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Abstract 

The use of Trichoderma isolates with efficient antagonistic activity represents a potentially effective and alterna-
tive disease management strategy to replace health hazardous chemical control. In this context, twenty isolates 
were obtained from tomato rhizosphere and evaluated by their antagonistic activity against four fungal pathogens 
(Fusarium oxysporum f. sp. lycopersici, Alternaria alternata, Colletotrichum gloeosporoides and Rhizoctonia solani). The 
production of extracellular cell wall degrading enzymes of tested isolates was also measured. All the isolates signifi-
cantly reduced the mycelial growth of tested pathogens but the amount of growth reduction varied significantly as 
well. There was a positive correlation between the antagonistic capacity of Trichoderma isolates towards fungal patho-
gens and their lytic enzyme production. The Trichoderma isolates were initially sorted according to morphology and 
based on the translation elongation factor 1-α gene sequence similarity, the isolates were designated as Trichoderma 
harzianum, T. koningii, T. asperellum, T. virens and T. viride. PCA analysis explained 31.53, 61.95, 62.22 and 60.25% genetic 
variation among Trichoderma isolates based on RAPD, REP-, ERIC- and BOX element analysis, respectively. ERG-1 gene, 
encoding a squalene epoxidase has been used for the first time for diversity analysis of antagonistic Trichoderma from 
tomato rhizosphere. Phylogenetic analysis of ERG-1 gene sequences revealed close relatedness of ERG-1sequences 
with earlier reported sequences of Hypocrea lixii, T. arundinaceum and T. reesei. However, ERG-1 gene also showed 
heterogeneity among some antagonistic isolates and indicated the possibility of occurrence of squalene epoxidase 
driven triterpene biosynthesis as an alternative biocontrol mechanism in Trichoderma species.
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Background
The genus Trichoderma has gained immense importance 
in past several decades due to its antagonistic ability 
against wide range of plant pathogens and growth pro-
motion in crop plants. Some species of Trichoderma viz., 
Trichoderma harzianum, T. viride, T. virens and T. kon-
ingii are well known antagonists and are being utilized to 
control plant pathogens under field conditions (Solanki 
et  al. 2011; Srivastava et  al. 2012; Galarza et  al. 2015). 
Promising Trichoderma isolates have different mecha-
nisms or combination of direct parasitism, competition 

for nutrients, stimulators of plant health, or inducers 
of plant systemic resistance against various pathogens 
(Harman et al. 2004; Anees et al. 2010; Woo et al. 2014; 
Jain et  al. 2015; Rai et  al. 2016). A plethora of antago-
nistic Trichoderma isolates have been identified by sev-
eral researchers from different places around the world, 
having history of varied climate, soil type, cropping sys-
tem, etc., which differ in their innocuousness and effi-
cacy as biocontrol agents (Sharma et al. 2009; Błaszczyk 
et  al. 2011; Martínez-Medina et  al. 2014; Galarza et  al. 
2015; El_Komy et  al. 2015). Therefore, the site specific 
recommendations are being made according to the fit-
ness potential of a particular isolate for higher efficacy 
and effectiveness. Despite the commercial successes of 
these biocontrol agents, the major limitations remain 
their restricted efficacy and inconsistency under field 
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conditions. Consequently, more efficient Trichoderma 
isolates with high antagonistic potential capabilities are 
needed for successful biological control systems.

Due to the ecological importance of Trichoderma spp. 
and their application as a biocontrol agent in the field, it 
is important to understand their biodiversity. However, 
accurate species identification based on morphology is 
difficult due to the paucity and similarity of morphologi-
cal characters and increasing numbers of morphologi-
cally cryptic species (Kullnig et al. 2001). This has already 
resulted in incorrect identification. In recent years, the 
usefulness of molecular markers such as random ampli-
fied polymorphic DNA (RAPD) and repetitive-element 
polymerase chain reaction (REP-PCR) in resolving spe-
cies differences among microbial species are also well 
documented (Sharma et al. 2009; Solanki et al. 2013; Sriv-
astava et al. 2014; Singh et al. 2014; Kashyap et al. 2015). 
RAPD utilized PCR to amplify DNA segments with single 
primer of arbitrary nucleotide sequence generating frag-
ments by hybridizing with compatible regions of DNA 
and amplifying the regions where the primers are in cor-
rect orientation and appropriately spaced (100–2500 bp). 
However, REP-PCR uses oligonucelotide primers com-
plementary to repetitive sequences dispersed through-
out the genome. Using PCR, this method amplifies 
diverse regions of DNA flanked by the conserved repeti-
tive sequences, leading to amplicon patterns specific for 
an individual bacterial and fungal strain. Three different 
families of repetitive sequences include: the 35–40  bp 
repetitive extragenic pallindromic (REP) sequence, the 
124–127  bp enterobacterial repetitive intergenic con-
sensus (ERIC) sequence and 154 bp BOX (composed of 
the box A, B and C subunits) element. These sequences 
appear to be located in distinct, intergenic positions 
around the genome elements (Mohapatra et  al. 2007). 
Methods based on such repetitive elements have also 
been used for studying the diversity in the ecosystem, 
presenting the phylogenetic relationship between strains 
and discriminating between microorganisms those are 
genetically close to each other (Rai et  al. 2015; Kashyap 
et al. 2016). Unfortunately, these methods have not been 
extensively used for the differentiation of Trichoderma 
spp. Since, species of Trichoderma are reported as the 
causal agent of green mould disease (Ospina-Giraldo 
et al. 1998), the understanding of the nature and diversity 
of Trichoderma is critical for its widespread use against 
phytopathogenic fungi as there could be the risk of 
unwanted disease on non-target hosts. Under such situ-
ations, it is valuable to establish patterns of gene flow, as 
well as to develop a fingerprint of Trichoderma isolates. 
Diversity studies have recently been undertaken to assess 
its ecological specialization. Several studies reported 
about a series of new isolates as well as new phylogenetic 

species of Trichoderma in a series of natural ecosys-
tems (Zachow et al. 2009; Körmöczi et al. 2013). On the 
other hand, only a few studies were focusing on agricul-
tural environments. However, the results of these studies 
demonstrated that besides the natural ecosystems, the 
investigation of agricultural soils also reveals important 
information about Trichoderma biodiversity. The practi-
cal impact of such studies is that the rhizosphere of agri-
cultural soils may be an ideal source of beneficial strains 
with biocontrol potential. Based on these studies, we 
speculate that the species composition, distribution, and 
genetic structure of Trichoderma on the tomato rhizo-
sphere may be different. The confirmation of the differ-
ences will help in revealing the biodiversity, origin, and 
evolutionary processes of Trichoderma under different 
biological niches.

Recent evidences indicated the importance of the 
sterol biosynthetic pathway in inducing plant defense-
related gene expression in both the antagonistic fun-
gus and the plant (Cardoza et al. 2011; Malmierca et al. 
2013; Cardoza et al. 2014). The structural and functional 
analysis of genes involved in the synthesis of ergosterol 
especially intermediates, such as squalene could provide 
additional strategies to improve the ability of biocontrol 
of the Trichoderma strains. To best of the knowledge, 
there are no reports available on the diversity analysis 
of ergosterol producing antagonistic Trichoderma spe-
cies using ERG1 gene, encoding a squalene epoxidase, a 
key enzyme in the biosynthesis of triterpene derivatives 
(e.g. ergosterol) from tomato rhizosphere. Thus, to test 
above mentioned hypothesis, attempts have been made 
to investigate the species distribution of Trichoderma 
associated with tomato plants. The comparison of the 
genetic structure between antagonistic Trichoderma iso-
lates was carried out by molecular (RAPD, REP, ERIC 
and BOX markers), and biochemical (production of cell 
wall degrading enzymes) markers. Sequencing based on 
the characterization of squalene epoxidase (ERG1) gene 
in antagonistic isolates was performed to get preliminary 
clues about the role of squalene epoxidase driven trit-
erpene biosynthesis in biocontrol mechanisms of tested 
isolates.

Methods
Sampling and identification of Trichoderma isolates
Twenty isolates of Trichoderma were obtained from 
healthy tomato (Solanum lycopersicum cv. VL tamatar 
4) rhizosphere (Table  1). Ten healthy plants (~55  days 
post transplanting) with their roots and rhizospheric soil 
were randomly sampled and immediately transported to 
the laboratory. The soil particles attached to roots were 
carefully collected after uprooting plants, stored at 4  °C 
and processed within 24  h of collection. Root adhered 
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soil (10  g) was suspended in 90  ml of sterile distilled 
water and dilution plate technique was used for the iso-
lation of Trichoderma spp. The suspensions from all 
samples were serially diluted (up to 10−5) and 100 µl of 
each dilution was added to sterile Petri dishes, in tripli-
cates of each dilution, containing sterile Potato Dextrose 
Agar (PDA) medium. Streptomycin solution (1%) was 
added to the medium for preventing bacterial growth, 
before pouring into Petri plates. The plates were then 
incubated at 28 ±  1  °C. The isolates were characterized 
based on the monograph of Gams and Bissett (1998). For 
morphological analysis, isolates were grown on PDA at 
28 ± 1  °C for 5–7 days. Radial growth was measured at 
24 h intervals until colony covered the whole Petri dish. 
Growth rate was calculated as the 7 day average of mean 
daily growth (mm day−1). All micro morphological data 
were examined from cultures grown on PDA for 5 days at 
28 ± 1 °C. Microscopic observations were done using tri-
nocular microscope (Axio Imager M2 microscope, Carl 
Zeiss, Germany). For examination of conidial morphol-
ogy, cultures were washed with sterile water and drops 
of the suspension were placed on microscope slides and 
mixed with lactophenol/cotton blue to stain the conidia. 
Length and width were measured for 30 conidia per iso-
late. Conidial morphology and size were recorded after 
7 days of incubation.

Screening the antagonistic activity of Trichoderma isolates
In vitro antagonistic potential of the biocontrol agent was 
evaluated against Fusarium oxysporum f. sp. lycopersici 
(FOL), Alternaria alternata (AA), Colletotrichum gloe-
osporoides (CG) and Rhizoctonia solani (RS) through dual 
culture technique. For this, the pathogenic fungi were 
obtained from National Agriculturally Important Micro-
organisms Culture Collection (NAIMCC), NBAIM, Mau, 
Uttar Pradesh. After purification, the culture was main-
tained on PDA. The isolates were further screened for 
their antagonistic potential against the pathogen on PDA 
by measuring the relative growth rates as a function of 
the incubation period. Five mm mycelial discs taken from 
the margin of young vigorously growing 5-day-old cul-
ture of the antagonists and the pathogen was inoculated 
at the margin of the Petridish containing 20 ml sterilized 
PDA medium (opposite to each other). Observations 
were recorded up to 7 days of incubation (at 28 ± 1 °C). 
The treatments were replicated five times.

Molecular characterization of antagonists
Total genomic DNA from fungus was extracted with 
cetyl-trimethylammonium bromide (CTAB) as described 
by Kumar et al. (2013a). Briefly, for each fungal isolates, 
fresh mycelium (~5 g) was dried on sterile blotter paper 
and was ground in liquid nitrogen to make a fine powder. 

This powder was taken in a centrifuge tube and 2× CTAB 
(hexadecyltrimethyl ammonium bromide) buffer (15 ml) 
was added in each tube separately. Extraction buffer con-
tained (per 1  l) 2 g CTAB, 1 M Tris pH-8 (10 ml), 5 M 
NaCl (28  ml), 0.5  M EDTA (4  ml) with sterile distilled 
water (57  ml) and 1  ml β-mercaptoethanol. This was 
incubated in water bath at 65 °C for 30 min with intermit-
tent shaking. The mixture was centrifuged at 13,000 rpm 
for 15  min at 4  °C to pellet the mycelium. Supernatant 
was taken into another Oakridge tube and an equal vol-
ume of phenol:chloroform:isoamyl alcohol (25:24:1) was 
added with slow inversion. The mixture was again cen-
trifuged at 13,000  rpm for 15 min at 4  °C. The aqueous 
supernatant was taken in a fresh tube and added 0.6 vol-
ume isopropanol and was incubated at −20 °C overnight. 
After incubation, it was again centrifuged at 13,000 rpm 
for 20 min at 4 °C temperature. The supernatant was dis-
carded and pellet was washed with 70% ethanol. The pel-
let was dissolved in 500 μl of TE buffer for the use in PCR 
and stored at −20 °C.

For the molecular identification of ergosterol produc-
ing isolates, ERG1F (5ʹ-CGCTCCGTGCTTCTTCTTC 
TC-3ʹ) and EGR1R (5ʹ-CTTCTTCTCTCCCGTCTCC-3ʹ) 
primers were used. The PCR reaction was carried out in 
a 25-μl reaction mixture containing the following: 10× 
PCR buffer, 50 ng DNA template, 2 mM MgCl2, 0.25 mM 
dNTP mixture and 0.25 μM each of primer, and one unit 
of Taq Polymerase (Bangalore Genie, India). Amplifica-
tions were performed in Thermal Cycler (G Storm GS4, 
Somerset, UK) under the following conditions: initial 
denaturation 5  min at 94  °C, 35 cycles of 45  s at 94  °C, 
45 s at 58 °C, 1 min at 72 °C, with the final extension of 
10 min at 72 °C.

Polymerase chain reaction (PCR) assay for translation 
elongation factor (TEF-1a) gene was conducted using 
primers TEF1-728 F and TEF1-986R (Al-Sadi et al. 2015). 
The PCR reactions were carried out in 25  μl reaction 
mixture containing 10× PCR buffer, 50  ng DNA tem-
plate, 2 mM MgCl2, 0.25 mM dNTP mixture and 0.25 μM 
each of primer, and one unit of Taq Polymerase (Banga-
lore Genie, India). Thermocycling was run with the fol-
lowing settings: heating at 94 °C (5 min); then 35 cycles of 
94 °C (30 s), 60 °C (30 s) and 72 °C (90 s). The final exten-
sion was done at 72 °C for 10 min.

Molecular characterization of Trichoderma isolates was 
assessed by rep-PCR using the BOXA1R, Rep1R-I, Rep2-
I, ERIC-1R and ERIC-2F primers (Srivastava et al. 2014). 
All the PCR reactions were carried out in 25 μl reaction 
mixture containing 5× Gitschier buffer, 50 ng DNA tem-
plate, 2 mM MgCl2, 0.25 mM dNTP mixture and 0.25 μM 
each of primer, and one unit of Taq Polymerase (Banga-
lore Genie, India). Thermal Cycler (G Storm GS4, Som-
erset, UK) was programmed as an initial denaturation at 
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94  °C for 5 min, 40 cycles of 94  °C for 1 min, 36  °C for 
1 min and 72 °C for 2 min and a final extension at 72 °C 
for 10 min.

For RAPD assay, the DNA extracted from tested iso-
lates was amplified with the RAPD primers using the five 
RAPD primer set (Bangalore Genei, India). The thermal 
profile used was initial denaturation at 94  °C for 5 min, 
followed by 35 cycles of denaturation step (94  °C for 
1  min), annealing (47  °C, 1  min), extension (72  °C for 
1.5 min), and a final extension step (72 °C for 7 min).

Amplified products were resolved in 2.0% agarose gels 
using 1× TAE buffer on a gel electrophoresis apparatus. 
Ethidium bromide (0.25 mg ml−1) was used as an inter-
calating agent. The gel was run at 2 V cm−1 of the length 
of gel till the bands resolved. The amplified bands, after 
separation on the gel, were visualized and documented 
using a gel documentation imaging system (Bio-Rad, 
USA).

Statistical analysis
Experimental data for conidial morphology and growth 
rate were analyzed using Duncan’s multiple range test 
(DMRT). Standard errors were calculated for all mean 
values. All RAPD, ERIC, REP and BOX-PCR reactions 
were repeated to ensure validity of results. The presence 
or absence of individual, distinct, and reproducible bands 
was scored as ‘1’ for presence and ‘0’ for absence. Prin-
ciple component analysis (PCA) was performed using 
XLSTAT software.

Results
Antagonistic activity of Trichoderma isolates
Antagonistic capabilities of the Trichoderma isolates 
were assessed by the growth inhibition of four fungal 
pathogens (FOL, AA, CG and RS) through the dual cul-
ture assay. In general, all the antagonistic isolates grew 
faster than pathogen. The interaction of biological con-
trol agents versus four different fungal pathogens showed 
significant differences in growth inhibition of the patho-
gen isolates (Table  1). Isolate UNT68 showed highest 
inhibition effect on the percent mycelia growth of FOL 
(77.94%), AA (79.47%), CG (73.94%) and RS (69.23). 
Contrarily, isolate UNT70, ALT73, UNS63 and UNT60 
showed least percent mycelia growth of FOL (53.90%), 
AA (53.68%), CG (56.90%) and RS (53.30%), respectively. 
Most of the isolates showed per cent mycelium inhibition 
values ranged between 60 and 70% against pathogens. 
The interaction between pathogens and Trichoderma iso-
lates were determined and illustrated by a biplot (Fig. 1). 
The first two principal component axis of the biplot 
accounted for 25.54% (PC1) and 27.36% (PC2) of the total 
variation of the pathogen–antagonist interaction. In this 
biplot, all the Trichoderma isolates were located very far 

from the origin of biplot, indicating strong antagonism of 
mycoparasitic isolates towards fungal plant pathogens. 
Eigen values of the first and second components were 
10.508 and 5.471, respectively.

Production of hydrolytic enzymes
All Trichoderma isolates used in the present study pro-
duced cell wall-degrading enzymes (chitinase and β-1, 
3 glucanase). Data presented in Table  1 showed that 
all the mycoparasitic strains produced chitinase and 
β-1,3 glucanase in the range of 31.0–76.56  μmol Glc-
NAc min−1mg−1 protein and 47.67–175.1  nmol glucose 
min−1 mg−1 protein, respectively. Among all the isolates, 
maximum chitinase was produced by UNT68, HAT96, 
UNT38 and UNS30. Similarly, maximum β-1,3 glucanase 
production was observed in UNS30 followed by DET94 
(Table  1). The lowest activities of chitinase (31.00  μmol 
GlcNAc min−1  mg−1 protein) and β-1,3-glucanases 
(51.56 nmol glucose min−1 mg−1 protein) were obtained 
for isolates DET02 and UNT13, respectively. However, 
most of the isolates showed moderate activities of both 
lytic enzymes (Table 1).

Identification of antagonists
Distinct morphological differences were observed in 
5 days old cultures of tested antagonistic isolates grown 
on PDA (Table 2). A perusal of data indicated that there 
was a significant difference in growth rate among iso-
lates. Isolates UNT60, UNT68, NAT70, DET89, HAT96, 
UNT38, UNT13 and UNS30 grew faster (13.3 mm day−1) 
than other isolates. Less growth rate (11.4 mm day−1) was 
recorded in case of ALT73 and ALS47 isolates (Table 2). 
Ellipsoidal and sub-globose to globose conidia were 
noticed in thirteen isolates (UNT60, UNT64, UNT68, 
NAT69, NAT70, ALT73, DET89, DET94, HAT96, 
UNT38, UNS63, UNT09 and DET02). However, it 
was ellipsoidal and obovoid in rest of the eight isolates 
(UNT13, UNT70, UNS28, UNS30, NAS46, ALS47 and 
NAT03). Conidia colour varied from white to watery in 
all tested isolates. Fourteen isolates (UNT60, UNT64, 
UNT68, NAT70, DET89, DET94, HAT96, UNS63, 
UNT13, UNS28, UNS30, NAS46, UNT09 and DET02) 
showed conidiation concentric zone, while rings were 
also recorded in six isolates (NAT69, ALT73, UNT38, 
UNT70, ALS47 and NAT03). Phialides of most of the 
isolates were tending clustered in 2–3 whorls, but four 
isolate (NAT69, DET89, DET94 and NAT03) showed 
solitary disposition (Table 2). The phialides were nine-pin 
shaped and their size varied between 3.9–13.7 × 1.7–2.9 
to 7.0–15.0  ×  2.0–3.0  µm in seventeen isolates. How-
ever, globose and sigmoid or hooked phialides were also 
observed in two (UNT68 and ALT73) and one isolate 
(NAT03), respectively (Table 2).
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Molecular identification based on sequences of Tef-
1gene confirmed that the isolates belonged to five dif-
ferent species viz., T. harzianum (UNT60, UNT64, 
UNT68, NAT69, NAT70, ALT73, DET89, DET94 and 
HAT96), T. koningii (UNT38 and UNS63), T. asperellum 
(UNT13 and UNT70), T. virens (UNS28, UNS30, NAS46 
and ALS47) and T. viride (UNT09, DET02 and NAT03) 
(Table  1). The result of the phylogenetic analysis based 
on the Tef1 gene sequences of 20 Trichoderma isolates is 
shown in Fig. 2.

RAPD‑PCR analysis
Five primers viz., OPA-2 (TGCCGAGCTG), OPA-3 
(AGTCAGCCAC), OPA-13 (CAGCACCCAC), OPA-
15 (TTCCGAACCC) and OPA-18 (AGGTGACCGT) 
produced a total of 641 fragments among all the 20 iso-
lates (Fig.  3). The size of RAPD fragments ranged 250–
2500  bp. Principle component analysis (PCA) showed 
that RAPD markers explained 31.53% variation among 
Trichoderma isolates at genetic level (Fig.  3). PCA 
divided the 20 Trichoderma isolates in four clusters with 
pronounced separation of isolates. The first (PCA1) and 
second (PCA2) principal components were accounted 

for 20.47 and 11.06%, respectively. Two isolates occu-
pied distinct position, UNT13 was far from the origin 
while HAT96 was near to the origin of biplot. Cluster I 
consisted of five isolates (ALT73, NAT03, UNS30, NAS46 
and UNT70). However, cluster II comprised nine iso-
lates (NAT70, UNT64, NAT69, ALS47, DET94, UNT38, 
UNT68, UNT60 and UNS28). Cluster III and IV con-
tained two isolates each.

BOX‑PCR analysis
BOX-PCR banding pattern showed a total of 200 frag-
ments in the range of 250–4000 bp. The results of PCA 
analysis based on first and second coordinates showed 
a maximum Eigen value of 9.306 and minimum value of 
0.012 with a percentage variation of 46.53 and 13.72%, 
respectively (Fig.  4). PCA analysis revealed that nine 
isolates (UNS28, UNT38, UNT09, DET94, NAT03, 
NAT69, UNS63, UNT60 and UNT68) formed a major 
cluster (cluster IV), while three isolates (DET02, 
UNT70 and UNT13) were grouped in cluster II and 
two isolates were grouped in Cluster-I (UNS30 and 
NAS46), VI (DET89 and HAT96) and VII (ALS47 and 
NAT70).

Fig. 1  PCA biplot of in vitro dual culture assay showing antagonistic effect of twenty Trichoderma isolates against four fungal plant pathogens viz., 
Fusarium oxysporum f. sp. lycopersici (FOL), Alternaria alternata (AA), Colletotrichum gloeosporoides (CG) and Rhizoctonia solani (RS)
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Fig. 2  Neighbor joining tree (Kimura two-parameter distance) of twenty Tef-1a sequences of Trichoderma isolates from tomato rhizosphere. The 
numbers given over branches indicate bootstrap coefficient
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ERIC‑PCR analysis
The genetic discrimination among the 20 isolates was 
assessed using ERIC-PCR and a high level of variability 
in the banding pattern was obtained (Fig. 5). The number 
of bands in the amplification profile was 182, and their 
size was found to vary from 250 to 3000 bp among these 
isolates (Fig.  5). Principal component analysis (PCA) 
based on first and second coordinates showed a maxi-
mum Eigen value of 10.027 and minimum value of 0.01 
with a percentage variation of 50.13 and 12.09, respec-
tively (Fig. 5). A perusal of the PCA analysis revealed that 
eight isolates (HAT96, UNT68, DET94, UNT60, UNT64, 
NAT69, DET02, DET89 and UNT09) formed a major 
cluster (cluster IV), while three isolates were grouped in 
cluster II (UNS28, UNS63 and UNT38) and IV (UNT70, 
NAT03 and ALT73).

REP‑PCR analysis
The genetic discrimination among the 20 isolates was 
assessed using REP-PCR and a high level of variability in 
the banding pattern was obtained (Fig.  6). The number 
of bands in the amplification profile was 350, and their 
size was found to vary from 270 to 3000 bp among these 

isolates (Fig.  6). Principal component analysis (PCA) 
based on first and second coordinates showed a maxi-
mum Eigen value of 9.758 and minimum value of 0.017 
with a percentage variation of 48.71 and 13.16, respec-
tively (Fig. 6). A perusal of the PCA analysis revealed that 
six isolates (UNS30, NAS46, NAT03, ALS47, UNS28 and 
UNT70) formed a major cluster (cluster V), while four 
isolates were grouped in cluster VI (UNT13, DET02, 
UNT09 and UNS63).

ERG1 sequencing and phylogenetic analysis
Detection of squalene epoxidase (ERG-1) gene in Tricho-
derma isolates was shown in Fig. 7. Squalene epoxidase 
(ERG-1) gene amplification showed one specific band 
(500 bp) in all the twenty Trichoderma isolates. The phy-
logenetic tree obtained by sequence analysis of ERG1 
region of all the tested isolates is represented in Fig.  8. 
A neighbour-joining analysis of the alienable ERG1-
sequences of all the tested isolates demonstrated two 
distinct phylogenetic clades. Clade A comprised mainly 
T. harzianum (UNT60, UNT64, UNT68, NAT69 and 
UNT70), T. viride (UNT09, DET02 and NAT03), T. kon-
ingii (UNS63) and T. virens (UNS28) and showed very 

Fig. 3  Principal component analysis score plot of twenty Trichoderma isolates based on RAPD-PCR data
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high homology to the nearest ERG1 sequence of H. lixii, 
T. arundinaceum and T. reesei submitted in NCBI Gen-
Bank. Clade B represented four isolates of T. harzianum 
(ALT73, DET89, HAT96, and DET94), two isolates of T. 
koningii (UNT38), two isolates of T. asperellum (UNT13 
and UNT70) and three isolates of T. virens (ALS47, 
UNS30 and NAS46) and showed heterogeneity with 
respect to the ERG1 sequence of H. lixii, T. arundina-
ceum and T. reesei.

Discussion
Microbial inoculants with antagonistic properties 
towards fungal plant pathogens have a potential to 
replace chemical pesticides since they are known for 
growth promotion and disease reduction in crops. Sev-
eral species of Trichoderma have been used as biologi-
cal control agents to manage diseases of vegetable and 
other crops (Solanki et  al. 2011; Srivastava et  al. 2012; 
Al-Sadi et al. 2015). In the present study, twenty isolates 
of Trichoderma collected from rhizosphere soil of tomato 
were phenotypically, biochemically and genetically 
characterized to identify and screen the most efficient 

antagonistic against four tomato fungal pathogens (FOL, 
AA, CG and RS). All the tested isolates grew consider-
ably faster than the fungal pathogens and quickly con-
trolled the pathogens. The ability to grow rapidly gives 
antagonists an important advantage in competition for 
space and nutrients with pathogen (Benítez et  al. 2004; 
El_Komy et  al. 2015). Nine isolates (UNT68, DET94, 
HAT96, UNT38, UNS30, DET02, ALS47, UNS28 and 
UNT09) showed significant per cent mycelium inhibition 
against the test pathogens. These isolates overgrew and 
sporulated on the pathogen colonies. In the interaction 
zone, the mycelia of all the fungal pathogens had abnor-
mal morphology and lysed, which implies the occurrence 
of strong mycoparasitism. These results are in conformity 
with previous studies where Trichoderma isolates showed 
high capabilities as versatile biocontrol agents (Trillas 
et  al. 2006; Tondje et  al. 2007; de los Santos-Villalobos 
et  al. 2013). Interestingly, the interaction of indigenous 
Trichoderma isolates with four different fungal pathogens 
resulted in significantly different amounts of pathogen 
inhibition. For instance, DET94 had very strong inhibi-
tory effect on the growth of FOL, RS and CG pathogens, 

Fig. 4  Principal component analysis score plot of twenty Trichoderma isolates based on BOX-PCR data
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whereas moderate inhibition effect was recorded in case 
of  AA. These results are consistent with the findings of 
Markovich and Kononova (2003). They reported that the 
mycoparasitic capacity of various species and isolates 
of Trichoderma differs. There are several mechanisms 
involved in Trichoderma antagonism, namely, antibio-
sis whereby the antagonist fungus produces antibiotics, 
competes for nutrients and mycoparasitism, whereas 
Trichoderma directly attacks the plant pathogen by 
excreting lytic enzymes such as chitinases and β-1,3 glu-
canases (Kubicek et al. 2001; Radjacommare et al. 2010; 
Solanki et  al. 2011). Such hydrolytic enzymes partially 
degrade the pathogen cell wall that leads to parasitization 
(Howell 2003). Also in the present study antagonistic iso-
lates (UNT68, DET94, HAT96, UNT38, UNS30, DET02, 
ALS47, UNS28 and UNT09) with the highest levels of 
enzyme activities showed the strong inhibitory effect on 
the growth of fungal plant pathogens. Similar observa-
tions were made by Howell (2003), wherein the activity 
of lytic enzymes (chitinases and β-1,3 glucanses) was 
responsible for lysis of R. solani hyphae through diges-
tion of major cell wall components. There was a posi-
tive relationship between the antagonistic capacity of the 

Trichoderma isolates and the production of chitinase and 
β-1,3-glucanases. Thus, efficient antagonistic isolates 
inhibited fungal growth through the production of lytic 
enzymes. On parallel lines, Lopes et  al. (2012) reported 
a positive correlation between the lytic enzymes activi-
ties and the antagonism capacity of T. asperellum against 
Sclerotinia sclerotiorum. Moreover, Qualhato et al. (2013) 
and El_Komy et al. (2015) reported that there was a posi-
tive correlation between the amounts of secreted cell-
wall degrading enzymes by Trichoderma strains and their 
ability to control plant pathogenic fungi.

Taxonomic knowledge on Trichoderma isolates is 
important for identification and characterization of 
potential biocontrol species and to avoid potential risk 
from introducing an unknown fungal species into the 
rhizosphere of a given ecosystem. A combination of 
morphological and molecular methods is desirable for 
the reliable and accurate identification of Trichoderma 
spp. The few morphological characteristics with limited 
variation in Trichoderma spp. may lead to an overlap and 
wrong identification of the species (Galarza et al. 2015). 
In present study, Trichoderma isolates were categorized 
on the basis of description and keys given by Gams and 

Fig. 5  Principal component analysis score plot of twenty Trichoderma isolates based on ERIC-PCR data
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Bissett (1998). As a result, ellipsoidal and sub-globose to 
globose condial structures resembled with T. harzianum, 
while ellipsoidal and ovoid shaped conidia were matched 
with T. virens isolates; as previously mentioned by Choi 

et  al. (2003). However, some isolates showing overlap-
ping characters and resembling with T. koningii, T. viride 
and T. asperellum could not be separated using the mor-
phology-based method. Thus, molecular identification of 

Fig. 6  Principal component analysis score plot of twenty Trichoderma isolates based on REP-PCR data

Fig. 7  PCR amplification of squalene epoxidase (ERG1) gene, showing ~500 bp amplicon in Trichoderma isolates having distinct geographical line-
ages. Lanes 1–20 are different Trichoderma isolates as mentioned in Table 1. L is a 100-bp DNA marker
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Trichoderma isolates at the species level was done on the 
basis of TEF-1a gene as it has been reported to be better 
for distinguishing Trichoderma spp. (Samuels 2006).

The present study also revealed the usefulness of DNA 
polymorphism techniques to detect genetic variation 
among antagonistic Trichoderma isolates. These tech-
niques are important not only for understanding their 
ecological role in the rhizosphere, but also to character-
ize the biological control agents for registration and pat-
enting biocontrol strains, recognizing the strains, quality 
checking during production and ecological characteriza-
tion (Plimmer 1993). The study of DNA polymorphisms 
involves the selection of a target sequence, and several 
approaches have been used to achieve this task. One 
approach involves the exploitation of ubiquitously con-
served known genes that display sequence variation. 
Identification of Trichoderma to the species level based 

on reference sequences from the National Center for 
Biotechnology Information correlated with phylogenetic 
analysis based on sequences of the ITS rRNA and the 
translation elongation factor gene (EF1a). However, the 
limited intraspecific variation within Trichoderma spe-
cies based on sequences of the EF1a gene helped giving 
better resolution in separating Trichoderma species when 
compared to sequences of the ITS region (Al-Sadi et  al. 
2015). Thus, in present study, comparative nucleotide 
sequencing of EF1a gene was performed to distinguish 
and identify antagonistic Trichoderma isolates. Based 
on the sequence analysis of EF1 gene, the 20 antagonis-
tic isolates were divided in five species: T. harzianum, T. 
koningii, T. asperellum, T. virens and T. viride. Another 
approach involves the screening of random parts of the 
genome to identify distinctive nucleotide sequences by 
techniques, such as RAPD, REP-, ERIC- and BOX-PCR. 

Fig. 8  Phylogenetic analysis of the ERG1 sequences from different isolates of Trichoderma isolates from tomato rhizosphere. Tree was constructed 
by the neighbour-joining method. The numbers given over branches indicate bootstrap coefficient
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The results indicated that BOX elements and ERIC-PCR 
are suitable for the rapid genetic differentiation of Tricho-
derma isolates. Some of the Trichoderma isolates such as 
NAT70, UNT64 and ALS47 which were not differentiated 
by RAPD can be discriminated by BOX and ERIC-PCR 
banding patterns. In general, both techniques were found 
to produce reproducible results especially with purified 
genomic nucleic acid as a template, and when the primer 
concentration and composition of buffer were strictly 
controlled. It is also worth mentioning here that ERIC-, 
REP- and BOX-PCR marker systems revealed >60% intra-
species variability among Trichoderma isolates, although 
clustering on the basis of antagonism, geographical ori-
gin and hydrolytic enzyme production was not detected. 
Additionally, the present study was unable to correlate 
biomarker variation with fungal growth inhibition activ-
ity of Trichoderma isolates. These findings are in agree-
ment with earlier studies, where no defined correlations 
between genetic variability assessed by random mark-
ers (e.g. RAPD) and the ability of Trichoderma isolates 
to inhibit fungal mycelia growth were obtained (Sharma 
et al. 2009; El_Komy et al. 2015). This may be due to the 
ubiquitous nature and seemingly random chromosomal 
distribution of random repeats in Trichoderma genome, 
giving rise to simultaneous PCR amplification of multi-
ple genomic regions (Rai et al. 2016). The high genotypic 
variability among Trichoderma isolates could be associ-
ated with mutations in priming sites, rearrangements of 
chromosomal segments or recombination process in fun-
gal genomes (Kumar et al. 2012, 2013b). However, genetic 
variability among Trichoderma isolates in addition to 
their differences in fungal growth inhibition toward fun-
gal plant pathogens suggest that combinations of isolates 
could further be applied in both greenhouse and field 
studies to manage tomato diseases.

Terpene compounds (e.g., ergokonins and viridins) are 
involved in the biocontrol process due to their antifun-
gal properties (Malmierca et  al. 2015). Similar to this, 
the present study also documented the possibility of 
squalene epoxidase driven triterpene biosynthesis mech-
anism in biocontrol of tomato wilt and foliar blight dis-
eases. Furthermore,  PCR based detection of ERG1 gene 
in antagonistic isolates confirmed the presence of gene 
at molecular level and Blastn and Blastp results showed 
the maximum homology with a squalene epoxidase gene. 
Phylogenetic analysis of squalene epoxidase gene (ERG1) 
sequences revealed close relatedness of ERG-1sequences 
with earlier reported sequences of H. lixii, T. arundina-
ceum and T. reesei. However, ERG1 gene also showed 
heterogeneity among some antagonistic isolates and it 
may be possible that squalene epoxidase driven triter-
pene biosynthesis have an important role in biocontrol 
mechanisms of tested isolates.

In conclusion, the present study provides preliminary 
information on the biological control of tomato diseases 
by correctly identifying the fungal antagonists. Correct 
identification will provide information on understand-
ing the interparasitic relationship with target pathogens 
and the subsequent environmental fate of the antago-
nist needed for effective application. Further, combined 
studies including biological, biochemical and molecular 
technologies, are essential to select indigenous antago-
nistic Trichoderma isolates that can be used under dif-
ferent environmental conditions. Genetic variability of 
squalene epoxidase (ERG1) gene among these isolates 
in addition to their differences in aggressiveness toward 
multiple fungal pathogens suggest that combinations of 
isolates could further be applied in both greenhouse and 
field studies to obtain resistance against multiple fungal 
pathogens in tomato crop. However, further experiments 
are needed to validate the role of squalene epoxidase 
driven triterpene biosynthesis in biocontrol mechanisms 
of tested isolates.
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