%. In addition, 
we consider two cases of missing pattern: (a) The first one is missing at random where 
missing locations were randomly selected from inside 90% of the time domain and miss-
ing values do not exist near boundaries. (b) The second one is missing at random where 
missing locations were randomly selected over the entire domain including boundaries.

For each test function, missing percentage, and missing pattern, 100 datasets with 
sample size 2000 are generated. For each generated dataset, three methods above were 

f̂ (t) =
1

n

n∑

i=1

w(t, ti)s(ti),
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applied to decompose the test function. To evaluate the decomposition results, we con-
sider mean squared error (MSE) as a discrepancy measure

where g and ĝ denote the true component and the corresponding extracted IMF.
Figures 3 and 4 show box plots of MSE values for two missing patterns. The proposed 

EMD.self is comparable to EMD.com when the missing data percentage is up to 50%. 
Even when missing exists near the boundary, EMD.self works well due to effective impu-
tation by the proposed algorithm.

To access the property of the extracted IMFs, we compare the decomposition results 
for test signal S1 with 40% missing values. Figure  5 illustrates that the decomposition 
result of the panel (b) by the proposed EMD.self produces more accurate IMFs than 
the decomposition result of the panel (a) by EMD.obs. Figure 6 shows that the perio-
dogram of signal S1, reconstruction by EMD.obs and reconstruction by EMD.self. The 
periodogram by EMD.self effectively detects three main frequencies of signal S1, while 
it is difficult to identify three main frequencies from the periodogram by EMD.obs. The 
proposed method can be applied to a noisy signal. From Fig. 7 of noisy signal S1 with the 
signal-to-noise ratio (SNR) seven, the proposed EMD.self produces more accurate IMFs 
than EMD.obs does. Here, SNR is defined as ||S1||/σ where σ is the standard deviation 
of noise. Table 1 lists MSE values for noise-free signal S1 in Fig. 5 and noisy signal S1 in 
Fig. 7 by EMD.obs and EMD.self. As one can see, MSEs of extracted IMFs by the pro-
posed EMD.self are smaller than MSEs by EMD.obs, for both noise-free and noisy signal.

MSE (g(to), ĝ(to)) =
1

#{to}

∑

ti∈to

{g(ti)− ĝ(ti)}
2,
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Furthermore, it is common that the missing locations occur in consecutive time 
points, for example, due to the malfunction of sensor to measure a signal. As for the 
third missing pattern, we consider the missing occurs in consecutive time points to form 
a block of missing values. Box plots of MSEs according to different length of block are 
given in Fig.  8 when missing percentage is 30%. From Fig.  8, the proposed method is 
comparable to EMD.com when the length of block is up to four.

Real data example

The signal in Fig. 9 shows clarinet sound playing the note Coctave0. The data are availa-
ble in the website http://wiki.laptop.org/go/Sound_samples. We extracted 2048 samples 
between 0.32 and 0.41 s with 22,050 Hertz for the analysis. For comparison, we inten-
sionally make 40% missing values from clarinet signal denoted by black points. Then we 
perform the aforementioned three methods for decomposition. As shown from Fig. 10, 
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the conventional EMD does not work properly to decompose a signal under the presence 
of missing values especially around 0.38 s, while the proposed method produces almost 
the same decomposition result to the decomposition result of the complete signal.

Extension to image
Bidimensional EMD for two-dimensional signals such as images has been proposed by 
some studies (Damerval et  al. 2005; Nunes et  al. 2005; Bhuiyan et  al. 2008; Kim et  al. 
2012b). To construct the upper and lower envelopes of two-dimensional signals, inter-
polation is done with the scattered sparse extrema. Therefore, missing aggravates 
insufficient sampling rate, and causes more obstacle to estimate candidate IMFs. Two-
dimensional extension is straightforward by recursively imputing the two-dimensional 
missing values through thin-plate spline and decomposing imputed image by an existing 
two-dimensional EMD procedure.
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Fig. 7 Comparison between decomposition results of noisy signal S1 by EMD.obs and EMD.self when missing 
percentage is 40%. a Decomposition by EMD.obs, b decomposition by EMD.self
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Now we consider a test image f as, for x, y ∈ [0, 1],

This image consists of two sinusoidal types of components and a trend compo-
nent. Figure  11 shows test image f, which consists of the high-frequency component 
sin(15πx) sin(15πy) and the low-frequency component sin(7πx) sin(7πy). The right-
most panel of Fig. 11 illustrates the image with 40% missing values. The white pixels rep-
resent the locations of the missing observations.

f (x, y) = 2xy+ sin(15πx) sin(15πy)+ sin(7πx) sin(7πy).

Table 1 MSE values for noise-free signal S1 in Fig. 5 and noisy signal S1 in Fig. 7 by EMD.obs 
and EMD.self when missing percentage is 40%

imf1 imf2 imf3

EMD.obs EMD.self EMD.obs EMD.self EMD.obs EMD.self

Noise‑free S1 0.0030 0.0010 0.0035 0.0026 0.0045 0.0040

Noisy S1 0.0134 0.0061 0.0141 0.0071 0.0095 0.0052
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Fig. 8 Boxplots of MSE values according to the length of block, 2, 3, 4 and 5 when missing percentage is 
30%: 1 EMD.obs, 2 EMD.self, 3 EMD.com
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To evaluate the proposed method, we compare the decomposition results for the 
complete image and imputed image with local mean near missing. The first and sec-
ond rows of Fig.  12 represent two components as the decomposition results for the 
complete image and imputed image with local mean near missing. As shown, the pro-
posed method extracts the proper IMFs, and decomposes the high-frequency and low-
frequency components effectively as the decomposition for the complete image does. 
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Fig. 9 Clarinet sound with 40% missing values denoted by black points
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Fig. 10 Decomposition of clarinet sound. a Decomposition of observed signal, b decomposition by the 
modified EMD, c decomposition of complete signal

Fig. 11 The test image
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However the decomposition for the imputed image by mean does not extract the first 
IMF properly, which affects the subsequent decomposition results. There are lots of 
spots in the first IMF due to the improper imputation.

Fig. 12 Decomposition results for the test image
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Conclusions
In this paper, we have proposed a modified empirical mode decomposition to deal with 
missing data problems. The proposed method is based on imputation using the self-con-
sistency principle. We have presented an effective algorithm for implementation of the 
proposed method. The empirical performance of the proposed method has been eval-
uated throughout various numerical experiments including both one and two-dimen-
sional settings. Results from these experiments illustrate the proposed method possesses 
good empirical properties.
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