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Introduction and preliminaries
Let H1 and H2 be two real Hilbert spaces, let D ⊂ H1 and Q ⊂ H2 be nonempty closed, 
and convex subsets, let A : H1 → H2 be a bounded linear operator. Then the split fea-
sibility problem (Censor and Elfving 1994) is to find z ∈ H1 such that z ∈ D ∩ A−1Q . 
Defining U = A∗(I − PQ)A in the split feasibility problem, we see that U : H1 → H1 
is an inverse strongly monotone operator (Alsulami and Takahashi 2014), where A∗ is 
the adjoint operator of A and PQ is the metric projection of H2 onto Q. Furthermore, if 
D ∩ A−1Q is nonempty, then

where � > 0 and PD is the metric projection of H1 onto D. Using such results regard-
ing nonlinear operators and fixed points, many authors have studied the split feasibility 
problem in Hilbert spaces; see, for instance, Alsulami and Takahashi (2014), Byrne et al. 
(2012), Censor and Segal (2009), Moudafi (2010), Takahashi et al. (2015). Recently, Taka-
hashi (2014) and Takahashi (2015) extended an equivalent relation as in (1) in Hilbert 

(1)z ∈ D ∩ A−1Q ⇔ z = PD(I − �A∗(I − PQ)A)z,
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spaces to Banach spaces and then obtained strong convergence theorems for finding a 
solution of the split feasibility problem in Banach spaces. Very recently, using the hybrid 
method by Nakajo and Takahashi (2003) in mathematical programming, Alsulami et al. 
(2015) proved strong convergence theorems for finding a solution of the split feasibility 
problem in Banach spaces; see also Ohsawa and Takahashi (2003), Solodov and Svaiter 
(2000). Takahashi (2015) also obtained a result for finding a solution of the split feasibil-
ity problem in Banach space from the idea of the shrinking projection method by Taka-
hashi et  al. (2008). Takahashi and Yao (2015) presented the following hybrid iteration 
algorithm in a Hilbert space H: for x1 ∈ H,

They proved the following strong convergence theorem:

Theorem TY Let H be a Hilbert space and let F be a uniformly convex and smooth 
Banach space. Let JF be the duality mapping on F. Let A and B be maximal monotone 
operators of H into 2H and F into 2F∗. such that A−10 �= ∅ and B−10 �= ∅, respectively. 
Let J� be the resolvent of A for � > 0 and let Qµ be the metric resolvent of B for µ > 0. Let 
T : H → F  be a bounded linear operator such that T �= 0 and let T ∗ be the adjoint opera-
tor of T. Suppose that A−10 ∩ T−1(B−1)0 �= ∅. Let x1 ∈ H and let {xn} be a sequence gen-
erated by (TY), where {αn ⊂ [0, 1]} and {�n}, {µn} satisfy the condition such that

for some a, b, c ∈ R. Then {xn} converges strongly to a point z0 = PA−10∩T−1(B−10)x1.
In this article, a new multidirectional monotone hybrid iteration algorithm for finding 

a solution to the split common fixed point problem is presented for two countable fami-
lies of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems 
are proved. The application of the result is to consider the split common null point prob-
lem of maximal monotone operators in Banach spaces. Strong convergence theorems 
for finding a solution of the split common null point problem are derived. This iteration 
algorithm can accelerate the convergence speed of iterative sequence.

Let E be a real Banach space with norm � · � and let E∗ be the dual space of E. We 
denote the value of y∗ ∈ E∗ at x ∈ E by �x, y∗�. A Banach space E is uniformly convex if 
for any two sequences {xn} and {yn} in E such that

limn→∞ �xn − yn� = 0 holds. A uniformly convex Banach space is reflexive.
The duality mapping J from E into 2E∗ is defined by

(TY)



































zn = J�n(xn − �nT
∗JF (Txn − QµnTxn)),

yn = αnxn + (1− αn)zn,

Cn =
�

z ∈ H :
�

�yn − z
�

� ≤ �xn − z�
�

,

Dn = {z ∈ H : �xn − z, x1 − xn� ≥ 0}
xn+1 = PCn∩Dnx1.

0 ≤ αn ≤ α < 1, 0 < b ≤ µn, 0 < c ≤ rn�T�2 ≤ d < 2,

lim
n→∞

�xn� = lim
n→∞

�yn� = 1 and lim
n→∞

�xn + yn� = 2,

Jx = {x∗ ∈ E∗ : �x, x∗� = �x�2 = �x∗�2}
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for every x ∈ E. Let U = {x ∈ E :� x �= 1}. The norm of E is said to be Gateaux differen-
tiable if for each x, y ∈ U , the limit

exists. In the case, E is called smooth. We know that E is smooth if and only if J is a sin-
gle- valued mapping of E into E∗. We also know that E is reflexive if and only if J is sur-
jective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, 
strictly convex and reflexive Banach space, then J is a single-valued bijection and in this 
case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗. For more 
details, see Takahashi (2009) and Takahashi (2000).

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive 
Banach space E. Then we know that for any x ∈ E, there exists a unique element z ∈ C 
such that � x − z �≤� x − y � for all y ∈ C. Putting z = PCx, we call PC the metric pro-
jection of E onto C.

Definition 1 Let E be a metric space, let T : D(T ) → R(T ) be a mapping with the 
domain D(T) and the range R(T). The mapping T is said to be quasi-nonexpansive if

where F(T) is the nonempty fixed point set of T.

Definition 2 Let E be a smooth Banach space, let S : D(T ) → R(T ) be a mapping with 
the domain D(T) and the range R(T). The mapping S is said to be second-type quasi-
nonexpansive, if

where F(S) is the nonempty fixed point set of T.

Definition 3 Let E, F be two normed spaces and T be a linear operator from E into F. 
The adjoint operator T ∗ : F∗ → E∗ of T is defined by

where E∗ and F∗ are the adjoint spaces of E and F, respectively.
The adjoint spaces and adjoint operators are very important in the theory of functional 

analysis and applications. Not only is it an important theoretical subject but it is also a 
very useful tool in the functional analysis and topological theory.

Definition 4 Let E be a Banach space, let C be a nonempty, closed, and convex subset 
of E. Let {Tn} be sequence of mappings from C into itself with nonempty common fixed 
point set F = ∩∞

n=1F(Tn). The {Tn} is said to be uniformly closed if for any convergent 
sequence {zn} ⊂ C such that �Tnzn − zn� → 0 as n → ∞, the limit of {zn} belong to F.

lim
t→0

� x + ty � − � x �
t

d(Tx, p) ≤ d(x, p), ∀ x ∈ D(T ), p ∈ F(T ),

�Sx − p, J (Sx − x)� ≤ 0, ∀ x ∈ D(T ), ∀ p ∈ F(S),

f (T (x)) = (T∗f )(x), ∀ x ∈ E, f ∈ F∗
,
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Main results

Lemma 5 Let H be a Hilbert space, let C be a closed convex subset of H, and let {Tn} be 
a uniformly closed family of countable quasi-nonexpansive mappings from C into itself. 
Then the common fixed point set F is closed and convex.

Proof Let pn ∈ F  and pn → p as n → ∞, we have

as n → ∞. Since {Tn} is uniformly closed, we know that p ∈ F , therefore F is closed. Next 
we show that F is also convex. For any x, y ∈ F , let z = tx + (1− t)y for any t ∈ (0, 1), we 
have

for all n. This implies z ∈ F , therefore F is convex. This completes the proof. �

Lemma 6 Let E be a smooth Banach space, let C be a closed convex subset of E, and let 
{Sn} be a uniformly closed family of countable second-type quasi-nonexpansive mappings 
from C into itself. Then the common fixed point set F is closed and convex.

Proof Let pn ∈ F  and pn → p as n → ∞, we have

as n → ∞. Since {Tn} is uniformly closed, we know that p ∈ F , therefore F is closed. Next 
we show that F is also convex. For any x, y ∈ F , let z = tx + (1− t)y for any t ∈ (0, 1), we 
have

From the two inequalities given above, we have that

�Tnpn − pn� → 0, pn → p

�Tnz − z�2 = �Tnz − z,Tnz − z�
= �Tnz�2 − 2�Tnz, z� + �z�2

= �Tnz�2 − 2�Tnz, tx + (1− t)y� + �z�2

= �Tnz�2 − 2t�Tnz, x� − 2(1− t)�Tnz, y� + �z�2

= t�Tnz�2 + (1− t)�Tnz�2 + t�x�2 − t�x�2 + (1− t)�y�2

− (1− t)�y�2 − 2t�Tnz, x� − 2(1− t)�Tnz, y� + �z�2

= t(�Tnz�2 − 2t�Tnz, x� + �x�2)+ (1− t)(�Tnz�2 − 2t�Tnz, y� + �y�2)
− t�x�2 − (1− t)�y�2 + �z�2

= t�Tnz − x,Tnz − x� + (1− t)�Tnz − y,Tnz − y�
− t�x�2 − (1− t)�y�2 + �z�2

= t�Tnz − x�2 + (1− t)�Tnz − y�2 − t�x�2 − (1− t)�y�2 + �z�2

≤ t�z − x�2 + (1− t)�z − y�2 − t�x�2 − (1− t)�y�2 + �z�2

= �z�2 − 2�z, z� + �z�2 = 0,

�Tnpn − pn� → 0, pn → p

�Snz − x, J (Snz − z)� ≤ 0,

�Snz − y, J (Snz − z)� ≤ 0.

�t(Snz − x)+ (1− t)(Snz − y), J (Snz − z)� ≤ 0
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which implies

Therefore �Snz − z�2 ≤ 0, that is �Snz − z�2 = 0, so that z ∈ F . Therefore F is convex. 
This completes the proof. �

Lemma 7 (Alber 1996) Let H be a Hilbert space, let C be a nonempty closed convex sub-
set of H and let x ∈ E. Then

Next, we present a new hybrid algorithm so-called the multidirectional hybrid algorithm 
for finding the common fixed point of a uniformly closed family of countable quasi-non-
expansive mappings and a uniformly closed family of countable second-type quasi-non-
expansive mappings.

Theorem  8 Let H be a Hilbert space and let E be a uniformly convex and smooth 
Banach space. Let J be the duality mapping on E. Let {Tn} : H → H be a uniformly 
closed family of countable quasi-nonexpansive mappings with the nonempty common 
fixed point set ∩∞

n=1F(Tn) and {Sn} : E → E be a uniformly closed family of countable 
second-type quasi-nonexpansive mappings with the nonempty common fixed point sets 
∩∞
n=1F(Sn). Suppose that F = (∩∞

n=1F(Tn)) ∩ (T−1(∩∞
n=1F(Sn))) �= ∅. Let T : H → E be 

a bounded linear operator such that T �= 0 and let T ∗ be the adjoint operator of T. Let 
x1,i ∈ H , i = 1, 2, 3, . . . ,N  and let {xn} and {zn} be two sequences generated by

where {rn} satisfy the condition such that

for some constants a, b and � ∈ [0, 1] is a constant. Then the following conclusions hold:
(1) {xn} and {zn} converge strongly to a point w ∈ F ;
(2) the limits limn→∞ PCnx1,i = PFx1,i, i = 1, 2, 3, . . . ,N ;
(3) w =

∑N
i=1 �i limn→∞ PCnx1,i.

Proof It is not hard to see that, Cn is closed and convex for all n ≥ 0. Let us show that, 
F ⊂ Cn for all n ≥ 0. For any z ∈ F , we have

�Snz − z, J (Snz − z)� ≤ 0.

�z − PCx�2 + �PCx − x�2 ≤ �z − x�2, ∀ z ∈ C .























zn = Tn(xn − rnT
∗J (Txn − SnTxn)),

Cn = {z ∈ Cn−1 : �zn − z� ≤ �xn − z�},
C0 = H , n = 1, 2, 3, . . . ,

xn+1 =
�N

i=1 �iPCnx1,i,
�N

i=1 �i = 1,

0 < a ≤ rn�T�2 ≤ b < 2,
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So, z ∈ Cn , which implies that F ⊂ Cn for all n ≥ 0.
Let un+1,i = PCnx1,i for all n ≥ 1, i = 1, 2, 3, . . . ,N . Since F is nonempty, closed, and 

convex, there exist p1,i = PFx1,i such that

This means that {un,i} is bounded for all i = 1, 2, 3, . . . ,N .
From un+1,i = PCnx1,i and Cn ⊂ Cn−1, we have that

for all n ∈ N . This implies that {�un,i − x1�} is bounded and nondecreasing for all 
i = 1, 2, 3, . . . ,N . Then there exist the limits of {�un,i − x1,i� : i = 1, 2, 3, . . . ,N }. Put

On the other hand, un+m,i ∈ Cn−1, i = 1, 2, 3, . . . ,N , by using Lemma 7, we have, for any 
positive integer m, that

So that {un,i} is Cauchy sequences in C for all i = 1, 2, 3, . . . ,N , therefore there exit two 
points pi ∈ C such that

That is

Therefore

(2)

�zn − z�2 = �Tn(xn − rnT
∗J (Txn − SnTxn))− z�2

≤ �xn − rnT
∗J (Txn − SnTxn))− z�2

= �xn − z�2 − 2�xn − z, rnT
∗J (Txn − SnTxn)�

+ �rnT ∗J (Txn − SnTxn))�2

≤ �xn − z�2 − 2rn�Txn − Tz, J (Txn − SnTxn)�
+ r2n�T�2�J (Txn − SnTxn))�2

= �xn − z�2 + r2n�T�2�Txn − SnTxn)�2

− 2rn�Txn − SnTxn + SnTxn − Tz, J (Txn − SnTxn)�
= �xn − z�2 + r2n�T�2�Txn − SnTxn)�2

− 2rn�SnTxn − Tz, J (Txn − SnTxn)� − 2rn�Txn − SnTxn)�2

= �xn − z�2 + r2n�T�2�Txn − SnTxn)�2 − 2rn�Txn − SnTxn)�2

= �xn − z�2 + rn(rn�T�2 − 2)�Txn − SnTxn)�2

≤ �xn − z�2.

�un+1,i − p1,i� ≤ �x1,i − p1,i�, i = 1, 2, 3, . . . ,N .

�un,i − x1,i� ≤ �un+1,i − x1,i�, i = 1, 2, 3, . . . ,N ,

lim
n→∞

�un,i − x1,i �= ci, i = 1, 2, 3, . . . ,N .

�un+m,i − un,i�2 ≤ �un+m,i − x1,i�2 − �un,i − x1,i�2.

lim
n→∞

un,i = pi, i = 1, 2, 3, . . . ,N .

lim
n→∞

PCnx1,i = pi, i = 1, 2, 3, . . . ,N .

lim
n→∞

xn =
N
∑

i=1

�ipi.



Page 7 of 13Li et al. SpringerPlus  (2016) 5:2009 

Since xn+1 ∈ Cn, we have

which implies

From (2), we have, for any z ∈ F , that

as n → ∞. This implies

Since

and the sequence {Sn} is uniformly closed, so that

That is

On the other hand, from

we have

This together with (3) implies that

Since

�zn − xn+1� ≤ �xn − xn+1�

lim
n→∞

zn =
N
∑

i=1

�ipi.

rn(2− rn�T�2)�Txn − QtnTxn)�2 ≤ �xn − z�2 − �zn − z�2 → 0

(3)lim
n→∞

�Txn − SnTxn)� = 0.

lim
n→∞

Txn = T

(

N
∑

i=1

�ipi

)

T

(

N
∑

i=1

�ipi

)

∈ ∩∞
n=1F(Sn).

N
∑

i=1

�ipi ∈ T−1(∩∞
n=1F(Sn)).

zn = Tn(xn − rnT
∗J (Txn − SnTxn)),

�zn − Tnzn� = �Tn(xn − rnT
∗J (Txn − SnTxn))− Tnzn�

≤ �(xn − rnT
∗J (Txn − SnTxn))− zn�.

lim
n→∞

�zn − Tnzn� = 0.

lim
n→∞

zn =
N
∑

i=1

�ipi,
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and the sequence {Tn} is uniformly closed, so that

From above two hands, we have 
∑N

i=1 �ipi ∈ F .
Finally, we prove pi = PFx1,i, i = 1, 2, 3, . . . ,N . From Lemma 7, we have

On the other hand, since xn+1,i = PCnx1,i and F ⊂ Cn, for all n. Also from Lemma 7, we 
have

Since

Combining (4), (5) and (6), we know that �pi − x1,i� = �PFx1,i − x1,i�. Therefore, it fol-
lows from the uniqueness of PFx1,i that pi = PFx1,i. This completes the proof. �

By using Theorem  8 and setting N = 1, we can get the following result.

Theorem  9 Let H be a Hilbert space and let E be a uniformly convex and smooth 
Banach space. Let J be the duality mapping on E. Let {Tn} : H → H be a uniformly 
closed family of countable quasi-nonexpansive mappings with the nonempty common 
fixed point set ∩∞

n=1F(Tn) and {Sn} : E → E be a uniformly closed family of countable 
second-type quasi-nonexpansive mappings with the nonempty common fixed point sets 
∩∞
n=1F(Sn). Suppose that F = (∩∞

n=1F(Tn)) ∩ (T−1(∩∞
n=1F(Sn))) �= ∅. Let T : H → E be 

a bounded linear operator such that T �= 0 and let T ∗ be the adjoint operator of T. Let 
x1 ∈ H and let {xn} be a sequence generated by

where {rn} satisfy the condition such that

for some constants a, b. Then {xn} converges strongly to a point z0 = PFx1.

Application for common null point problem
Let E be a Banach space, let A be a multi-valued operator from E to E∗ with domain 
D(A) = {z ∈ E : Az �= ∅} and range R(A) = {z ∈ E : z ∈ D(A)}. An operator A is said to 
be monotone if

N
∑

i=1

�ipi ∈ ∩∞
n=1F(Tn).

(4)�pi − PFx1,i�2 + �PFx1,i − x1,i�2 ≤ �pi − x1,i�2.

(5)�PFx1,i − xn+1,i�2 + �xn+1,i − x1,i�2 ≤ �PFx1,i − x1,i�2.

(6)lim
n→∞

�xn+1,i − x1,i� = �pi − x1,i�.























zn = Tn(xn − rnT
∗J (Txn − SnTxn)),

Cn = {z ∈ Cn−1 : �zn − z� ≤ �xn − z�},
C0 = H , n = 1, 2, 3, . . . ,

xn+1 = PCnx1,

0 < a ≤ rn�T�2 ≤ b < 2,

�x1 − x2, y1 − y2� ≥ 0
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for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2. A monotone operator A is said to be 
maximal if it’s graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of 
any other monotone operator. We know that if A is a maximal monotone operator, then 
A−10 is closed and convex. The following result is also well-known.

Theorem 10 (Rockafellar 1970). Let E be a reflexive, strictly convex and smooth Banach 
space and let A be a monotone operator from E to E∗. Then A is maximal if and only if 
R(J + rA) = E∗. for all r > 0.

Let E be a reflexive, strictly convex and smooth Banach space, and let A be a maximal 
monotone operator from E to E∗. Using Theorem  10 and strict convexity of E, we obtain 
that for every r > 0 and x ∈ E, there exists a unique xr such that

Then we can define a single valued mapping Jr : E → D(A) by Jr = (J + rA)−1J  and 
such a Jr is called the resolvent of A. We know that Jr is a nonexpansive mapping and 
A−10 = F(Jr) for all r > 0, see Takahashi (2000, 2009), Alber (1996).

Lemma 11 (Aoyama et al. 2009) Let E be a reflexive, strictly convex and smooth Banach 
space, and let A be a maximal monotone operator from E to E∗. Then

where Jr is the resolvent of A.
From Lemma 11, we know that, Jr is a second-type quasi-nonexpansive mapping, 

where Jr is the resolvent of A with r > 0.

Definition 12 Let E be a Banach space, let C be a nonempty, closed, and convex subset 
of E. Let {Tn} be sequence of mappings from C into itself with nonempty common fixed 
point set F = ∩∞

n=1F(Tn). The {Tn} is said to be uniformly weak closed if for any weak 
convergent sequence {zn} ⊂ C such that �Tnzn − zn� → 0 as n → ∞, the weak limit of 
{zn} belong to F.

A uniformly weak closed family of countable quasi-nonexpansive mappings must be a 
uniformly closed family of countable quasi-nonexpansive mappings.

Theorem  13 Let rn ≥ c > 0, for some constant c, then {JArn}
∞
n=0 is a uniformly weak 

closed family of countable quasi-nonexpansive mappings with the nonempty common 
fixed point sets 

⋂∞
n=0 F(J

A
rn
) = A−10.

Proof It is well-known that, 
⋂∞

n=0 F(J
A
rn
) = A−10 �= ∅ and {JArn}

∞
n=0 is a family of 

countable nonexpansive mappings. Let {zn} ⊂ E be a sequence such that zn ⇀ p and 
limn→∞ �zn − JArnzn� = 0. Since J is uniformly norm-to-norm continuous on bounded 
sets, we obtain

Jx ∈ Jxr + rAxr .

�Jrx − p, J (x − Jrx)� ≥ 0, ∀ x ∈ E, ∀ p ∈ A−1
0, ∀ r > 0,

1

rn
(Jzn − JJArnzn) → 0.



Page 10 of 13Li et al. SpringerPlus  (2016) 5:2009 

It follows from

and the monotonicity of A that

for all w ∈ D(A) and w∗ ∈ Aw. Letting n → ∞, we have �w − p,w∗� ≥ 0 for all w ∈ D(A) 
and w∗ ∈ Aw. Therefore from the maximality of A, we obtain p ∈ A−10. That is 
p ∈

⋂∞
n=0 F(J

A
rn
). This completes the proof. �

Theorem  14 Let H be a Hilbert space and let F be a uniformly convex and smooth 
Banach space. Let JF be the duality mapping on F. Let A and B be maximal monotone 
operators of H into 2H and F into 2F such that A−10 �= ∅ and B−10 �= ∅ , respectively. 
Let Jr be the resolvent of A for r > 0 and let Qµ be the metric resolvent of B for µ > 0. 
Let T : H → F  be a bounded linear operator such that T �= 0 and let T ∗ be the adjoint 
operator of T. Suppose that W = A−10 ∩ T−1(B−10) �= ∅. Let x1 ∈ H and let {xn} be a 
sequence generated by

where {rn} satisfy the condition such that

for some constants a, b, c. Then {xn} converges strongly to a point z0 = PWx1.

Proof Let Tn = Jrn , Sn = Qµn for all n ≥ 1, then {Tn}, {Sn} satisfy the all conditions of 
Theorem  8, and

By using Theorem  9, we obtain the conclusion of Theorem  14. This completes the proof. 
 �

Theorem  15 Let H be a Hilbert space and let F be a uniformly convex and smooth 
Banach space. Let JF be the duality mapping on F. Let A and B be maximal monotone 
operators of H into 2H and F into 2F such that A−10 �= ∅ and B−10 �= ∅ , respectively. 
Let Jr be the resolvent of A for r > 0 and let Qµ be the metric resolvent of B for µ > 0. Let 
T : H → F  be a bounded linear operator such that T �= 0 and let T ∗ be the adjoint opera-
tor of T. Suppose that W = A−10 ∩ T−1(B−10) �= ∅. Let x1,i ∈ H and let {xn} and {zn} be 
two sequences generated by

1

rn
(Jzn − JJArnzn) ∈ AJArnzn

〈

w − JArnzn,w
∗ −

1

rn
(Jzn − JJArnzn)

〉

≥ 0























zn = Jrn(xn − rnT
∗JF (Txn − QtnTxn)),

Cn = {z ∈ Cn−1 : �zn − z� ≤ �xn − z�},
C0 = H , n = 1, 2, 3, . . . ,

xn+1 = PCnx1,

0 < a ≤ rn�T�2 ≤ b < 2, 0 < c ≤ tn,

F = ∩∞
n=1F(Tn) ∩ T−1(∩∞

n=1F(Sn)) = A−1
0 ∩ T−1(B−1

0) = W .
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where {rn} satisfy the condition such that

for some constants a, b and � ∈ [0, 1] is a constant. Then the following conclusions hold:
(1) {xn} and {zn} converge strongly to a point w ∈ W ;
(2) the limits limn→∞ PCnx1,i = PWx1,i, i = 1, 2, 3, . . . ,N ;
(3) w =

∑N
i=1 �i limn→∞ PCnx1,i.

Proof Let Tn = Jrn , Sn = Qµn for all n ≥ 1, then {Tn}, {Sn} satisfy the all conditions of 
Theorem  9, and

By using Theorem  8, we obtain the conclusion of Theorem  15. This completes the proof.
 �

Examples
It is easy to see that, a uniformly weak closed family {Tn} of countable quasi-nonexpan-
sive mappings must be a uniformly closed family {Tn} of countable quasi-nonexpansive 
mappings. Next we will give an example which is a uniformly closed family of count-
able quasi-nonexpansive mappings, but not a uniformly weak closed family of countable 
quasi-nonexpansive mappings.

Conclusion 16 Let H be a Hilbert space, {xn}∞n=1 ⊂ H be a sequence such that it con-
verges weakly to a non-zero element x0 and �xi − xj� ≥ 1 for any i �= j. Define a sequence 
of mappings Tn : H → H as follows

where Ln ≤ 1 and limn→∞ Ln = 1. Then {Tn} is a uniformly closed family of countable 
quasi-nonexpansive mappings with the common fixed point set F = {0}, but not a uni-
formly weak closed family of countable quasi-nonexpansive mappings.

Proof It is obvious that, {Tn} has a unique common fixed point 0. Next, we prove that, 
{Tn} is uniformly closed. In fact that, for any strong convergent sequence {zn} ⊂ E such 
that zn → z0 and �zn − Tnzn� → 0 as n → ∞, there exists sufficiently large nature 























zn = Jrn(xn − rnT
∗JF (Txn − QtnTxn)),

Cn = {z ∈ Cn−1 : �zn − z� ≤ �xn − z�},
C0 = H , n = 1, 2, 3, . . . ,

xn+1 =
�N

i=1 �iPCnx1,i,
�N

i=1 �i = 1,

0 < a ≤ rn�T�2 ≤ b < 2,

F = ∩∞
n=1F(Tn) ∩ T−1(∩∞

n=1F(Sn)) = A−1
0 ∩ T−1(B−1

0) = W .

Tn(x) =
{

Lnxn if x = xn(∃ n ≥ 1),

−x if x �= xn(∀ n ≥ 1),
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number N such that zn �= xm, for any n,m > N . Then Tnzn = −zn for n > N , it follows 
from �zn − Tnzn� → 0 that 2zn → 0 and hence z0 ∈ F . From the definition of {Tn}, we 
have

so that {Tn} is a uniformly closed family of countable quasi-nonexpansive mappings. 
Next, we prove the {Tn} is not weak closed. Since {xn} converges weakly to x0 and

as n → ∞, but x0 is not a fixed point. �

Conclusion
In the multidirectional iteration algorithm, the Cn is a closed convex set, and 
F ⊂ Cn for any n ≥ 1. If we use one initial x1,1, the projection point xn = PCnx1,1 
belongs to the boundary of the Cn. If we use N initials x1,1, x1,2, x1,3, . . . , x1,N, the ele-
ment xn =

∑N
i=1 �iPCnx1,i belongs to the interior of the Cn. In general, the distance 

d(
∑N

i=1 �iPCnx1,i, F) is less than the distance d(PCnx1,1, F), so the multidirectional itera-
tion algorithm can accelerate the convergence speed of iterative sequence {xn}. We give a 
simple experimental example in the following.

Example Let X = R2, Cn = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, x1,1 = (1, 1), x1,2 = (−1, 1),

F = {0}. Case 1, take only one initial x1,1, xn = PCnx1,1 = (
√
2
2
,

√
2
2
), then d(xn, F) = 1. 

Case 2, take two initials x1,1, x1.2,

then d(xn, F) =
√
2
2

. From the inequality “
√
2
2

< 1”, we can see that, the multidirectional 
iteration algorithm can accelerate the convergence speed of iterative sequence {xn}.
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