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Background
The assignment problem (AP) has been extensively used in manufacturing and develop-
ing service systems, to optimally resolve the problem of assigning N duties to N employ-
ees to optimize the total resources. Furthermore, in AP, N employees must be assigned 
N number of duties, where in each employee must complete their individual assigned 
duty. However, because of personal ability or other reasons, each employee may spend a 
different amount of resources to complete various duties. The objective is to assign each 
duty to the appropriate employee to optimize the total utilization of resources and to 
complete all duties. Two types of objectives are generally measured in AP: maximization 
and minimization. Minimization refers to minimizing aspects such as duty cost and total 
duration, whereas maximization refers to maximizing aspects such as the overall manu-
facturing profit and overall sale of manufacture.

Responsible parameters that are considered for determining the assignment plan in a 
real-world scenario should not be precise but should be exaggerated by indistinctness 
and imprecision represented by linguistic terms which expressed by the DM. In such 
a scenario, the AP is converted into a fuzzy assignment problem (FAP). The concept 
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of fuzzy set theory was introduced by Zadeh (1965), which providesa highly effective 
method for handling imprecise data. In the decision-making real world problems, AP is 
more advantageous by fuzzy theory, subjective preference of DM. The fuzzy models of 
AP have been described in detail in several papers (Biswas and Pramanik 2011; Lin and 
Wen 2004; Lin et al. 2011; Li et al. 2012; Tanaka et al. 1984; Kagade and Bajaj 2009, 2010; 
Kumar and Gupta 2011; Liu and Gao 2009; Gupta and Mehlawat 2013; Mukherjee and 
Basu 2010; Feng and Yang 2006).

For handling objective functions and\or constraints with fuzzy coefficients and fuzzy 
information of real-world decision-making problems, possibilistic decision-making 
models play a vital role. Possibility distribution converts the fuzzy objectives and\or 
constraints into crisp objectives and\or constraints with respect to three scenarios, opti-
mistic, mostlikely, and pessimistic. In addition, possibility distribution is used to main-
tain the uncertainty of the problem until the solution is obtained (Gupta and Mehlawat 
2014). Several studies in literature have employed possibility distribution to solve fuzzy 
objective function and\or constraint-based optimization problems (Tanaka et al. 1984; 
Luhandjula 1987; Rommelfanger et al. 1989; Rommelfanger 1989; Lai and Hwang 1992).

There are several studies on FMOAP available in literature. To the best of our knowl-
edge, Yang and Liu (2005) obtained a solution for a fuzzy multi-objective assignment 
problem (FMOAP) through the dependent-chance goal programming model by using 
the tabu search algorithm based on fuzzy simulation. Gupta and Mehlawat (2014) pro-
posed a possibilistic programming approach for FMOAPs to obtain the most favorable, 
most likely, and least favorable scenarios by using the linear membership function. Li 
et  al. (2012) proposed two solution models for FAP by combining agenetic algorithm 
(GA) and the APs to express an actual execution strategy. Tapkan et al. (2013) provided 
a direct approach to solving FMOAPs by using fuzzy ranking methods to rank the objec-
tive function values and to determine the feasibility of the constraints within the bees 
algorithm (metaheuristic search algorithm). Tailor and Dhodiya (2016a) developed 
a hybrid approach to solving FMOAPs by using a GA and exponential membership 
function. The Yager’s ranking method was proposed in Biswas and Pramanik (2011) to 
solve FMOAPs by transforming the MOAP into an equivalent single objective AP prob-
lem. Pramanik and Biswas (2012) developed a priority-based fuzzy goal programming 
method for generalized trapezoidal FMOAPs. Thorani and Shankar (2013) developed 
a linear programming model for FMOAPs by employing various linear and nonlinear 
functions with L–R fuzzy numbers by using Yager’s ranking method. Esmaieli et  al. 
(2011) solved the fuzzy multi-job and multi-company employee AP with penalty by 
using a GA.

The aforementioned approaches present the solution for FMOAP by using various 
techniques, such as the possibilistic approach by using a linear membership function, 
Yager’s ranking method, priority-based fuzzy goal programming method, and bees algo-
rithm, etc. However, in real-world problems, the decision parameters are affected by 
various imprecise and vague factors that cannot be precisely calculated. Moreover, the 
DM’s review of the estimates may be based on partial knowledge about the task itself, 
which may affect the decision of task allocations to a particular employee. Under such 
circumstances, the task allocation decision becomes a one ofchoice from a fuzzy set 
of subjective interpretations. Therefore, in this paper, we propose a GA-based hybrid 
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approach to solving FMOAP by using a fuzzy exponential membership function in 
which the FMOAP is converted into a single objective nonlinear optimization problem 
with some realistic constraints, and it is considered as a “NP-hard” problem. GA is an 
appropriate technique to solve such “NP-hard” problems (Gupta and Mehlawat 2013; 
Papadimitriou and Steiglitz 1982). It is a well-known random search and global optimi-
zation method, considering the aspects of evolution and natural selection, and an appro-
priate method for solving large-scale nonlinear, discrete, and non-convex optimization 
problems because it searches for optimal solutions by simulating the natural evolution 
process (Eiben and Smith 2003; Holland 1992; Mendes et al. 2009; Gupta and Mehlawat 
2013). GAs are highly efficient in the resolution of various NP-hard problems, including 
resource allocation.

Fuzzy multi‑objective assignment problem formulation
The main characteristics and assumptions of the FMOAP are as follows: (1) Each duty 
is completed by only one employee, and if an employee accepts more than one duty, all 
the duties must be completed. (2) It is not compulsory to assigned any duty to some 
employees. (3) The number of employees who have been assigned duties must be speci-
fied to balance the amount of work between the employees. (4) In the decision-making 
method, each employee’s working ability is considered. We assume that each employee is 
assigned the number of duties in a certain range.

Fuzzy multi‑objective assignment model

To formulate the mathematical model of FMOAP, the indices, parameters and variables 
are used as per Gupta and Mehlawat (2013, 2014). (1) Indices j and i respectively defined 
index of duties and employee; (2) Parameters employees = duties = n; number employ-
ees assigned duties =  s; maximum duties assigned to each employee = li; (3) Decision 
variables xij is represent the whether the ith employee is assigned to jth duties or not.

Formulation of objective functions

After completion of all duties, the total cost, total consumed time and the total achieved 
a quality level are given as follows (Gupta and Mehlawat 2014):

In this problem, the quality of the linguistic variables are rated as “good,” “medium good,” 
“fair,” “medium poor,” and “poor,” which are represented as (0, 1, 3), (1, 3, 5), (3, 5, 7), (5, 
7, 9), and (7, 9, 10), respectively. The five levels represent the quality of the completed 
duties, where “good” and “poor” levels denote the most efficient and least efficient, 
respectively, that is, a shift from “good” to “poor” indicates that the quality decreases 
whereas the related fuzzy values increase. To maintain uniformity of objective functions, 
quality objective functions must be minimized (Gupta and Mehlawat 2014).

xij =

{
1; if ith employee is assigned to jth duty
0; otherwise.

z̃1 =

n∑

i=1

n∑

j=1

c̃ijxij , z̃2 =

n∑

i=1

n∑

j=1

t̃ijxij , z̃3 =

n∑

i=1

n∑

j=1

q̃ijxij
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Model constraints

As per the mentioned description of FMOAP, the constraints are formulated as follows:

Decision problem

The fuzzy multi-objective assignment problem is now formulated as follows:

Some preliminaries
Possibilistic programming approach

The collection data on real-world problems generally involve some type of uncertainty. 
In fact, many pieces of information cannot be quantified because of their nature and 
hence are represented using fuzzy numbers. These types of fuzzy numbers are modeled 
using possibility distribution (Hsu and Wang 2001; Buckley 1988; Gupta and Mehlawat 
2014; Wang and Liang 2005; Lai and Hwang 1992). Possibilistic distribution has been 
used in many crucial applications to solve fuzzy optimization models with imprecise 
coefficients in the objective function. Thus, we converted the FMOAP model into an 
auxiliary crisp multi-objective optimization model by using the possibilistic approach 
(Gupta and Mehlawat 2014).

Triangular possibilistic distribution (TPD)

Because of the imprecise nature of the uncertain parameters, the triangular possibilistic 
distribution (TPD) is commonly used due to its simplicity and computational effective-
ness in obtaining data.

In realistic circumstances, a DM can construct the TPD by using (cmi ), (coi ) and (cpi  ), 
most possible value (possibility degree  =  1), the most optimistic value (possibility 
degree = 0) and the most pessimistic value (possibility degree = 0) respectively. Accord-
ing to Fig. 1, objective function cost is defined at three positions as 

(
cm1 , 1

)
,
(
c
p
1 , 0

)
, and 

(1)

n∑

i=1

n∑

j=1

xij = n

(2)

n∑

i=1

xij = 1, j = 1, 2, . . . , n

(3)

n∑

j=1

xij ≤ li; i = 1, 2, . . . , n

(4)
n�

i=1

min



1,

n�

j=1

xij



 ≥ s

(5)xij ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

(Model-1)

�
�z1, �z2, �z3
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n�
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n�
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�cijxij ,
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i=1

n�
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�tijxij ,
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i=1

n�

j=1

�qijxij




Subject to: (1)−(5)
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(
co1, 0

)
 which is minimized by shifting the three positions of TPD to the left because ver-

tical coordinates of the points are fixed by 0 or 1 (Gupta and Mehlawat 2014). Thus, only 
the three horizontal coordinates are considered.

α‑Level sets

An α-level set is the most essential theory to establish an association between traditional 
and fuzzy set theories, which was introduced by Zadeh (1965). The α-level reflects the 
confidence of the DM regarding his fuzzy judgment; it can also be termed as the confi-
dence level. The smallest α-value yields an interval judgment with a large spared, which 
indicates a high level of pessimism and uncertainty. The largest α-value yields a smaller 
but more optimistic judgment in which the upper and lower bounds have a greater 
degree of membership in the initial fuzzy sets. Several researchers (Tanaka et al. 1984; 
Luhandjula 1987; Rommelfanger et  al. 1989; Rommelfanger 1989; Tailor and Dhodiya 
2016a; Lai and Hwang 1992) have used this α-level set concept to find the solutions for 
fuzzy optimization-related problems; therefore, we also used this concept in the present 
study to determine the confidence of the DM with respect to his fuzzy judgment.

Formulation of multi‑objective 0–1 programming model
To convert the model-1 into auxiliary CMOP problem, we used TPD strategy to treat the 
imprecise objectives. The cost objective function is described as

where cij =
(
coij , c

m
ij , c

p
ij

)
, which can be considered as follows:

(6)

min �z1 = min
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(7)(min z11,min z12,min z13) =
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Fig. 1 TPD of ci



Page 6 of 29Dhodiya and Tailor  SpringerPlus  (2016) 5:2028 

Equations (6) and (7) is associated with optimistic scenario, the most likely scenario and 
the pessimistic scenario respectively.

Using the α-level sets concepts (0 ≤ α ≤ 1), each cij can be stated as (
cij
)
α
=

((
cij
)o
α
,
(
cij
)m
α
,
(
cij
)p
α

)
, where 

(
cij
)o
α
= coij + α

(
cmij − coij

)
,
(
cij
)m
α
= cmij ,

(
cij
)p
α
=

c
p
ij − α

(
c
p
ij − cmij

)
.

Hence, Eq. (7) can be written as:

Similarly, multi-objective optimization problem (MOP) model of time and quality objec-
tive function are as follows:

Auxiliary multi‑objective 0–1 programming model

To determine the optimistic, most-likely, and pessimistic scenarios by using the α-level 
set concept, the FMOAP is converted into a crisp MOAP also called as an auxil-
iary multi-objective 0–1 programming model  (Gupta and Mehlawat 2014; Tailor and 
Dhodiya 2016a), which is defined as follows:

Under the constraints (1)–(5).

Solution method for auxiliary model
To characterize the indistinct aspiration level of the DM, fuzzy membership functions 
such as linear, piecewise linear, exponential, and tangent are used. Out of these, the linear 
membership function is most commonly used because it is defined by two fixed points, 
the upper bound and lower bound of the objective, and also considered only a violent 
calculation of real-world circumstances. In addition, membership functions are used for 
describing the behavior of uncertain values, fuzzy data use, and preference etc. In such 
situation, the nonlinear membership function provides a more efficient representation 

(8)
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(9)
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(Model-2)
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than others to reflect the reality as the marginal rate of increasing membership values as a 
function of model parameter, which is not constant (Gupta and Mehlawat 2013).

GA is one of the most adaptive optimization search methodologies, which is based 
on natural genetics, natural selection, and survival of the fittest in a biological system. 
It mimics the evaluating principle and chromosome processing of natural genetics 
(Eiben and Smith 2003; Esmaieli et al. 2011; Gen et al. 1995; Holland 1992; Li et al. 1997; 
Mendes et al. 2009; Gupta and Mehlawat 2013; Sivanandam and Deepa 2007; Tailor and 
Dhodiya 2016a, b). To determine the solution of a single optimization FMAOP through 
GA, the chromosomes are first encoded according to the problem and a fitness func-
tion is defined for measuring the chromosomes. Subsequently, three operators, selec-
tion, crossover, and mutation, are applied to generate the new population. The selection 
process involves the formation of a parent population for creating the next generation. 
The crossover process involves the selection of two parent chromosomes to produce a 
new offspring chromosome. Mutation refers to randomly altering the selected positions 
in a selected chromosome (Gupta and Mehlawat 2013; Tailor and Dhodiya 2016b). Thus, 
the new population is generated by replacing some chromosomes in the parent popula-
tion with those of the children population to determine effective solutions for FMOAPs 
(Tailor and Dhodiya 2016b).

This section presents a GA-based hybrid approach to determining the most efficient 
solution for an FMOAP by using the exponential membership function to characterize 
the indistinct aspiration levels of the DM. In addition, this approach provides greater 
flexibility to solve multi-objective optimization problems by considering the various 
choices of aspiration level for each objective function. This approach optimizes each 
objective by maximizing the degree of satisfaction with respect to cost, time, and quality 
to provide more effective assignment plans.

Steps for find the solution of FMOAP using genetic algorithm based approach

The step-wise description of the proposed genetic algorithm based approach to finding 
the assignment plans of the FMOAP is as follows: 

Step-1  Formulate the model-1 of FMOAP, using appropriate triangular possibilities 
distribution.

Step-2  According to confidence level α, define the crisp objective function model 
(model-2).

Step-3  Findout the positive ideal solution (PIS) and negative ideal solution (NIS) 
(Gupta and Mehlawat 2014) for each objective function of the model-2.

Step-4  Find fuzzy exponential membership value for zij(i = 1, 2, 3; j = 1, 2, 3). 

where, ψij(x) =
zij−zPISij

zNIS
ij −zPISij

 and S is non-zero shape parameter given by DM that 

0 ≤ µzij (x) ≤ 1. For S > 0 (S < 0), the membership function is strictly concave (convex) 

(12)µE
zij
(x) =





1; if zij ≤ zPISij

e
−Sψij (x)−e−S

1−e−S ; if zPISij < zij < zNIS
ij

0; if zij ≥ zNIS
ij
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in [zPISij , zNIS
ij ]. The value of this fuzzy membership function allows us to model the grades 

of precision in corresponding objective function (Gupta and Mehlawat 2013).
Step-5  Fuzzy membership functions are comprehensive by using the product opera-

tor. Thus, FMOAP can be written in the single-objective optimizationprob-
lem (SOP) as follows: 

where µzij (x); i = 1, 2, 3; j = 1, 2, 3 is the desired aspiration level of fuzzy goals corre-
sponding to each objective. The above model can be solved for varying aspiration levels 
of the DM regarding the achievement of various fuzzy membership functions (Gupta 
and Mehlawat 2013).
Step-6  To solve the single-objective optimization problem model-3 of the FMOAP, 

GA is used with various choices of the shape parameter. 

  • Chromosome encoding

  • To generate a solution for the FMOAP, the data structure of chromosomes must be 
considered, which represents the solution to the problem in the encoding space. In 
the encoding space, we set all 0’s to all n× n genes on a chromosome, and then for a 
randomly selected gene on the chromosome, we set 1’s in each column exactly one 
and those in each row less or equal to li that satisfies constraints (1)–(5) of model-3. 
Each component in the string (chromosome) can be uniquely expressed as 2r; where 
r is real value varying from 0 to n − 1.

  • Fitness function evaluation
  • In the GA, the fitness function is the major parameter for solving the FMOAP. The 

objective function of model-3 that satisfies constraints (1)–(5) and (13)–(15) is evalu-
ated.

  • Selection
  • The selection operator is used to determine which chromosome from the current 

population will be used to reproduce a new child with higher fitness for the next 
population. It is carefully formulated to select the chromosome in the population 
with the highest fitness for mutation/next generation. This operator improves the 
average quality of the chromosomes in the population for the next generation by pro-
viding the chromosomes with the highest quality a higher chance to get copied into 
Gupta and Mehlawat (2013) and Tailor and Dhodiya (2016a, b).

(Model-3)

max W =

3∏

i=1

3∏

j=1

µzij

Subject to:Constraints (1−5)

(13)µzij (x)− µzij (x) ≥ 0; i = 1, 2, 3; j = 1, 2, 3

(14)µz2j (x)− µz2j (x) ≥ 0; j = 1, 2, 3

(15)µz3j (x)− µz3j (x) ≥ 0; j = 1, 2, 3



Page 9 of 29Dhodiya and Tailor  SpringerPlus  (2016) 5:2028 

  • In this study, we used tournament selection for determining the solution for the 
FMOAP because of its efficiency and easy implementation. In tournament selection, 
N chromosomes are randomly selected from the population and compared with each 
other. The chromosome with the highest fitness (winner) is selected for the next gen-
eration and others are disqualified. This selection is continued until the number of 
winners is equal to the population size.

  • Crossover
  • After successful completion of tournament selection, the crossover operator is used 

to produce a new offspring for the next generation. The principle underlying crosso-
ver is that the offspring may exhibit a higher level of fitness than both parents if it 
inherits high-quality characteristics from each parent.

  • To generate a solution for the FMOAP, we used the two-point crossover operator to 
generate a new offspring. In a two-point crossover, the gene values are exchanged 
between two random crossover points on the two selected parent chromosomes to 
generate the new offspring (Sivanandam and Deepa 2007; Tailor and Dhodiya 2016a).

  • Threshold construction
  • To maintain the population diversity after crossover, a threshold is constructed to 

generate the FMOAP’s solution. In this step, from the set of parenthood and child-
hood population some are selected for the new iteration.

  • For constructing the threshold, one method of selecting the population may be to 
sort the entire population in an ascending order of their objective function values 
and selecting predetermined individual strings from each category. The population 
is divided into four categories on the basis of their objective function values: values 
above µ+ 3 ∗ σ, values between µ+ 3 ∗ σ and µ, values between µ and µ− 3 ∗ σ , 
and values less then µ− 3 ∗ σ. Thus, the most efficient string cannot be missed 
(Sivanandam and Deepa 2007; Tailor and Dhodiya 2016a, b).

  • Mutation
  • For recovering the lost genetic materials and for randomly disturbing genetic infor-

mation, the mutation operator is applied. In this study, we applied the swap muta-
tion (Gupta and Mehlawat 2013; Tailor and Dhodiya 2016a, b) out of the numerous 
mutation operators available. In a swap mutation, two random spots are selected in a 
string and the corresponding values are swapped between the positions.

  • If we swap the string 〈1, 2, 3, 4, 5〉 at second and fourth position then the new mutated 
string become 〈1, 4, 3, 2, 5〉.

  • Termination criteria

  • When the algorithm completes a given number of iterations, it stops and provides 
the optimal solution as the output. The iteration process is repeated until a termina-
tion condition is reached.

After developing the algorithm, two cases were implemented: one with mutation and 
another without mutation. In both cases, the answer converged to the efficient solution 
for FMOAP (Tailor and Dhodiya 2016a, b).
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If the obtained solution is accepted by the DM, then it is considered as the ideal com-
promise solution and the iteration is stopped, else the value ofis changed and steps 2–5 
are repeated untila satisfactory solution is achieved.

Algorithm

Algorithm of solution procedure for FMOAP is given as follows: 
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Flowchart

Figure 2 shows the flowchart of the solution procedure of FMAOP.

Convergence criteria

A GA usually converges when no significant improvement is observed in the fitness val-
ues of the population from one generation to the next. GA converging at a global optima 
for an NP-hard problem is impossible, unless the optimum solution for a test data set is 
already known. In GA, the convergence criteria also depends on the problem size. In this 
study, we considered a problem with size 6× 6 size problem. For this problem, we set 
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the experimental parameters as follows: size = 4500, iterations = 90 at different values 
α = 0.1,α = 0.5 and α = 0.9. The experiment is presented in the following section.

Numerical illustration
To justify proposed method, numerical illustration of FMOAP has been referred from 
the article of the Gupta and Mehlawat (2014) which shown in Table 1. To evaluate fuzzy 
cost-time-quality objective assignment problem, the model is coded. It is solved by 
Matlab and all tests are carried out on an Intel (R)-core i5 CPU@ 2.60 GHz computer 
with 4 GB of RAM. The primary attributes for solving the problems summarized as fol-
lows: Number of workers = Number of jobs = 6, li = 2, s = 4, population size = 4500, 
iterations = 100.

Yes

Yes

No No No

Formulate the fuzzy optimization model of
MOAP with suitable triangular possibilities

distribution.

Start

Convert the FMOAP into crips multi-objective

assignment problem according to α -level

Find the negative ideal solution and positive

ideal solution for each objective

Find fuzzy membership function value for

each objective using exponential

membership function with different values

of shape parameter

Convert the Crips multi-objective

assignment problem into single objective

optimization problem using product operator

Define aspiration level of each

fuzzy membership function

Solve the single objective optimization
problem using Genetic algorithm

Represent the solution to DM

Is
solution
accepted
by DM?

Stop

Is DM want
to change
aspiration

level?

Is DM want
to change
shape par-

meter?

Yes

Change the α
level

Fig. 2 flowchart of the solution procedure of FMAOP
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Table  2 gives the PIS and NIS for each objective functions for α = 0.1,α = 0.5 and 
α = 0.9. These values are used to define the exponential membership function. The cor-
responding values are obtained in below table.

According to triangular possibility distribution, the assignment plans for FMOAP are 
reported in below tables with different values of the shape parameters and aspiration 
levels which specified by the DM. We use here different values of for α = 0.1,α = 0.5 
and α = 0.9 to reflect the different scenario of DM’s confidence about fuzzy decision.

We have stated the results by taking different estimation of the aspiration levels for 
each combination of the shape parameters shown in Table 3.

Table 4 shows the assignment plans for each objective at different values of confidence 
level α = 0.1, 0.5 and 0.9 with different values of the shape parameters and different esti-
mates of aspiration levels. From the above table, we also show that change in confidence 
level influence spreads of the objective function i.e. as the confidence level is increasing, 
the influence of uncertainty in the fuzzy preference of the DM decreases.

The convergence rate of GA for FMOAP

Figures 3, 4 and 5 show that the efficient solution of SOP and FMOAP in case of using 
mutation operator and without using the mutation operator with (−5,−1,−2) shape 
parameter and (0.8, 0.85, 0.7) aspiration level respectively at α = 0.1,α = 0.5 and 

Table 1 Cost‑time‑quality matrix

Worker (i) Job (j)

Job‑1 Job‑2 Job‑3 Job‑4 Job‑5 Job‑6

Worker-1

cij (4, 6, 8) (3, 4, 6) (4, 5, 8) (6, 8, 11) (7, 10, 14) (4, 6, 7)

tij (2, 4, 5) (16, 20, 24) (7, 9, 12) (2, 3, 5) (5, 8, 10) (7, 9, 12)

qij (0, 1, 3) (1, 3, 5) (0, 1, 3) (0, 1, 3) (0, 1, 3) (3, 5, 7)

Worker-2

cij (4, 6, 7) (4, 5, 7) (5, 6, 9) (3, 5, 7) (6, 9, 11) (6, 8, 11)

tij (4, 6, 9) (15, 18, 22) (6, 8, 12) (5, 7, 10) (14, 17, 20) (6, 8, 10)

qij (1, 3, 5) (3, 5, 7) (1, 3, 5) (3, 5, 7) (5, 7, 9) (3, 5, 7)

Worker-3

cij (8, 11, 14) (5, 7, 9) (2, 4, 6) (5, 8, 12) (2, 3, 4) (3, 4, 6)

tij (2, 3, 4) (6, 8, 10) (17, 20, 24) (5, 7, 10) (12, 15, 18) (5, 7, 10)

qij (0, 1, 3) (5, 7, 9) (3, 5, 7) (1, 3, 5) (3, 5, 7) (5, 7, 9)

Worker-4

cij (7, 9, 12) (7, 10, 12) (6, 8, 11) (4, 6, 8) (8, 10, 12) (3, 4, 6)

tij (10, 12, 16) (10, 13, 16) (12, 14, 18) (4, 6, 9) (7, 9, 12) (8, 10, 14)

qij (3, 5, 7) (7, 9, 10) (1, 3, 5) (3, 5, 7) (1, 3, 5) (1, 3, 5)

Worker-5

cij (3, 4, 6) (4, 6, 8) (5, 7, 10) (7, 9, 12) (6, 8, 12) (5, 7, 10)

tij (7, 9, 12) (5, 8, 11) (5, 7, 10) (11, 14, 18) (3, 5, 8) (7, 9, 12)

qij (1, 3, 5) (7, 9, 10) (5, 7, 9) (3, 5, 7) (1, 3, 5) (1, 3, 5)

Worker-6

cij (2, 3, 4) (4, 5, 7) (8, 11, 15) (8, 10, 13) (9, 12, 15) (6, 8, 12)

tij (14, 17, 21) (10, 13, 16) (2, 3, 5) (3, 5, 8) (10, 13, 17) (5, 7, 10)

qij (1, 3, 5) (1, 3, 5) (3, 5, 7) (5, 7, 9) (3, 5, 7) (5, 7, 9)
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α = 0.9 . In with mutation case solution of SOP and FMOAP is converging after 65, 54, 
78 iterations respectively, while in without mutation case solution of SOP and FMOAP 
is converging after 80, 59, 90 iterations respectively. Figures 3, 4 and 5 are also provided 
other alternative solution to DM as per their requirement.

Figures 6, 7, 8 and 9 show the variation of the goals (cost, time and quality objective) 
corresponding to different preference of shape parameters for α = 0.1. From these fig-
ures, it is clear that obtained solution having more influence of optimism then pessi-
mism, representing possibility distribution corresponding to each objective function 
respectively.

Figures  10,  11 and  12 show the assignment plan for each objective at different con-
fidence level α = 0.1, 0.5 and 0.9 for different shape parameter and different aspira-
tion level. From these figures, we conclude that with the increase in α, the influence of 
uncertainty decreases in the DM fuzzy judgment. Moreover, the advantage of using the 
exponential membership function with various shape parameters for the FMOAP is pre-
sented. If the DM is not satisfied with an assignment plan, more plans can be generated 
by changing the values of the confidence level and shape parameters in the exponential 
membership functions, which allow us to investigate various fuzzy values of the DM.

To defuzzify the fuzzy number, Lai and Hwang (1992) provided the concept of most 
likely values to verify the efficiency of outputs. They determined crisp values for each 
objective corresponding to the triangular number. If cost C̃ =

(
Co,Cm,Cp

)
 is a trian-

gular fuzzy number, then the crisp value of cost objective is given as C̃ =

(
Co+4Cm+Cp

6

)
 

which provided the most likely value of the objective function.
Furthermore, if the DM is not satisfied with the obtained compromise solution, then 

the desired objective function can be improved as per the preference of the DM. For 

Table 2 PIS and NIS for fuzzy objective functions

α‑Level Solutions Objectives

z11 z12 z13 z21 z22 z23 z31 z32 z33

α = 0.1 PIS 15.8 23 32 20 29 40.7 3.9 12 22.8

NIS 46.6 61 77.2 81.8 98 118.7 31.2 42 51.9

α = 0.5 PIS 19 23 28 24 29 35.5 7.5 12 18

NIS 53 61 70 89 98 109.5 36 42 47.5

α = 0.9 PIS 22.2 23 24 28 29 30.3 11.1 12 13.2

NIS 59.4 61 62.8 96.2 98 100.3 40.8 42 43.1

Table 3 Different values of shape parameters and aspiration level

Case Shape parameter (K1, K2, K3) Aspiration level 
(

µ̄Z1j (x), µ̄Z2j (x), µ̄Z3j (x)
)

Case-1 (−5, −1, −2) 0.7, 0.8, 0.9

Case-2 (−5, −1, −2) 0.8, 0.85, 0.7

Case-3 (−5, −1, −2) 0.9, 0.7, 0.8

Case-4 (−1, −2, −5) 0.7, 0.8, 0.85

Case-5 (−1, −2, −5) 0.8, 0.7, 0.75

Case-6 (−2, −5, −1) 0.8, 0.85, 0.7

Case-7 (−2, −5, −1) 0.9, 0.75, 0.8
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Table 4 Summary results for α = 0.1,α = 0.5 and α = 0.9

α Case W Membership values 
(

µZ1j ,µZ2j ,µZ3j

)

Objective values 
Z1, Z2, Z3

Optimum allocations

α = 0.1  1 0.8954 (0.9111, 0.9241, 0.8954) (32.1, 42, 57.3) x11, x14, x46, x55, x62, x63

(0.9185, 0.9189, 0.9136) (28.1, 38, 51.5)

(0.9601, 0.9522, 0.9505) (7, 16, 26.8)

2 0.8527 (0.9499, 0.9640, 0.9488) (28.9, 37, 51.4)  x11, x14, x23, x46, x55, x62
(0.8730, 0.8691, 0.8527) (32.2, 43, 58.3)

(0.9869, 0.9777, 0.9769) (5, 14, 24.8)

3  0.8611 (0.9127, 0.9343, 0.9070) (32, 41, 56.3) x13, x14, x31, x46, x55, x62

(0.8626, 0.8691, 0.8611) (33.1, 43, 57.4)

(1, 1, 1) (3.9, 12, 22.8)

4 0.9115 (0.9115, 0.9419, 0.9265) (22.7, 29, 40.7) x13, x14, x35, x46, x51, x62

(0.9450, 0.9471, 0.9449) (47.3, 59, 75.2)

(0.9300, 0.9170, 0.9142) (7, 16, 26.8)

5 0.8667 (0.9254, 0.9419, 0.9172) (21.8, 29, 41.6) x11, x34, x35, x46, x51, x62

(0.9274, 0.9271, 0.9220) (50.4, 63, 80.1)

(0.9032, 0.8711, 0.8667) (8.1, 18, 28.8)

6 0.7799 (0.8000, 0.8248, 0.7799) (24.9, 33, 46.5) x11, x13, x24, x46, x55, x62

(0.8913, 0.8850, 0.8771) (36.3, 48, 63.3)

(0.9948, 0.9936, 0.9933) (7, 16, 26.8)

7 0.8240 (0.8974, 0.9182, 0.9055) (20.8, 28, 38.8) x11, x13, x24, x35, x36, x62

(0.8334, 0.8240, 0.8298) (42.4, 55, 69.4)

(0.9709, 0.9709, 0.9690) (13, 22, 32.8)

 α = 0.5 1 0.9080 (0.9178, 0.9241, 0.9080) (36.5, 42, 50.5) x11, x14, x46, x55, x62, x63

(0.9178, 0.9189, 0.9158) (32.5, 38, 45.5)

(0.9564, 0.9522, 0.9512) (11, 16, 22)

2 0.8595 (0.9574, 0.9640, 0.9555) (32.5, 37, 45) x11, x14, x23, x46, x55, x62

(0.8711, 0.8691, 0.8595) (37, 43, 51.5)

(0.9826, 0.9777, 0.9773) (9, 14, 20)

3 0.8644 (0.9241, 0.9343, 0.9191) (36, 41, 49.5) x13, x14, x31, x46, x55, x62

(0.8657, 0.8691, 0.8644) (37.5, 43, 51)

(1, 1, 1) (7.5, 12, 18)

4 0.9155 (0.9271, 0.9419, 0.9328) (25.5, 29, 35)  x13, x14, x35, x46, x51, x62
(0.9460, 0.9471, 0.9458) (52.5, 59, 68)

(0.9240, 0.9170, 0.9155) (11, 16, 22)

5 0.8687 (0.9388, 0.9419, 0.9274) (25, 29, 36) x13, x34, x35, x46, x51, x62

(0.9273, 0.9271, 0.9241) (56, 63, 72.5)

(0.8884, 0.8711, 0.8687) (12.5, 18, 24)

6 0.7983 (0.8124, 0.8248, 0.7983) (28.5, 33, 40.5) x11, x13, x24, x36, x55, x62

(0.9120, 0.9076, 0.9053) (38.5, 45, 53)

(0.9815, 0.9810, 0.9805) (15, 20, 26)

7 0.8385 (0.8877, 0.9005, 0.8945) (25, 29, 35) x11, x13, x35, x36, x44, x62

(0.8389, 0.8335, 0.8362) (47, 54, 62)

(0.9709, 0.9709, 0.9698) (17, 22, 28)

α = 0.9 1 0.9183 (0.9236, 0.9241, 0.9209) (40.9, 42, 43.7) x11, x14, x46, x55, x62, x65

(0.9189, 0.9189, 0.9183) (36.9, 38, 39.5)

(0.9530, 0.9522, 0.9520) (15, 16, 17.2)
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example, in an AP with fuzzy cost, time, and quality objectives, if the DM prioritizes the 
cost objective in determining the period of allocation plan, the solution that satisfies the 
cost objective function most favorably than others is selected by the DM. However, this 
can result in poor degrees of satisfaction level because the performance of one objective 
may be compensated by the efficient performance of others. Hence, the DM can select 
different solutions in different situations, according to his/her requirements. Therefore, 
to generate a new membership function, the upper bound of the selected objective func-
tion is modified using the DM’s preference. The model is resolved using new parameters 

Table 4 continued

α Case W Membership values 
(

µZ1j ,µZ2j ,µZ3j

)

Objective values 
Z1, Z2, Z3

Optimum allocations

2 0.8671 (0.9628, 0.9640, 0.9623) (36.1, 37, 38.6) x11, x14, x23, x46, x55, x62

(0.8695, 0.8691, 0.8671) (41.8, 43, 44.7)

(0.9786, 0.9777, 0.9776) (13, 14, 15.2)

3 0.8681 (0.9326, 0.9343, 0.9313) (40, 41, 42.7) x13, x14, x31, x46, x55, x62

(0.8684, 0.8691, 0.8681) (41.9, 43, 44.6)

(1, 1, 1) (11.1, 12, 13.2)

4 0.8719 (0.8738, 0.8773, 0.8719) (33.2, 34, 35.6) x13, x14, x46, x51, x55, x62

(0.9778, 0.9779, 0.9774) (47.8, 49, 50.8)

(0.9616, 0.9599, 0.9774) (13, 14, 15.2)

5 0.8707 (0.9159, 0.9181, 0.9139) (30.2, 31, 32.5) x13, x24, x46, x51, x55, x62

(0.9682, 0.9682, 0.9675) (51.7, 53, 54.9)

(0.8754, 0.8711, 0.8707) (16.9, 18, 19.2)

6 0.8191 (0.8226, 0.8248, 0.8191) (32.1, 33, 34.5)  x11, x13, x24, x36, x55, x62

(0.9085, 0.9076, 0.9072) (43.7, 45, 46.6)

(0.9811, 0.9810, 0.9809) (19, 20, 21.2)

7 0.8335 (0.8981, 0.9005, 0.8992) (28.2, 29, 30.2)  x11, x13, x35, x36, x44, x62

(0.8345, 0.8335, 0.8340) (52.6, 54, 55.6)

(0.9709, 0.9709, 0.9707) (21, 22, 23.2)

Fig. 3 Convergence to the global optimization for SOP and FMOAP at α = 0.1 with (−5,−1,−2) shape 
parameter and (0.8, 0.85, 0.7) aspiration level in case of mutation and without mutation



Page 17 of 29Dhodiya and Tailor  SpringerPlus  (2016) 5:2028 

Fig. 4 Convergence to the global optimization for SOP and FMOAP at α = 0.5 with (−5,−1,−2) shape 
parameter and (0.8, 0.85, 0.7) aspiration level in case of mutation and without mutation

Fig. 5 Convergence to the global optimization for SOP and FMOAP at α = 0.9 with (−5,−1,−2) shape 
parameter and (0.8, 0.85, 0.7) aspiration level in case of mutation and without mutation

Fig. 6 The degree of satisfaction of the goal according to different shape parameter for cost objective
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and the iterations are continued until the DM terminates the process (Gupta and Mehla-
wat 2013, 2014; Tailor and Dhodiya 2016a).

 Tables  5,  6 and  7 are reported the preferred compromise solution which obtained 
by changing the upper bounds of various objectives with different values of confidence 
level, different values of shape parameters and different estimation of aspiration levels 
for different confidence level α.  

Tables 5, 6 and 7 report the preferred compromise solutions obtained by modifying 
the upper bounds of various objectives with differing values of confidence level and 
shape parameters, and differing estimates of aspiration levels for various confidence lev-
els α. As shown in the above table, the GA-based hybrid approach helps to improve the 

Fig. 7 The degree of satisfaction of the goal of the cost objective for α = 0.1

Fig. 8 The degree of satisfaction of the goal of the time objective for α = 0.1

Fig. 9 The degree of satisfaction of the goal of the quality objective for α = 0.1
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Fig. 10 Possibilities distribution for cost, time and quality objectives with (−5,−1,−2) shape parameter and 
(0.8, 0.85, 0.7) aspiration level

Fig. 11 Possibilities distribution for cost, time and quality objectives with (−2,−5,−1) shape parameter and 
(0.8, 0.85, 0.7) aspiration level

Fig. 12 Possibilities distribution for cost, time and quality objectives with (−1,−2,−5) shape parameter and 
(0.7, 0.8, 0.85) aspiration level
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TPD by modifying the upper bound of each objective function for particular values of 
α (Gupta and Mehlawat 2014). If the DM is not satisfied with the obtained assignment 
plans, more assignment plans can be generated by integrating the preference of the DM 
for various objectives and also altering the various shape parameters.

The GA-based hybrid approach provides flexibility and facilitates the collection of 
large amounts of information in terms of altering the α level and shape parameters in the 
exponential membership function and providing various scenario analyses to the DM 
for fuzzy allocation strategy.

Sensitivity analysis with respect to the number of workers and jobs
Post optimality analysis with respect to the number of workers and jobs is discussed 
in this section to measure, how the proposed solution method handle FMOAP effec-
tively when new workers and jobs are involve. In this paper, sensitivity analysis is con-
sidered by adding the new data of jobs and keeping the workers fixed as given in the 
article of Gupta and Mehlawat (2014). For α = 0.1, and the fuzzy input data li = 3 and 

Table 5 Compromised solutions with respect to improvement desired in various objective 
at confidence level α = 0.1 with different shape parameter

 Case Obj. function Bounds � Objective values Solution variables
(Z1, Z2, Z3) xij

Shape parameter: (−5, −1, −2)

Aspiration level: (0.8, 0.85, 0.7)

1 Cost 15.8 ≤ z11 ≤ 32, 0.8025 (26.9, 35, 48.5), x11, x23, x36, x44, x55,x62
 23 ≤ z12 ≤ 41, (31.3, 43, 58.3),

32 ≤ z13 ≤ 56.3 (12.1, 22, 32.8)

2 Quality  3.9 ≤ z31 ≤ 7, 0.8611 (32, 41, 56.3),  x13, x14, x31, x46, x55,x62
12 ≤ z32 ≤ 16, (33.1, 43, 57.4),

22.8 ≤ z33 ≤ 26.8 (3.9, 12, 22)

Aspiration level: (0.9, 0.7, 0.8)

1 Cost 15.8 ≤ z11 ≤ 28.9, 0.7104 (22.8, 30, 40.8), x11, x23, x35, x44, x46,x62
23 ≤ z12 ≤ 41, (43.4, 56, 72.2),

37 ≤ z13 ≤ 51.4 (10.1, 20, 30.8)

Aspiration level: (0.7, 0.8, 0.9)

1 Cost 15.8 ≤ z11 ≤ 32.9 0.8143 (25.9, 34, 47.5), x11, x13, x44, x46, x55,x62
 23 ≤ z12 ≤ 41, (35.3, 47, 62.3),

 32 ≤ z13 ≤ 56.3 (7, 26, 26.8)

Shape parameter: (−2, −5, −1)

Aspiration level: (0.8, 0.85, 0.7)

1 Time  20 ≤ z21 ≤ 47.3, 0.8159 (24.9, 33, 46.5), x13, x14, x46, x51, x55, x62

29 ≤ z22 ≤ 59, (33.3, 45, 59.4),

40.7 ≤ z23 ≤ 75.2 (11, 20, 30.8)

Shape parameter: (−1, −2, −5)

Aspiration level: (0.8, 0.7, 0.75)

1 Quality 3.9 ≤ z31 ≤ 13.1, 0.7784 (23.7, 30, 41.7), x12, x15, x23, x34, x46, x61

12 ≤ z32 ≤ 22, (46.3, 58, 75.1),

22.8 ≤ z33 ≤ 32.8 (8.1, 18, 28.8)
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s = 4, solution and assignment plans of FMOAP with extra nine jobs (Job-7 to Job-15) 
and same six workers are shown in Table 9 with its triangular possibilistic distributions 
for each objectives.

Table 6 Compromised solutions with respect to improvement desired in various objective 
at confidence level α = 0.5 with different shape parameter

 Case Obj. function Bounds � Objective values Solution variables
(Z1, Z2, Z3) xij

Shape parameter: (−5, −1, −2)

Aspiration level: (0.8, 0.85, 0.7)

1 Cost 19 ≤ z11 ≤ 36.5, 0.8255 (30.5, 35, 42.5), x11, x23, x36, x44, x55, x62

23 ≤ z12 ≤ 42, (36.5, 43, 51.5),

28 ≤ z13 ≤ 50.5 (16.5, 22, 28)

2 Quality 7.5 ≤ z31 ≤ 11, 0.7311 (32.5, 37, 45) x11, x14, x23, x46, x55, x62

12 ≤ z32 ≤ 16, (37, 43, 51.5),

18 ≤ z33 ≤ 22 (9, 14, 20)

3 Quality 7.5 ≤ z31 ≤ 9, 0.8644 (36, 41, 49.5) x13, x14, x31, x46, x55, x62

12 ≤ z32 ≤ 14, (37.5, 43, 51),

18 ≤ z33 ≤ 20 (7.5, 12, 18)

Aspiration level: (0.9, 0.7, 0.8)

1 Cost 19 ≤ z11 ≤ 32.5, 0.7550 (26, 30, 36), x11, x23, x35, x36, x44, x62

23 ≤ z12 ≤ 37, (46, 53, 61.5),

28 ≤ z13 ≤ 45 (18.5, 24, 30)

2 Quality 7.5 ≤ z31 ≤ 9, 0.8644 (36, 41, 49.5) x13, x14, x31, x46, x55, x62

12 ≤ z32 ≤ 14, (37.5, 43, 51),

18 ≤ z33 ≤ 20 (7.5, 12, 18)

Aspiration level: (0.7, 0.8, 0.9)

1 Cost 19 ≤ z11 ≤ 36, 0.8142 (29.5, 34, 41.5),  x11, x23, x24, x46, x55, x62
23 ≤ z12 ≤ 41, (40.5, 47, 56),

28 ≤ z13 ≤ 49.5 (12.5, 18, 24)

Shape parameter: (−2, −5, −1)

Aspiration level: (0.8, 0.85, 0.7)

1 Cost 19 ≤ z11 ≤ 25.5, 0.8187 (21.5, 25, 30.5), x13, x24, x35, x46, x61, x62

23 ≤ z12 ≤ 29, (63.5, 71, 81),

28 ≤ z13 ≤ 35.5 (14.5, 20, 26)

2 Time 24 ≤ z21 ≤ 51.5, 0.8048 (32.5, 37, 45), x11, x14, x23, x46, x55, x62

29 ≤ z22 ≤ 58, (37, 43, 51.5),

35.5 ≤ z23 ≤ 67.5 (9, 14, 20)

Shape parameter: (−1, −2, −5)

Aspiration level: (0.7, 0.8, 0.85)

1 Quality 7.5 ≤ z31 ≤ 15, 0.8124 (28.5, 33, 40.5), x11, x13, x24, x46, x55, x62

12 ≤ z32 ≤ 20, (41.5, 48, 56.6),

18 ≤ z33 ≤ 26 (9, 14, 20)

2 Quality 7.5 ≤ z31 ≤ 11, 0.7199 (31, 36, 44.5), x11, x13, x34, x46, x55, x62

12 ≤ z32 ≤ 16, (41.5, 48, 56.6),

18 ≤ z33 ≤ 22 (9, 14, 20)

Aspiration level: (0.8, 0.85, 0.7)

1 Quality 7.5 ≤ z31 ≤ 17, 0.7848 (26.5, 30, 36.5), x14, x23, x35, x46, x51, x62

12 ≤ z32 ≤ 22, (51.5, 58, 67.5),

18 ≤ z33 ≤ 28 (12.5, 18, 24)
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The computational results are shown in the Table 9 for same six worker and extra nine 
jobs (6-workers and 9-jobs, 6-workers and 11-jobs, 6-workers and 13-jobs), respectively 
by taking different estimation of the aspiration levels for each combination of the shape 
parameters.

Table 7 Compromised solutions with respect to improvement desired in various objective 
at confidence level α = 0.9 with different shape parameter

 Case Obj. function Bounds � Objective values Solution variables
Z1, Z2, Z3 xij

Shape parameter: (−5, −1, −2)

Aspiration level: (0.8, 0.85, 0.7)

1 Cost 22.2 ≤ z11 ≤ 40.9, 0.8578 (33.1, 34, 35.5),  x11, x13, x36, x44, x55, x62
23 ≤ z12 ≤ 42, (42.7, 44, 45.6),

24 ≤ z13 ≤ 43.7 (19, 20, 21.2)

2 Time 28 ≤ z21 ≤ 36.9, 0.7574 (46.7, 48, 49.8), x14, x31, x36, x52, x55, x62

29 ≤ z22 ≤ 38, (28, 29, 30.4),

30.3 ≤ z23 ≤ 39.5 (25, 26, 27.1)

3 Quality 11.1 ≤ z31 ≤ 15, 0.8681 (40, 41, 42.7), x13, x14, x31, x46, x55, x62

12 ≤ z32 ≤ 16, (41.9, 43, 44.6),

13.2 ≤ z33 ≤ 17.2 (11.1, 12, 13.2)

Aspiration level: (0.9, 0.7, 0.8)

1 Cost 22.2 ≤ z11 ≤ 36.1, 0.7322 (29.3, 30, 31.3), x14, x23, x35, x36, x51, x62

23 ≤ z12 ≤ 37, (53.7, 55, 56.8),

24 ≤ z13 ≤ 38.6 (20.9, 22, 23.2)

2 Time 28 ≤ z21 ≤ 41.8, 0.8029 (41.8, 43, 44.7), x14, x31, x36, x52, x55, x62

29 ≤ z22 ≤ 43, (31.9, 33, 34.5),

30.3 ≤ z23 ≤ 44.7 (21, 22, 23.1)

3 Quality 11.1 ≤ z31 ≤ 13, 0.8681 (40, 41, 42.7),  x13, x14, x31, x46, x55, x62
12 ≤ z32 ≤ 14, (41.9, 43, 44.6),

13.2 ≤ z33 ≤ 15.2 (11.1, 12, 13.2)

Aspiration level: (0.7, 0.8, 0.9)

1 Cost 22.2 ≤ z11 ≤ 40, 0.8009 (33.1, 34, 35.4), x13, x21, x44, x46, x55, x62

23 ≤ z12 ≤ 41, (47.7, 49, 50.9),

24 ≤ z13 ≤ 42.7 (16.9, 18, 19.2)

Shape parameter: (−2, −5, −1)

Aspiration level: (0.8, 0.85, 0.7)

1 Cost 22.2 ≤ z11 ≤ 33.2, 0.8215 (25.3, 26, 27.2),  x13, x24, x35, x46, x51, x62
23 ≤ z12 ≤ 34, (61.6, 63, 64.9),

24 ≤ z13 ≤ 35.6 (18.9, 20, 21.2)

2 Time 28 ≤ z21 ≤ 47.8, 0.7126 (37, 38, 39.5), x14, x21, x36, x53, x55, x62

29 ≤ z22 ≤ 49, (39.8, 41, 42.7),

30.3 ≤ z23 ≤ 50.8 (22.9, 24, 25.2)

Shape parameter: (−1, −2, −5)

Aspiration level: (0.7, 0.8, 0.85)

1 Quality 11.1 ≤ z31 ≤ 19, 0.7972 (33.2, 34, 35.6), x13, x14, x46, x51, x46, x62

12 ≤ z32 ≤ 20, (47.8, 49, 50.8),

13.2 ≤ z33 ≤ 21.2 (13, 14, 15.2)

Aspiration level: (0.8, 0.7, 0.75)

2 Quality 11.1 ≤ z31 ≤ 21, 0.8191 (32.1, 33, 34.5), x11, x13, x24, x46, x55, x62

12 ≤ z32 ≤ 22, (46.7, 48, 49.7),

13.2 ≤ z33 ≤ 23.2 (15, 16, 17.2)
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We have stated the results by taking different estimation of the aspiration levels for 
each combination of the shape parameters shown in Table 8.

The computational results and its corresponding assignment plans of sensitivity analy-
sis (15-jobs and 6-workers) are presented in the Table 9 at α = 0.1 for different shape 
parameter and aspiration level.

Moreover, this paper presents a sensitivity analysis by adding the new data of workers 
(Worker-7 to Worker-9) and keeping the jobs (Job-1 to Job-15) as given in the article of 
Gupta and Mehlawat (2014). For α = 0.1, and the fuzzy input data li = 3 and s = 4, solu-
tion and assignment plans of FMOAP with extra workers (worker-7 to worker-9) and 
fifteen jobs are shown in Table 11 with its triangular possibilistic distributions for each 
objectives.

The computational results are shown in the Table 11 or additional worker and 15 jobs 
(7-workers and 15-jobs, 8-workers and 15-jobs, 9-workers and 15-jobs) respectively by 
taking different estimation of the aspiration levels for each combination of the shape 
parameters.

We have stated the results by taking different estimation of the aspiration levels for 
each combination of the shape parameters shown in Table 10.

The computational results and the corresponding assignment plans obtained through 
sensitivity analysis (15 jobs and 9 employees) are presented in Table 11 at α = 0.1 for 
various shape parameters and estimated aspiration levels. Moreover, as previously dis-
cussed, if the DM is not satisfied with the obtained compromise solution, more solu-
tions can be obtained by improving an individual objective function as per the DM’s 
preference.

Thus, the sensitivity analysis reveals that the developed solution approach can handle 
the FMOAP successfully and proficiently when an additional employee and \or job is 
considered. In addition, if the DM is not satisfied with the obtained assignment plans, 
more assignment plans can be generated by changing the values of the shape parameters 
in the exponential membership function (Gupta and Mehlawat 2013, 2014; Tailor and 
Dhodiya 2016a).

Comparison
Table 12 shows comparison between obtained solutions by GA based hybrid approach 
using exponential membership function with different approaches at α = 0.1.

Table 8 Different values of shape parameters and aspiration level

Case Shape parameter (K1, K2, K3) Aspiration level 
(

µ̄Z1j (x), µ̄Z2j (x), µ̄Z3j (x)
)

Case-1: (−5, −1, −2) 0.7, 0.8, 0.9

Case-2: (−5, −1, −2) 0.8, 0.85, 0.7

Case-3: (−5, −1, −2) 0.9, 0.7, 0.8

Case-4: (−1, −2, −5) 0.7, 0.8, 0.85

Case-5: (−1, −2, −5) 0.8, 0.7, 0.75

Case-6: (−2, −5, −1) 0.8, 0.85, 0.7
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Table 10 Different values of shape parameters and aspiration level

Case Shape parameter (K1, K2, K3) Aspiration level 
(

µ̄Z1j (x), µ̄Z2j (x), µ̄Z3j (x)
)

Case-1 (−5, −1, −2) 0.8, 0.85, 0.7

Case-2 (−5, −1, −2) 0.9, 0.7, 0.8

Case-3 (−1, −2, −5) 0.7, 0.8, 0.85

Case-4 (−1, −2, −5) 0.8, 0.7, 0.75

Case-5 (−2, −5, −1) 0.8, 0.85, 0.7

Table 11 Results summery of sensitivity analysis w.r.t number of workers at α = 0.1

No. of worker Case � µij Objective values Optimum allocations xij

 Workers-7 1 0.7480 (0.8986, 0.9066, 0.8964)
(0.9182, 0.9036, 0.8840)
(0.8606, 0.8387, 0.7480)

(105, 132, 168.9)
(68, 95, 131.9)
(36.7, 61, 87.1)

x13, x112, x115, x24, x210,
x31, x36, x38, x411, x413,
x55, x59, x62, x67, x614

2 0.8067 (0.9198, 0.9280, 0.9414)
(0.8768, 0.8616, 0.8491)
(0.9052, 0.8875, 0.8067)

(100.9, 127, 156.7)
(76.1, 104, 140)
(29.6, 53, 79.1)

x11, x14, x111, x23, x210,
x215, x38, x312, x45, x52,
x56, x513, x69, x614, x77

3 0.7303 (0.7716, 0.7433, 0.7303)
(0.8944, 0.8933, 0.8805)
(0.9648, 0.9577, 0.9162)

(85.2, 114, 148.2)
(84.9, 111, 148.8)
(40.7, 65, 91.1)

x12, x18, x112, x23, x24,
x36, x37, x314, x49, x411,
x413, x52, x610, x615, x75

4 0.8131 (0.8131, 0.8202, 0.8304)
(0.8362, 0.8263, 0.8287)
(0.9597, 0.9523, 0.9070)

(80.6, 104, 133.7)
(98.3, 128, 163.1)
(42.7, 67, 93.1)

x13, x19, x111, x21, x213,
x32, x35, x314, x44, x46,
x47, x58, x512, x515, x610

5 0.7539 (0.8179, 0.8122, 0.8251)
(0.9353, 0.9320, 0.9332)
(0.8937, 0.8652, 0.7539)

(90, 117, 147.6)
(113.4, 144, 180.9)
(23.6, 47, 74)

x19, x111, x215, x33, x34,
x314, x45, x48, x51, x512,
x513, x62, x610, x76, x77

 Workers-8 1 0.7932 (0.9092, 0.9083, 0.9110)
(0.8911, 0.8836, 0.8578)
(0.8482, 0.8187, 0.7932)

(108.2, 137, 170.3)
(71.8, 97, 134.8)
(37.8, 63, 90)

x111, x114, x24, x215, x38,
x46, x47, x51, x63, x69,
x710, x712, x713, x82, x85

2 0.7752 (0.9492, 0.9511, 0.9385)
(0.8113, 0.7849, 0.7752)
(0.9389, 0.9266, 0.9225)

(97.9, 124, 161.8)
(87.4, 118, 154)
(21.4, 43, 69.1)

x11, x13, x112, x210, x34,
x314, x46, x47, x411, x58,
x513, x62, x615, x85, x89

3 0.7408 (0.7504, 0.7408, 0.7626)
(0.8687, 0.8702, 0.8712)
(0.9754, 0.9685, 0.9638)

(91, 118, 146.8)
(90.8, 116, 149.3)
(34.7, 59, 85.1)

x111, x112, x21, x23, x215,
x314, x45, x48, x49, x52,
x59, x610, x84, x87, x813

4 0.8069 (0.8112, 0.8181, 0.8096)
(0.8719, 0.8666, 0.8621)
(0.9698, 0.9604, 0.9537)

(83.6, 107, 139.4)
(90, 117, 152.1)
(37.8, 63, 89.1)

x14, x111, x115, x29, x38,
x314, x46, x412, x55, x513,
x62, x610, x77, x83

5 0.8168 (0.8434, 0.8352, 0.8423)
(0.9572, 0.9560, 0.9540)
(0.8645, 0.8347, 0.8168)

(90, 117, 147.6)
(104.2, 132, 168.9)
(25.6, 49, 76)

x14, x111, x215, x314, x46,
x48, x53, x55, x59, x61,
x610, x612, x77, x82, x813

 Workers-9 1 0.7975 (0.9192, 0.8991, 0.8994)
(0.9197, 0.9064, 0.8898)
(0.8401, 0.8158, 0.7975)

(108.8, 143, 177.2)
(65.7, 90, 125.1)
(37.6, 61, 87.1)

x16, x111, x113, x28, x29,
x215, x31, x37, x44, x52,
x73, x85, x812, x910, x914

2 0.8208 (0.9371, 0.9380, 0.9279)
(0.8636, 0.8265, 0.8208)
(0.9149, 0.8936, 0.8810)

(104.1, 132, 168.9)
(77.4, 108, 142.2)
(23.6, 47, 74)

x113, x21, x210, x312, x44,
x48, x411, x55, x62, x67,
x714, x89, x93, x96, x915

3 0.7298 (0.7346, 0.7429, 0.7298)
(0.9093, 0.8960, 0.8809)
(0.9524, 0.9381, 0.9258)

(94.8, 120, 154.2)
(80, 107, 144.8)
(43.8, 69, 95.1)

x14, x112, x115, x23, x29,
x211, x38, x314, x46, x51,
x62, x75, x713, x97, x910

4 0.7653 (0.8351, 0.8271, 0.8083)
(0.8056, 0.7922, 0.7653)
(0.9626, 0.9497, 0.9435)

(81.8, 107, 141.2)
(105.2, 134, 176.3)
(39.8, 65, 90.2)

x17, x18, x111, x23, x26,
x34, x314, x45, x49, x413,
x52, x512, x61, x910, x915

5 0.7615 (0.8495, 0.8517, 0.8607)
(0.9718, 0.9657, 0.9585)
(0.8275, 0.7847, 0.7615)

(90.8, 111.6, 145.7)
(94.3, 124, 164.5)
(28.7, 53, 80)

x111, x38, x314, x44, x46,
x413, x55, x61, x610, x77,
x89, x812, x815, x92, x93
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Conclusion
The GA-based hybrid approach provided the solution for the FMOAP by using the fuzzy 
exponential membership function with some realistic constraints to optimize the opti-
mistic, most likely, and pessimistic scenarios of fuzzy objective functions with TPD. 
Moreover, the developed hybrid approach provided flexibility for the DM in terms of the 
various choices in aspiration levels, shape parameters, upper bound improvement and 
also provided more effective assignment plans.
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