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Background
Before introducing the model, we revisit some important risk models. Assume that the 
claim arrival process {N (t)}t≥0 is a Poisson process with parameter �, and that the claim 
sizes {Zk}k≥1 independent of {N (t)}t≥0, are positive, independent and identically dis-
tributed random variables with common density function f and mean value µ. Then the 
well-known classical compound Poisson risk model is given by

where u denotes the initial capital of an insurance company, c > 0 is the premium 
income rate. If the company charges a constant premium rate c, but invests its money 
at interest rate δ, we get the compound Poisson risk model with constant interest. The 
dynamics of the surplus process can be described by

U(t) = u+ ct −

N (t)∑

i=1

Zi,

U(t) = u+

∫ t

0
(c + δU(s))ds −

N (t)∑

i=1

Zi.
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The risk models above have a common characteristic, that is, the surplus process moves 
according to the same differential equation in between jumps. All these models and 
many other risk models modified from the compound Poisson risk model belong to the 
risk process whose income depend on the current reserve (other terms are level-depend-
ent risk processes, see Chapter 8 of Asmussen and Albrecher 2010). The evolution of the 
surplus process can be expressed as

where g : R �−→ R is a continuously differentiable Lipschitz function which represents 
the reserve-dependent income rate. Denoted by {Sn}n≥1, the sequence of the claim times 
and {Tk}k≥1, the inter-arrival i.e. the time periods between successive claims. Then we 
have

The stochastic nature of the model (1) is mainly derived from the compound Poisson 
process. Between successive claim arrival epochs, the process follows a determinis-
tic path, and satisfies the same differential equation, while the uncertainty of the claim 
determines the uncertainty of the initial value of the differential equation. Starting from 
the initial value u, the risk process run in accordance with a differential equation. When 
the claim occurs, the risk process run from the new initial value, according to the same 
differential equation, and the procedure goes on and on. We use φ(t, x) to denote the 
deterministic path starting from the initial value x in between jumps, which satisfies

In addition, we assume that there exists a constant ε > 0 such that infx∈R g(x) ≥ �µ+ ε, 
which ensures that the ruin probability is less than 1 and Pu(limt→∞U(t) = ∞) = 1. In 
this paper we use Px(·) to denote P(·|x ∈ R) the probability of the process {U(t)}t≥0 with 
initial value x generated on (�,F∞).

For the reason why the model (1) is important, the readers are referred to Cai et al. 
(2009) and Chapter  8 of Asmussen and Albrecher (2010), where some well-known 
important risk models are given by taking different kinds of functions of g(·).

In fact the above model was considered by many authors: such as Asmussen (2000), 
Asmussen and Albrecher (2010), Cai et  al. (2009), Dassios and Embrechts (1989), Das 
and Mahavier (2012), Embrechts and Schmidli (1994), Egídio dos Reis (2002), Li and Lu 
(2013) and Wang et al. (2003). For this model, Cai et al. (2009) investigate various applica-
tions of the total discounted operating costs up to default. Dassios and Embrechts (1989) 
or Embrechts and Schmidli (1994) showed in general how to use the theory of piecewise 
deterministic Markov processes for solving insurance risk problems. Das and Mahavier 
(2012) study the joint distribution of the surplus immediately before ruin and the defi-
cit at ruin for the compound Poisson risk model with constant interest. Li and Lu (2013) 

(1)U(t) = u+

∫ t

0
g(U(s))ds −

N (t)∑

i=1

Zi,

S0 = 0, Tk = Sk − Sk−1.





dφ(t, x)

dt
= g(φ(t, x)), t > 0.

φ(0, x) = x.
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consider the generalized expected discounted penalty function in a risk process with credit 
and debit interests. It is worthwhile pointing out that a deep review and details on applica-
tions of this model can be found at Chapter 8 of Asmussen and Albrecher (2010). From 
Dassios and Embrechts (1989) or Embrechts and Schmidli (1994), we know that {U(t)}t≥0 
is a piecewise deterministic Markov process. We use P(t, x,Ŵ) to denote the transition 
function of the model (1), for any Ŵ ∈ B (R) (the Borel σ-algebra on R). Throughout this 
paper, it is assumed that P(t, x,Ŵ) has a density function p(t, x, y) for y < φ(t, x).

To the best of our knowledge, there are only a few papers exclusively concerned with 
the extremum of the risk model (1). The distribution of extremum is very important in 
risk theory, which can portray the best and worst condition of an insurance company 
and provide early warning for the development of the insurance company. It is worth 
pointing out that our method is different from the traditional method, and we obtain the 
distribution of the first hitting time by the method of constructing the renewal sequence. 
And then, the distributions of some extreme value are investigated.

Inspired by Wu et al. (2003), we mainly study the first hitting time and some extremum 
of the model (1). The rest of this paper is organized as follows. We intend to introduce in 
“Preliminaries” section the renewal measure of the defective renewal sequence. In “The 
first hitting time” section, the expression of the renewal measure is derived. Thus, the 
distribution function on the first hitting time is obtained. Furthermore, the ruin prob-
ability and the probability that the surplus process is less than x is obtained. In “The 
supreme profit and the deficit” section, the distribution of supreme profits before ruin, 
the joint distributions of the supreme profit and deficit before the time of the first up-
crossing level zero after ruin, and the joint distributions of the supreme profit and deficit 
before the time of the surplus process leaving zero ultimately are derived. As a validation 
of all results’ applications, we give the explicit expressions for the compound Poisson 
risk model with the claim amount being exponentially distributed.

Preliminaries
In this section, we first give some notation and terminologies, and then introduce the 
renewal measure. Let T be the time of ruin, Tx the time of the surplus process below the 
level x, i.e. the time of default (see Cai et al. 2009) for the first time and L the time of the 
surplus process leaving zero ultimately, then

From Pu(limt→∞U(t) = ∞) = 1, we see that P(L < ∞) = 1 and that the surplus will 
never become negative after time L.

Define the sequence of the x points on the time scale of the surplus process as follows:

In general, for k = 2, 3, . . ., we recursively define

as shown in Fig. 1. For convenience, let Tx
0 = 0.

T = inf{t ≥ 0 : U(t) < 0}, (T = ∞ if the set is empty),

Tx = inf{t ≥ 0 : U(t) < x}, (Tx = ∞ if the set is empty),

L = sup{t ≥ 0 : U(t) < 0} = sup{t ≥ 0 : U(t) = 0}, (L = 0 if the set is empty).

Tx
1 = inf{t > 0 : U(t) = x}, (Tx

1 = ∞ if the set is empty).

Tx
k = inf

{
t > Tx

k−1 : U(t) = x
}
, (Tx

k = ∞ if the set is empty),
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For every t > 0, set

We see that Nx
t  is the number of x points before t (and including t). Therefore, {Nx

t }t≥0 is 
a counting process and Nx

∞ = sup{k > 0 : Tx
k < +∞} (Nx

∞ = 0 if the set is empty) is 
the total number of the x points of the process. Putting Ft = σ {U(s), s ≤ t}, then T, Tx 
and {Tx

k }k≥1 are all Ft-stopping times.
It is known that (see, for example, Gerber and Shiu 1998) the stopping times play an 

important role in many risk portfolio. Among others, we only mention a few, for exam-
ple Dickson and Li (2013), Gerber (1990), Gerber and Shiu (1998), Zacks (2007), Xu 
(2012), Kyprianou (2013), Landriault and Shi (2014), Li and Lu (2014), Li et al. (2015) 
and references therein.

For U(0) = u ≥ 0, let

be the probability of ruin with initial capital u, and �(u) = 1−�(u) be the survival 
probability. We define the probability the surplus process falls below the level x, i.e. the 
probability of default, as

and the probability that the surplus process never falls below the level x can be expressed 
as

For k ≥ 1, we define

Nx
t = sup

{
k > 0,Tx

k ≤ t
}
, (Nx

t = 0 if the set is empty).

�(u) = Pu(T < ∞)

�x(u) = Pu(Tx < ∞),

�x(u) = 1−�x(u).

Sxk =

{
Tx
k − Tx

k−1, Tx
k−1 < ∞,

∞, otherwise.

U(t)

u

x

t
0

TTx T x
1 T x

2L

Fig. 1 A typical realization of the risk process
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Since the process {U(t)}t≥0 has strong Markov property, we can verify that {Sxk }k≥1 are 
independent and that {Sxk }k≥2 is a sequence of i.i.d. random variables. Therefore, {Nx

t }t≥0 
is a renewal process. The k-th renewal epoch is Tx

k =
∑k

n=1 S
x
n. Let Fx be the common 

distribution of {Sxk }k≥2, and Fx
u be the distribution of Sx1. Then the renewal measure Gx

u is 
defined by

where ∗ denotes the convolution and Fn∗
x (t) denotes the n-fold convolution of Fx(t). 

Thus we have

where I denotes a general interval. Let gxu(·) and f xu (·) be the density functions of Gx
u and 

Fx
u respectively, if they exist.

The first hitting time
We now show in detail how the renewal measure Gx

u(·) can be used to express the first 
hitting time. The key point is to obtain Gx

u(·). We first give the following lemma, which 
plays an important role in getting the expression of Gx

u(·).

Lemma 1 Let Xt satisfy the ordinary differential equation

where h(·) is a continuously differentiable Lipschitz continuous function. If there exists a 
t∗ ∈ [0,T ], such that Xt∗ = x, then we have

where constant K1 depends only on T and x and constant K depends on h(·).

Proof Without loss of generality we assume that h(x) > 0. Note that Xt∗ = x, then Xs 
is bounded in s ∈ [0,T ]. Since h(·) is a continuous function, then there exists a constant 
K1 depending only on T and x, such that for any 0 ≤ s ≤ T , |h(Xs)| ≤ K1. Hence, for any 
s ∈ [0,T ], we obtain

Thus we have

(2)Gx
u(t) =

∞∑

k=1

Pu(Tx
k ≤ t) =

∞∑

k=1

Fx
u ∗ F (k−1)∗

x (t),

Gx
u(I) =

∞∑

k=0

Fx
u ∗ Fk∗

x (I), I ⊂ [0,∞),

dXt

dt
= h(Xt), for any t ∈ [0,T ],

|Xs − X0| ≤ K1 · s, for any s ∈ [0,T ].

|XT − X0 − h(x)T | ≤ KK1T
2,

|Xs − X0| =

∣∣∣
∫ s

0
h(Xl)dl

∣∣∣ ≤
∫ s

0
|h(Xl)|dl ≤ K1 · s.
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This ends the proof.  �

By the description just after the model (1), we know that the function g(·) of model (1) 
can be considered as special cases of the function h(·) of Lemma 1.

Theorem 1 For s ≥ 0, we have

(1) When φ(s,u) > x, 

where g(·) is given by (1).
(2) When φ(s,u) < x, 

(3) When φ(s,u) = x,

(a) If s > 0, then Gx
u(t) will jump at time s, that is, 

(b) If s = 0, i.e., s = 0,u = x, then

Proof  (1) When φ(s,u) > x, we have 

 By its probability meaning, we obtain 

 Note that Tx
Nx
s+ds

∈ (s, s + ds] and dU(t)
dt

= g(U(t)), for any t ∈ (s, s + ds]. By Lemma 
1, we have 

 Hence, when s > 0, we get 

|XT − X0 − h(x)T | = |XT − X0 − h(Xt∗)T | =

∣∣∣
∫ T

0
h(Xl)− h(Xt∗)dl

∣∣∣

≤

∫ T

0
|h(Xl)− h(Xt∗)|dl ≤

∫ T

0
K |Xl − Xt∗ |dl

≤ K

∫ T

0
K1|l − t∗|dl ≤ KK1T

2.

(3)gxu(s) =

{
g(x)p(s,u, x) if s > 0,
0 if s = 0,

gxu(s) = 0.

Gx
u(t) = 0, for 0 ≤ t < s, Gx

u(s) = e−�s.

gxu(s) = 0.

gxu(s)ds =

∞∑

k=1

Pu
(
Tx
k ∈ (s, s + ds]

)
=

∞∑

k=1

Pu
(
Tx
k ∈ ds

)

=

∞∑

k=1

Pu
(
Tx
k ∈ ds,N (s, s + ds] = 0

)
+

∞∑

k=1

Pu
(
Tx
k ∈ ds,N (s, s + ds] ≥ 1

)
.

∞∑

k=1

Pu
(
Tx
k ∈ ds,N (s, s + ds] = 0

)
= Pu(U(s) < x,U(s + ds) ≥ x,N (s, s + ds] = 0).

|U(s + ds)−U(s)− g(x)ds)| ≤ KK1d
2s.
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 and 

 Then we have 

 When s = 0, we get 

 Hence we arrive at 

 Combining (4) with (5), we obtain (3) immediately.
(2) when φ(s,u) < x, Pu(Tx

1 > s) = 1. This follows that gxu(s) = 0.
(3) when φ(s,u) = x. (a) If 0 ≤ t < s, then φ(t,u) < x, thus Gx

u(t) = 0. If t = s, then 
there is no jump before s, that is 

 (b) When s = 0,u = x, we have 

 Hence, gxu(0) = 0. So the proof is completed.  �

Remark 1 When g(x) = c, the risk model is reduced to the classical risk model, Theo-
rem 1 coincides exactly with Lemma 3.1 in Wu et al. (2003).

For the development of the paper, let us present some Laplace–Stieltjes (L− S) trans-
forms, which can be expressed as:

Pu(U(s) < x,U(s + ds) ≥ x,N (s, s + ds] = 0)

= Pu(x − g(x)ds + O(d2s) ≤ U(s) < x,N (s, s + ds] = 0)

= Pu(x − g(x)ds + O(d2s) ≤ U(s) < x)e−�ds

= g(x)p(s,u, x)ds + O(d2s),

∞∑

k=1

Pu
(
Tx
k ∈ ds,N (s, s + ds] ≥ 1

)
= O(d2s).

(4)gxu(s) = g(x)p(s,u, x).

gxu(0)ds =

∞∑

k=1

Pu
(
Tx
k ∈ (0, ds]

)
=

∞∑

k=1

Pu
(
Tx
k ∈ ds

)

=

∞∑

k=1

Pu
(
Tx
k ∈ ds,N (0, ds] = 0

)
+

∞∑

k=1

Pu
(
Tx
k ∈ ds,N (0, ds] ≥ 1

)

= O(d2s).

(5)gxu(0) = 0.

Gx
u(s) = Pu(Tx

1 = s) = Pu(S1 > s) = e−�s.

gxu(0)ds =

∞∑

k=1

Pu(Tx
k ∈ (0, ds]) =

∞∑

k=1

Pu(Tx
k ∈ (0, ds],N (0, ds] ≥ 1) = O(d2s).
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Lemma 2 There exists a constant M, such that

for any v ≥ M.

Proof By Theorem 1 and its proof, we have Gx
x(0) = 0 and Tx

n ≥ Sn. Hence we have

Note that

When M > �, we have

So we complete the proof.  �

By Theorem 1, we see that the expression of the renewal measure Gx
u can be derived 

once u and x are fixed. Next, we consider the explicit expressions of the distribution on 
the first hitting time, which is expressed in terms of Gx

u.

Theorem 2 For s > 0, we have

Ĝ
x
u(v) =

∫ ∞

0

e
−vs

dG
x
u(s),

Ĝ
x
x(v) =

∫ ∞

0

e
−vs

dG
x
x(s),

F̂
x
u (v) =

∫ ∞

0

e
−vs

dF
x
x (s).

Ĝx
x(v) =

∫ ∞

0
e−vsdGx

x(s) < 1,

Gx
x(t) =

∞∑

k=1

Px(Tx
k ≤ t) ≤

∞∑

k=1

Px(Sk ≤ t) = �t.

Ĝx
x(v) =

∫ ∞

0
e−vsdGx

x(s)

= Gx
x(s)e

−vs|∞0 + v

∫ ∞

0
e−vsGx

x(s)ds

≤ v

∫ ∞

0
e−vs

�sds =
�

v
.

Ĝx
x(v) =

∫ ∞

0
e−vsdGx

x(s) ≤
�

v
< 1, for any v > M.

Fx
u (s) =

∞∑

n=0

(−1)n
(
Gx
x

)n∗
∗ Gx

u(s).
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Proof By (2) we have the following defective renewal equation

Taking L− S transform on both sides of (6), we get

From this together with Lemma 2, we obtain

Inverting F̂ x
u (v), we have

This completes the proof.  �

Corollary 1  

Proof Since Pu(limt→∞U(t) = ∞) = 1, then �(u) = Pu(T < ∞) = Pu(T 0
1 < ∞) and 

�x(u) = Pu(Tx < ∞) = Pu(Tx
1 < ∞) can be obtained directly.  �

The supreme profit and the deficit
In this section, some distributions on the maximum surplus and the maximal sever-
ity of ruin are given. Before proceeding with the next Theorem, we will give a simple 
explanation of shift operators first. For t ≥ 0, let θt be the shift operators from � to itself 
defined by U(s) ◦ θt = U(s + t). For stopping time T, conditioning on {T < ∞} the map 
θT is defined by U(t) ◦ θT = U(t + T ) (see Revuz and Yor 1991, pp. 34, 37 and 74). Let 
G(u, a) = Pu(sup0≤t<T U(t) > a,T < ∞) to denote the probability distribution of the 
supreme profit of an insurance company before the time of ruin. First we will give the 
explicit expression of G(u, a).

Theorem 3 For u ≥ 0, we have

(6)Gx
u(t) = Fx

u (t)+ Fx
u ∗ Gx

x(t).

F̂ x
u (v) =

Ĝx
u(v)

1+ Ĝx
x(v)

.

F̂ x
u (v) =

∞∑

n=0

(−1)nĜx
u(v)

[
Ĝx
x(v)

]n
.

Fx
u (s) =

∞∑

n=0

(−1)n
(
Gx
x

)n∗
∗ Gx

u(s).

(7)
�(u) = 1−�(u) =

∞∑

n=0

(−1)n
(
G0
0

)n∗
∗ G0

u(∞),

(8)�x(u) = 1−�x(u) =

∞∑

n=0

(−1)n
(
Gx
x

)n∗
∗ Gx

u(∞).

G(u, a) =

{
�(u), a ≤ u,
�(u)
�(a)�(a), a > u,
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where �(u),�(u) are given by (7).

Proof When a ≤ u, it is obvious that G(u, a) = Pu(T < ∞) = �(u). Therefore we only 
consider the case a > u. Since Pu(limt→∞U(t) = ∞) = 1, by the strong Markov prop-
erty of {U(t), t ≥ 0} we can show that

In addition, we have

Inserting (10) into (9), we get that

This ends the proof.  �

Corollary 2 For a > u ≥ 0, we have

Proof This follows from (10) and (11).  �

Theorem 4 For a > u, we have

where �(u) can be obtained by (7).

Proof It follows from Pu(limt→∞U(t) = ∞) = 1 that Pu(L < ∞) = 1 and 
Pu(Ta

1 < ∞) = 1. Note that

When u < 0, we have Pu(L > 0) = 1. Thus we can obtain

When u ≥ 0, we have (L > 0) = (T < ∞), then it is easy to see that

(9)
G(u, a) = Pu

(
Ta
1 < T ,T < ∞

)
= Pu

(
Ta
1 < T ,T ◦ θTa

1
< ∞

)

= Pu
(
Ta
1 < T

)
Pa(T < ∞) = Pu

(
Ta
1 < T

)
�(a).

(10)
Pu

(
Ta
1 < T

)
= Pu

(
Ta
1 < T ,T < ∞

)
+ Pu

(
Ta
1 < T ,T = ∞

)

= G(u, a)+�(u).

(11)G(u, a) =
�(a)

1−�(a)
�(u) =

�(u)

�(a)
�(a).

Pu(Ta
1 < T ) =

�(u)

�(a)
.

Pu
(

sup
0≤t<L

U(t) < a, L > 0
)
=

{
�(a)−�(u), u ≥ 0,
�(a), u < 0,

(
sup

0≤t<L

U(t) < a, L > 0

)
=

(
L < Ta

1 , L > 0
)
=

(
T ◦ θTa

1
= ∞, L > 0

)
.

Pu
(
L < Ta

1 , L > 0
)
= Pu

(
T ◦ θTa

1
= ∞

)
= Pu

(
Ta
1 < ∞,T ◦ θTa

1
= ∞

)

= Pa(T = ∞) = �(a).
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By Corollary 2, we have Pu(T < Ta
1 ) =

�(a)−�(u)
�(a) . Hence Pu(L < T

a
1
, L > 0) =

�(a)−�(u). This completes the proof.  �

In the following, we consider the maximum surplus and the maximal severity of ruin 
before the time of recovery. To some extent, as ‘indexes’, they can describe the ‘best’ situ-
ation and the ‘worst’ situation the company would experience before the surplus process 
up-crossing level zero after ruin for the first time. Their joint distributions are derived.

Theorem 5 For a > u ≥ 0 and b > 0, we have

where �(u),�−b(u) are presented by (7) and (8).

Proof Let A = {sup0≤t<T 0
1
U(t) ≥ a, inf0≤t<T 0

1
U(t) ≥ −b}, and then we have

Following the line of Picard (1994), we introduce M̃ = Max{|U(t)|,U(t) < 0} in order 
to obtain M = Max{|U(t)|,T ≤ t < T 0

1 }. Clearly M̃ ≤ z means that the surplus process 
never goes under the level −z, so that

The event M̃ ≤ z is equivalent to that ruin does not occur or ruin occurs and M̃ ≤ z. By 
the total probability formula, we have

Hence we obtain

Pu
(
L < Ta

1 , L > 0
)
= Pu

(
Ta
1 < ∞,T < ∞,T ◦ θTa

1
= ∞

)

= Pu
(
Ta
1 < ∞,T < Ta

1 ,T ◦ θTa
1
= ∞

)
= Pu

(
T < Ta

1

)
�(a).

Pu
(

sup
0≤t<T 0

1

U(t) < a, inf
0≤t<T 0

1

U(t) ≥ −b
)
=

�(a)�−b(u)−�(u)�−b(a)

�(a)�−b(0)
,

Pu(A ∩ {T = ∞}) = Pu
(
sup
t≥0

U(t) ≥ a, inf
t≥0

U(t) ≥ −b, inf
t≥0

U(t) ≥ 0
)

= Pu
(
inf
t≥0

U(t) ≥ 0
)
= �(u),

Pu(A ∩ {T < ∞}) = Pu
(

sup
0≤t<T

U(t) ≥ a, inf
T≤t<T 0

1

U(t) ≥ −b,T < ∞

)

= Pu
(
Ta
1 < T ,

(
inf

T≤t<T 0
1

U(t) ≥ −b,T < ∞

)
◦ θTa

1

)

= Pu
(
Ta
1 < T

)
Pa

(
inf

T≤t<T 0
1

U(t) ≥ −b,T < ∞

)
.

Pu(M̃ ≤ z) = 1−�−z(u), z ≥ 0.

Pu(M̃ ≤ z) = 1−�(u)+ Pu(M ≤ z)(1−�−z(0)).

Pu(M ≤ z) =
�−z(u)−�(u)

�−z(0)
.



Page 12 of 16He et al. SpringerPlus  (2016) 5:1980 

Then we get

By Corollary 2, we have

Using similar argument, we obtain

Therefore, we can get

This ends the proof.  �

Remark 2  1. When g(x) = c, the risk model simplifies to the classical compound 
Poisson risk model, Theorem 5 is the same as Lemma 3.5 in Wu et al. (2003).

2. When g(x) = c, a = ∞, Theorem 5 simplifies to 

 which coincides with Theorem 1 in Picard (1994).
3. When g(x) = c + δx for x ≥ 0 and g(x) = c + rx for x < 0, the risk model is reduced 

to the risk model with credit and debit interests. Let a = ∞, Theorem 5 simplifies to 

 which is the same as (6.2) in Li and Lu (2013).
Next, we consider the maximum surplus and the maximal severity of ruin before the 

time of the surplus process leaving zero ultimately, which describe the best situation and 
the worst situation the company would experience before the time of the surplus process 
leaving zero ultimately. We obtain their explicit expression in the following theorem.

Theorem 6 For a > u ≥ 0 and b > 0, we have

In particular,

Pa
(

inf
T≤t<T 0

1

U(t) ≥ −b,T < ∞

)
= Pa(M ≤ b) =

�−b(a)−�(a)

�−b(0)
.

P
u

(
sup

0≤t<T
0
1

U(t) ≥ a, inf
0≤t<T

0
1

U(t) ≥ −b

)
= P

u(A) = �(u)+
�(u)(�−b(a)−�(a))

�(a)�−b(0)
.

P
u

(
inf

0≤t<T
0
1

U(t) ≥ −b,T = ∞

)
= �(u),

P
u

(
inf

0≤t<T
0
1

U(t) ≥ −b,T < ∞

)
= P

u

(
inf

T≤t<T
0
1

U(t) ≥ −b,T < ∞

)
=

�−b(u)−�(u)

�−b(0)
.

Pu
(

sup
0≤t<T 0

1

U(t) < a, inf
0≤t<T 0

1

U(t) ≥ −b
)

= Pu
(

inf
0≤t<T 0

1

U(t) ≥ −b
)
− Pu

(
sup

0≤t<T 0
1

U(t) ≥ a, inf
0≤t<T 0

1

U(t) ≥ −b
)

=
�(a)�−b(u)−�(u)�−b(a)

�(a)�−b(0)
.

Pu
(

inf
0≤t<T 0

1

U(t) ≥ −b
)
=

�(u+ b)−�(u)

�(b)
,

Pu
(

inf
0≤t<T 0

1

U(t) ≥ −b
)
=

�−b(u)−�(u)

�−b(0)
,

Pu
(

sup
0≤t<L

U(t) < a, inf
0≤t<L

U(t) ≥ −b, L > 0
)
=

�−b(u)

�−b(a)
�(a)−�(u),
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where �(u),�−b(u) are given by (7) and (8).

Proof Note that the event {sup0≤t<L U(t) < a, inf0≤t<L U(t) ≥ −b, L > 0} is equiva-
lent to the event {T < Ta

1 < T−b, inf t≥0U(Ta
1 + t) ≥ 0}, so we can obtain

Using the same argument as Theorem 3 and Corollary 2, we have

Hence we can obtain

This completes the proof.  �

Example 1 Let g(x) = c and the individual claim amount distribution be exponential 
with mean value µ. Then

and

Pu
(

inf
0≤t<L

U(t) ≥ −b, L > 0
)
= �−b(u)−�(u),

Pu
(

sup
0≤t<L

U(t) < a, L > 0
)
= �(a)−�(u),

Pu
(

sup
0≤t<L

U(t) < a, inf
0≤t<L

U(t) ≥ −b, L > 0
)

= Pu
(
T < Ta

1 < T−b, inf
t≥0

U(Ta
1 + t) ≥ 0

)

= Pu
(
Ta
1 < T−b, inf

t≥0
U(Ta

1 + t) ≥ 0
)
− Pu

(
Ta
1 < T , inf

t≥0
U(Ta

1 + t) ≥ 0
)

= Pu
[
Pu

(
Ta
1 < T−b, inf

t≥0
U(Ta

1 + t) ≥ 0|FTa
1

)]

− Pu
[
Pu

(
Ta
1 < T , inf

t≥0
U(Ta

1 + t) ≥ 0|FTa
1

)]

= Pu(Ta
1 < T−b)P

a
(
inf
t≥0

U(t) ≥ 0
)
− Pu

(
Ta
1 < T

)
Pa

(
inf
t≥0

U(t) ≥ 0
)
.

Pu(Ta
1 < T−b) =

�−b(u)

�−b(a)
, Pu(Ta

1 < T ) =
�(u)

�(a)
.

Pu

(
sup

0≤t<L

U(t) < a, inf
0≤t<L

U(t) ≥ −b, L > 0

)
=

�−b(u)

�−b(a)
�(a)−�(u).

f n∗(x) =
1

µnŴ(n)
xn−1e

− x
µ , x > 0,

p(s,u, x) = e−�s
∞∑

n=1

(�s)n

n!
f n∗(u+ cs − x)

=
�s

µ
e
−

u−x+(c+�µ)s
µ

∞∑

n=1

[
1

nŴ2(n)

(
�s(u− x + cs)

µ

)n−1
]
.
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Thus

Hence

where B(x, y) =
∫ 1
0 tx−1(1− t)y−1dt, x > 0, y > 0 is the Beta-function and Cm

n = n!
m!(n−m)!

  
is a combinatorial number. It follows that

and

By Theorem 3, we have

By Theorem 4, we get

By Theorem 5, we have

When u = 0, the result is the same as W(0, a, b) in Wu et al. (2003). By Theorem 6, we 
have

gxu(s) =
�cs

µ
e
−

u−x+(c+�µ)s
µ

∞∑

n=1

[
1

nŴ2(n)

(
�s(u− x + cs)

µ

)n−1
]
.

f
x
u (s) =

1

s
e
−

u−x+(c+�µ)s
µ

∞∑

n=0

(−1)n
∞∑

m1=1

· · ·

∞∑

mn=1

∞∑

m=1

m−1∑

k=1

(
�cs2

µ

) n∑
i=1

mi

×

n∏

i=1

B(2
∑

i−1

k=1
mk , 2mi)

miŴ
2(mi)

(
�s

µ

)m
B(2

∑
n

i=1 mi,m+ k − 1)

mŴ2(m)
C
k
m−1(u− x)m−1−k (cs)k+1

,

�x(u) =
�µ

c
e
−

(c−�µ)(u−x)
cµ , �(u) =

�µ

c
e
−

(c−�µ)u
cµ ,

�x(u) = 1−�x(u) = 1−
�µ

c
e
−

(c−�µ)(u−x)
cµ ,

�(u) = 1−�(u) = 1−
�µ

c
e
−

(c−�µ)u
cµ .

G(u, a) =





�µ
c e

−
(c−�µ)u

cµ , a ≤ u,

�µe
−
(c−�µ)a

cµ

�
c−�µe

−
(c−�µ)u

cµ

�

c

�
c−�µe

−
(c−�µ)a

cµ

� , a > u.

Pu
�

sup
0≤t<L

U(t) < a, L > 0
�
=





�µ
c

�
e
−

(c−�µ)u
cµ − e

−
(c−�µ)a

cµ

�
, u ≥ 0,

1− �µ
c e

−
(c−�µ)a

cµ , u < 0.

Pu
(

sup
0≤t<T 0

1

U(t) < a, inf
0≤t<T 0

1

U(t) ≥ −b
)

=

(
c − �µe

−
(c−�µ)(u+b)

cµ

)

(
c − �µe

−
(c−�µ)b

cµ

) −

(
c − �µe

−
(c−�µ)u

cµ

)(
c − �µe

−
(c−�µ)(a+b)

cµ

)

(
c − �µe

−
(c−�µ)a

cµ

)(
c − �µe

−
(c−�µ)b

cµ

) .
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Conclusions
In order to make a reasonably realistic description of the actual behavior, we investigate 
the risk model whose income depend on the current reserve.

The distribution of extremum is very important in risk theory, which can portray the 
best and worst condition of an insurance company. The research of extremum is neces-
sary and meaningful whether theoretically or practically. In this paper, the distribution 
of supreme profits before ruin, the joint distributions of the supreme profit and the defi-
cit before the time of the surplus process first up-crossing level zero after ruin, and the 
joint distributions of the supreme profit and the deficit before the surplus process leave 
zero ultimately are derived. All these results provide early warning for the development 
of the insurance company.

Concretely speaking, the distributions of some extremum can be converted to the 
problem of hitting time, so we study the first hitting time of this model. With the help of 
the strong Markov property, we construct the renewal measure of the defective renewal 
sequence, and obtain the distribution of the renewal measure. The method that we used 
to solve the stopping time problem is innovative. By the presented renewal measure and 
the Laplace–Stieltjes transforms, the distribution of the first hitting time is obtained 
explicitly. Then, the ruin probability and the probability that the surplus process less 
than x is obtained.
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