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Introduction and preliminaries
Integral equations have numerous applications in virtually every branches of science. 
Many physical processes and mathematical models are usually governed by the integral 
equations. In particular, many initial and boundary value problems can easily be con-
verted to integral equations. Since the subject has many potential application areas, it 
has attracted many researchers’ attentions from past to today. The literature is very rich 
of analytical and numerical techniques proposed for solving different kinds of integral 
equations.

The aim of this article is to propose a simple and effective method for obtaining solu-
tions for a rather wide class of Fredholm integral equations of the second kind. In other 
words, I investigate linear and nonlinear Fredholm integral and integro-differential 
equations of the second kind along with the systems of the mentioned classes of Fred-
holm equations. Before delving into the details of the proposed approach, the list of 
some available methods proposed by other researchers in the literature are given. The 
methods with a similar subject area are grouped together, such as wavelet methods 
(Lepik 2006, 2008; Alpert et al. 1990; Kajani et al. 2006), collocation methods (Zhongying 
et al. 2006; Maleknejad and Nedaiasl 2011; Jafarian et al. 2013), Adomian decomposition 
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method (Adomian 1994; Wazwaz 1999), transform methods (Ezzati and Mokhtari 2012; 
Odibat 2008), homotopy perturbation method (Golbabai and Keramati 2008; Abbas-
bandy 2006), etc. There are also some excellent books from introductory to advanced 
level, such as Wazwaz (2011), Kress (2014), Rahman (2007) and Pipkin (1991).

The method that is introduced and investigated in this article is weighted integral 
mean-value method (WMVM). The weighted mean-value theorem are used and applied 
to the different kinds of Fredholm integral equations. As a result, a linear (or, nonlinear) 
system of algebraic equations are obtained. By solving these systems of equations, the 
desired solution for the integral equation will be reached. Elaborated examples are pro-
vided to show the applicability and validity of the proposed method.

Description of the method: weighted mean‑value method for integrals 
(WMVM)
Mean value theorems for both derivatives and integrals are very powerful tools in math-
ematics. They can be used to obtain very important inequalities and to prove basic theo-
rems of mathematical analysis. Recently, some applications of the mean-value theorem 
for solving different classes of Fredholm integral equations from one dimensional to 
higher dimensional have been introduced (Avazzadeh et al. 2011; Heydari et al. 2013; Li 
and Huang 2016). The results are promising and the method is very simple.

In this article, the weighted mean-value theorem will be used to obtain solutions for a 
wide class of Fredholm integral equations. As it will be seen in the subsequent sections 
that under some mild conditions the weighted mean-value theorem can be applied to 
Fredholm integral equations and significant results are obtained.

Theorem  1 [Weighted mean value theorem for integrals (Apostol 1967)] Let 
φ,ψ : [a, b] → R be continuous on [a, b]. If ψ never changes sign in [a, b], then there exists 
a number c ∈ [a, b] such that

Results in this paper include application of the weighted mean-value theorem for inte-
grals to the following classes of Fredholm integral equations:

  • Linear and nonlinear Fredholm integral equations of the second kind (“Solving linear 
and nonlinear Fredholm integral equations via WMVM” section)

  • Linear and nonlinear Fredholm integro-differential equations of the second kind 
(“Solving Fredholm integro-differential equations via WMVM” section)

  • Linear and nonlinear systems of Fredholm integral equations of the second kind 
(“Solving linear and nonlinear systems of Fredholm integral equations via WMVM” 
section)

  • Linear and nonlinear systems of Fredholm integro-differential equations of the sec-
ond kind (“Solving systems of Fredholm integro-differential equations via WMVM” 
section)

∫ b

a
φ(x)ψ(x) dx = φ(c)

∫ b

a
ψ(x) dx.
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In addition, illustrative examples (see “Numerical results” section) are provided to show 
the ability of the method and to compare with the existing approaches in the literature 
(see “Comparison and discussions” section).

I would like to point out that I do not aim for complete generality, but making sim-
plifying assumptions that produce significant results. In Avazzadeh et  al. (2011), the 
authors obtained significant results under the assumption that an application of the 
mean-value theorem to Fredholm integral equations produces a number c rather than a 
function c(x). For some cases, this assumption produces an error in numerical solution 
(Zhong 2013). Throughout the paper I also assume c(x) = c.

Solving linear and nonlinear Fredholm integral equations via WMVM
In this section, consider the following Fredholm integral equation of the second kind:

where � is a real number, F, f, and K are continuous functions, and u is the unknown 
function to be determined. Since the Eq. (1) will stand for both linear and non-linear 
Fredholm integral equations, the case that F(u(·)) = u(·) is allowed.

In this and all subsequent sections, the assumption on the kernel function is as follows:

After applying WMVM to (1), one gets

where γ (x) =
∫ b
a K (x, t) dt and c ∈ [a, b]. Notice that to obtain a solution for (1), one 

just needs to find the value of u(c) for c whose existence guaranteed by weighted mean-
value theorem. To reach u(c) and c, the following steps are proposed:

First substitute c for x in (2) to get

Then, substitute (2) into (1) to get

Next, plug c into (4) which lead to

After that, solve (3) and (5) simultaneously to obtain c and u(c).
Finally, substitute c and u(c) into (2) to get a solution.

Solving Fredholm integro‑differential equations via WMVM
In this section, consider Fredholm integro-differential equation given by

(1)u(x) = f (x)+ �

∫ b

a
K (x, t)F(u(t)) dt, x, t ∈ [a, b],

K (x, t) ≥ 0 (or,K (x, t) ≤ 0) for all x, t ∈ [a, b].

(2)u(x) = f (x)+ �F(u(c))γ (x),

(3)u(c) = f (c)+ �F(u(c))γ (c).

(4)u(x) = f (x)+ �

∫ b

a
K (x, t)F

(

f (t)+ �F(u(c))γ (t)
)

dt.

(5)u(c) = f (c)+ �

∫ b

a
K (c, t)F

(

f (t)+ �F(u(c))γ (t)
)

dt.

(6)u(n)(x) = f (x)+ �

∫ b

a
K (x, t)F(u(t)) dt, u(k) = ak , 0 ≤ k ≤ n− 1,
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where �, F, f and K are defined as before, u(n)(x) stands for the nth derivative, and ak are 
constants that represent the initial conditions.

In operator notation, Eq. (6) can be written as

where the differential operator is given by L = dn

dxn
· The inverse operator L−1 is an n-fold 

integral operator given by

Applying WMVM to (6), one can obtain

where γ (x) =
∫ b
a K (x, t) dt and c ∈ [a, b].

An application of the integral operator L−1 to both sides of Eq. (9) along with initial 
conditions yields

Now, replace x with c in (10) to get

In addition, substitute Eqs. (9) and (10) into (6) to get

Then, replace x with c in (12) to get

Finally, considering Eqs.  (13) and  (11) together, a system of equations with c and u(c) 
appearing as unknowns are obtained. Solution of this system will give a numerical 
approximation of desired function u(x).

Solving linear and nonlinear systems of Fredholm integral equations 
via WMVM
In this section, consider systems of Fredholm integral equations given by

(7)Lu(x) = f (x)+ �

∫ b

a
K (x, t)F(u(t)) dt,

(8)L−1(·) =
∫ x

0

∫ x

0
. . .

∫ x

0
(·) dx.

(9)un(x) = f (x)+ �F(u(c))γ (x),

(10)u(x) =
n−1
∑

k=0

akx
k

k!
+ L−1

(

f (x)
)

+ �L−1(F(u(c))γ (x)).

(11)u(c) =
n−1
∑

k=0

akc
k

k!
+ L−1

(

f (c)
)

+ �

(

L−1(F(u(c))γ (x))
∣

∣

∣

x=c

)

.

(12)F(u(c))γ (x) =
∫ b

a
K (x, t)F

(

n−1
∑

k=0

akt
k

k!
+ L−1

(

f (t)
)

+ �L−1(F(u(c))γ (t)) dt

)

.

(13)F(u(c))γ (c) =
∫ b

a
K (c, t)F

(

n−1
∑

k=0

akt
k

k!
+ L−1

(

f (t)
)

+ �L−1(F(u(c))γ (t)) dt

)

.
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It is assumed that there is n× n system of equations. One particular equation can be 
represented by

If applying WMVM to (15), one gets

where γm(x) =
∫ b
a Kij(x, t) dt, m = j + (i − 1)n and cm ∈ [a, b]. For simplicity and nota-

tional convenience , without loss of generality, it is assumed that there are two unknowns 
and two functions, i.e., n = 2.

Thus, one has

After applying WMVM to (17), one gets

where cm ∈ [a, b] and

Substituting c1 and c3 into first equation in (18) and c2 and c4 into second equation in (18) 
yields

(14)

u1(x) = f1(x)+
∫ b

a
(K11(x, t)F11(u1(t))+ K12(x, t)F12(u2(t))+ . . .) dt,

u2(x) = f2(x)+
∫ b

a
(K21(x, t)F21(u1(t))+ K22(x, t)F22(u2(t))+ . . .) dt,

...

(15)ui(x) = fi(x)+
� b

a





n
�

j=1

Kij(x, t)Fij(ui(t))



 dt, 1 ≤ i ≤ n.

(16)ui(x) = fi(x)+
n

∑

j=1

Fij
(

uj(cj+(i−1)n)
)

γj+(i−1)n(x), 1 ≤ i ≤ n,

(17)

u1(x) = f1(x)+
∫ b

a
(K11(x, t)F11(u1(t))+ K12(x, t)F12(u2(t))) dt,

u2(x) = f2(x)+
∫ b

a
(K21(x, t)F21(u1(t))+ K22(x, t)F22(u2(t))) dt.

(18)
u1(x) = f1(x)+ F11(u1(c1))γ1(x)+ F12(u2(c2))γ2(x),

u2(x) = f2(x)+ F21(u1(c3))γ3(x)+ F22(u2(c4))γ4(x),

γ1(x) =
∫ b

a
K11(x, t) dt,

γ2(x) =
∫ b

a
K12(x, t) dt,

γ3(x) =
∫ b

a
K11(x, t) dt,

γ4(x) =
∫ b

a
K12(x, t) dt.
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4 more equations are needed in order to have 8 equations with 8 unknowns. To obtain 
other 4 equations, substitute (18) into (17) and get

and

Replacing x with c1 and c3 in (20), and c2 and c4 in (21) one can get 4 more equations. 
Combining these equations with (19), a system of algebraic equations will be obtained. 
By solving this algebraic system of equations, the desired solution for the system of inte-
gral equations will be reached.

Solving systems of Fredholm integro‑differential equations via WMVM
In this sections, systems of Fredholm integro-differential equations of the second kind 
will be studied. Consider

After applying WMVM to (22), one gets

where cm ∈ (a, b) and

An application of the integral operator L−1 introduced in  (8) to both sides of Eq.  (23) 
along with initial conditions yields

(19)

u1(c1) = f1(c1)+ F11(u1(c1))γ1(c1)+ F12(u2(c2))γ2(c1),

u1(c3) = f1(c3)+ F11(u1(c1))γ1(c3)+ F12(u2(c2))γ2(c3),

u2(c2) = f2(c2)+ F21(u1(c3))γ3(c2)+ F22(u2(c4))γ4(c2),

u2(c4) = f2(c4)+ F21(u1(c3))γ3(c4)+ F22(u2(c4))γ4(c4).

(20)

u1(x) = f1(x)+
∫ b

a

(

K11(x, t)F11
(

f1(t)+ F11(u1(c1))γ1(t)+ F12(u2(c2))γ2(t)
)

+K12(x, t)F12
(

f2(t)+ F21(u1(c3))γ3(t)+ F22(u2(c4))γ4(t)
))

dt,

(21)

u2(x) = f2(x)+
∫ b

a
(K21(x, t)F21

(

f1(t)+ F11(u1(c1))γ1(t)+ F12(u2(c2))γ2(t)
)

+ K22(x, t)F22
(

f2(t)+ F21(u1(c3))γ3(t)+ F22(u2(c4))γ4(t)
)

) dt.

(22)
u
(n)
1

(x) = f1(x)+
∫ b

a
(K11(x, t)F11(u1(t))+ K12(x, t)F12(u2(t))) dt, u

(k)
1

= ak , 0 ≤ k ≤ n− 1,

u
(n)
2

(x) = f2(x)+
∫ b

a
(K21(x, t)F21(u1(t))+ K22(x, t)F22(u2(t))) dt, u

(k)
2

= bk , 0 ≤ k ≤ n− 1.

(23)
u
(n)
1 (x) = f1(x)+ F11(u1(c1))γ1(x)+ F12u2(c2)γ2(x),

u
(n)
2 (x) = f2(x)+ F21(u1(c3))γ3(x)+ F22u2(c4)γ4(x),

γ1(x) =

∫ b

a
K11(x, t) dt, γ2(x) =

∫ b

a
K12(x, t) dt, γ3(x) =

∫ b

a
K11(x, t) dt, γ4(x) =

∫ b

a
K12(x, t) dt.



Page 7 of 15Altürk  SpringerPlus  (2016) 5:1962 

Substituting c1 and c3 into first equation in  (24) and c2 and c4 into second equation 
in (24), 4 equations will be obtained. Then, by substituting (23) and (24) into (22), 2 new 
equations will be obtained. Replacing x with c1 and c3 in the first equation and c2 and c4 
in the second equation, there will be 4 more equations. Solving this nonlinear system of 
equations will give the desired solution.

Numerical results
In this section, numerical results are presented for various types of Fredholm integral 
equations mentioned in the previous sections. The results show the validity and effi-
ciency of the method. It is important to note that all numerical computations are per-
formed using Matlab software. For solving a non-linear system of equations, the Matlab 
built-in functions use the Newton’s method with an initial guess or some modified ver-
sions of it. Since these methods are, in general, local, the initial guess plays a decisive 
role in obtaining solutions.

Example 1 (Linear Fredholm integral equation) Consider the following linear Fred-
holm integral equation of the first kind (Wazwaz 2011):

The exact solution for the equation is that u(x) = ex.
Applying the presented method, the following system of equations are obtained:

Solving this system of nonlinear equations results in

The approximate solution can be evaluated from

which leads to the exact solution. The graph of the equations in (25) is given in Fig. 1.

Example 2 (Linear Fredholm integral equation) Consider the following linear Fred-
holm integral equation of the first kind (Mikaeilvand and Noeiaghdam 2014):

(24)

u1(x) =
n−1
∑

k=0

akx
k

k!
+ L−1

(

f (x)
)

+ L−1(F11(u1(c1))γ1(x)+ F12u2(c2)γ2(x)),

u2(x) =
n−1
∑

k=0

bkx
k

k!
+ L−1

(

f (x)
)

+ L−1(F21(u1(c3))γ3(x)+ F22u2(c4)γ4(x)).

u(x) = ex+2 − 2

∫ 1

0
ex+tu(t) dt.

(25)
u(c) = ec+2 − 2(e − 1)ecu(c),

u(c) = ec+2(2− e2)+ 2(e − 1)2(e + 1)u(c)ec.

c = 0.620114506958278 and u(c) = 1.859140914229523.

uap(x) = ex+2 − 2(e − 1)exu(c),

u(x) = x3 − 2(3+ cos(1)− 4 sin(1))(cos(x)+ sin(x))

+
∫

1

0

[sin(x + t)+ cos(x + t)]u(t) dt.



Page 8 of 15Altürk  SpringerPlus  (2016) 5:1962 

The exact solution for the equation is that u(x) = x3.
Applying the presented method, the following system of equations are obtained:

Solving this system of nonlinear equations with the initial guess [0.5, 0.5] results in

The approximate solution becomes

Example 3 (Nonlinear Fredholm integral equation) Consider the following nonlinear 
Fredholm integral equation of the second kind (Wazwaz 2011):

Three exact solutions for the equation are

Applying the presented method, the following system of equations are obtained:

u(c) = c3 + (cos(c)+ sin(c))[u(c)(1+ sin(1)− cos(1))− 2(cos(1)− 4 sin(1))],

u(c) = c3 + (cos(c)+ sin(c))

[

(cos(2)− 1)(3− 4 sin(1)+ cos(1))

−2(3+ cos(1)− 4 sin(1))−
1

2
u(c)(1+ sin(1)− cos(1))(cos(2)− 3)

]

.

c = 0.6448066930020793 and u(c) = 0.2680949356676439.

uap(x) = x3 − 1.6653× 10−16(sin(x)+ cos(x)).

u(x) =
5

6
x +

∫ 1

0
xt2u3(t) dt, x, t ∈ [0, 1].

(26)u(x) = x,

(√
21− 1

)

x

2
, and −

(√
21+ 1

)

x

2
.

-6 -4 -2 0 2 4 6
c

-6

-4

-2

0

2

4

6

u(
c)

Fig. 1 Graphs of the equations given in (25). The intersection point c agrees with the solution obtained 
above



Page 9 of 15Altürk  SpringerPlus  (2016) 5:1962 

Solving this system of nonlinear equations yields

The approximate solution can be calculated from

It is important to point out that each pair of solutions given in (28) corresponds to one 
exact solution given in (30). The first pair leads to the exact solution u(x) = x, the second 
pair leads to the exact solution u(x) = (

√
21−1)x
2 , and the last pair leads to the third exact 

solution u(x) = − (
√
21+1)x
2 .

The graph of the equations in (27) is given in Fig. 2.

Example 4 (Fredholm integro-differential equation) Consider the following Fredholm 
integro-differential equation (Rahman 2007):

The exact solution for the equation is that u(x) = ex.

(27)

u(c) = c

(

5+ 2u3(c)

6

)

,

u(c) = c

(

5

6
+

1

6

(

5+ 2u3(c)

6

)3
)

.

(28)

c = 0.793700526076704 and u(c) = 0.793700525984100,

c = 0.793700526076704 and u(c) = 1.421746106732151,

c = 0.793700526076704 and u(c) = −2.215446632716251.

uap(x) = x

(

5+ 2u3(c)

6

)

.

u′′(x) = ex − x +
∫ 1

0
xtu(t) dt, u(0) = u′(0) = 1, x, t ∈ [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
c

-4

-3

-2

-1

0

1

2

3

4

u(
c)

Fig. 2 Graphs of the equations given in (27). The intersection points agree with the numerical solutions 
above
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Applying the presented method, the following system of equations are obtained:

Solving this nonlinear system, one gets

The approximate solution can be calculated from

Substituting that u(c) = 2 into (31) results in

which is indeed the exact solution.

Example 5 (System of Fredholm integral equation) Consider the following nonlinear 
system of Fredholm integral equation (Babolian et al. 2004):

The exact solution for the equation is that u1(x) = x and u2(x) = x2.
Applying the presented method, the following system of equations are obtained:

where c1, c2, c3, and c4 ∈ [0, 1].
First substitute c1 and c3 into the first equation in (33), and c2 and c4 into the second 

equation in (33) to get

(29)
u(c) = ec +

(

u(c)− 2

12

)

c3,

cu(c) = 2c +
cu(c)− 2c

30
.

(30)
c = 0 and u(c) = 1,

c = log(2) and u(c) = 2.

(31)uap(x) = ex +
(

u(c)− 2

12

)

x3.

uap(x) = ex,

(32)

u1(x) = x −
5

18
+

∫ 1

0

1

3
(u1(t)+ u2(t)) dt,

u2(x) = x2 −
2

9
+

∫ 1

0

1

3

(

u21(t)+ u2(t)
)

dt.

(33)
u1(x) = x −

5

18
+

1

3
(u1(c1)+ u2(c2)),

u2(x) = x2 −
2

9
+

1

3

(

u21(c3)+ u2(c4)
)

,

(34)

u1(c1) = c1 −
5

18
+

1

3
(u1(c1)+ u2(c2)),

u1(c3) = c3 −
5

18
+

1

3
(u1(c1)+ u2(c2)),

u2(c2) = c22 −
2

9
+

1

3

(

u21(c3)+ u2(c4)
)

,

u2(c4) = c24 −
2

9
+

1

3

(

u21(c3)+ u2(c4)
)

.
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Then plug (33) into (32) to get

Now replace x with c1 and c3 in the first equation in  (35) and c2 and c4 in the second 
equation in  (35) so that there are 4 more equations. Combining  (34) with these equa-
tions, one finally gets a nonlinear system of 8 equations with 8 unknowns. Solving this 
system and the result is as follows:

Substitute these values into (33), the exact solutions are obtained, namely,

Example 6 (System of Fredholm integro-differential equation) Consider the following 
system of Fredholm integro-differential equation:

The exact solution for the equation is that u1(x) = x and u2(x) = x2.
Applying the presented method, the following system of equations are obtained:

where c1, c2, c3, and c4 ∈ [0, 1].
An application of the integral operator L−1 introduced in (8) to both sides of Eq. (38) 

along with initial conditions yields

First substitute c1 and c3 into the first equation in  (39), and c2 and c4 into the second 
equation in (39) to get

(35)

u1(x) = x −
5

18
+

1

9

(

u1(c1)+ u2(c2)+ u21(c3)+ u2(c4)+ 1

)

,

u2(x) = x2 −
2

9
+

1

3

(

(u1(c1)+ u2(c2))
2

9
+

4(u1(c1)+ u2(c2))

27
+

u2
1
(c3)+ u2(c4)

3
+

79

324

)

.

u1(c1) = c1 =
5

6
u1(c3) = c3 =

√
6

3
,

u2(c2) = u2(c4) = c2 = c4 = 0.

(36)u1(x) = x and u2(x) = x2.

(37)

u′1(x) = 1−
5

6
x +

∫ 1

0
x(u1(t)+ u2(t)) dt, u1(0) = 0,

u′2(x) = 2x −
1

12
+

∫ 1

0
t(u1(t)− u2(t)) dt, u2(0) = 0.

(38)
u′1(x) = 1−

5

6
x + (u1(c1)+ u2(c2))x,

u′2(x) = 2x −
1

12
+

1

2
(u1(c3)− u2(c4)),

(39)
u1(x) = x −

5

12
x2 +

1

2
x2(u1(c1)+ u2(c2)),

u2(x) = x2 −
1

12
x +

1

2
(u1(c3)− u2(c4))x.
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Then plug (39) and (38) into (37) to get

Now replace x with c1, c2 and c4 in the first equation in (41) and taking the second equa-
tion in (41) as it is there will be 4 more equations. Combining (40) with these equations 
to get a nonlinear system of 8 equations with 8 unknowns. Solving this system and the 
result is as follows:

Substitute these values into (39), the exact solutions are obtained, namely,

Comparison and discussions
In this section, the results obtained in this article and those obtained by applying some 
well-known methods will be compared. In particular, I will be interested in compari-
son with the Adomian decomposition method (ADM). It was introduced in Adomian 
(1994). The ADM is a breakthrough achievement in differential and integral equations. 
Since then, the method is applied to various differential equations, integral equations, 
and even partial differential equations. Let me first briefly mention about the ADM. The 
decomposition method threats the unknown function differently in the sense that if the 
unknown function appears linearly in an integral equation, the representation becomes 
a series representation whose terms considered as components of the unknown func-
tion, i.e.,

and if it appears nonlinearly in an integral equation, i.e., F(u(x)), the representation 
admits a series of so-called Adomian polynomials An given by

(40)

u1(c1) = c1 −
5

12
c21 +

1

2
c21(u1(c1)+ u2(c2)),

u1(c3) = c3 −
5

12
c23 +

1

2
c23(u1(c1)+ u2(c2)),

u2(c2) = c22 −
1

12
c2 +

1

2
c2(u1(c3)− u2(c4)),

u2(c4) = c24 −
1

12
c4 +

1

2
c4(u1(c3)− u2(c4)).

(41)
(u1(c1)+ u2(c2))x =

1

72
(12(u1(c1)+ u2(c2))+ 18(u1(c3)− u2(c4))+ 47)x,

u1(c3)− u2(c4) =
3

16
(u1(c1)+ u2(c2))+

1

96
.

u1(c1) = c1 =
5

6
u1(c3) = c3 =

1

6
,

u2(c2) = u2(c4) = c2 = c4 = 0.

(42)u1(x) = x and u2(x) = x2.

u(x) =
∞
∑

n=0

uk(x),

(43)An =
1

n!
dn

d�n

[

F

(

n
∑

k=0

�
kuk

)]

�=0

, n = 0, 1, 2, . . . .
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For a detailed treatment of application of the ADM to integral equations the reader is 
referred to Wazwaz (2011).

Example 7 (Nonlinear Fredholm integral equation) Consider the following nonlinear 
Fredholm integral equation of the second kind:

This was the second example in the previous section. Applying the ADM, one gets

where An are the Adomian polynomials given in (43).
The ADM admits the following recursion relation:

This yields

Combining these components of the solutions to get

It is important to note here that an application of the ADM produced one approximate 
solution. On the other hand, applying the WMWM (see Example 2) 3 exact solutions 
were obtained.

As the final example, consider an equation for which the method introduced in Avaz-
zadeh et  al. (2011) does not provide a number c ∈ [0, 1] when solving the nonlinear 
system of equations obtained after applying the method. This is shown by a geometric 
reasoning. it is also shown that applying WMVM will produce the exact solution.

Example 8 Consider the following linear Fredholm integral equation of the first kind:

u(x) =
5

6
x +

∫ 1

0
xt2u3(t) dt, x ∈ [0, 1].

∞
∑

n=0

un(x) =
5

6
x +

∫ 1

0
xt2

( ∞
∑

n=0

An(t)

)

dt,

u0(x) =
5

6
x,

uk+1(x) =
∫ 1

0
xt2Ak(t) dt, k ≥ 0.

u0(x) =
5

6
x,

u1(x) =
∫ 1

0
xt2A0(t) dt =

125

1296
x,

u2(x) =
∫ 1

0
xt2A1(t) dt =

3125

93312
x,

...

u(x) =
(

5

6
x +

125

1296
x +

3125

93312
x + . . .

)

≈ x.

u(x) = −x2 + x +
2

3
+

∫ 1

0
(x − t)2u(t) dt.
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The exact solution for the equation is that u(x) = 1.
Applying the method introduced in Avazzadeh et al. (2011), the following system of 

equations are obtained:

The graph of the equations in (44) is given in Fig. 3.
From the Fig. 3, it is clear that one cannot find a number c between 0 and 1 satisfying 

both equations given in  (44). On the other hand, applying the presented method, one 
gets

Substitute c for x to get

Using  (46), the second equation [see  (4)] directly gives the exact solution. That is, 
u(x) = 1.

Conclusion
In this article, an effective method based on weighted mean-value theorem for solving 
different types of Fredholm integral equations of the second kind, from linear to non-
linear equations and integro-differential to the systems of equations involving them, is 

(44)

u(c) = −c2 + c +
2

3
,

u(c) =
5

4

(

c2(2− 2c + c2)u(c)+
30c(1− c)+ 169

180

)

.

(45)

u(x) = −x2 + x +
2

3
+ u(c)

∫ 1

0
(x − t)2 dt

= −x2 + x +
2

3
+ u(c)

(

x2 − x +
1

3

)

.

(46)u(c) = 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
c

-6

-4

-2

0

2

4

6

u(
c)

Fig. 3 Graphs of the equations given in (44). No intersection point between 0 and 1
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presented. The numerical and analytical solutions are conducted using Matlab. Thor-
oughly worked-out examples are provided in order to show the accuracy and applicabil-
ity of the presented approach.
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