
Oscillation and asymptotic properties 
of a class of second‑order Emden–Fowler 
neutral differential equations
Rui Wang and Qiqiang Li*

Background
In this paper, we study a second-order delay differential equation

where z(t) = x(t)+ p(t)x(τ (t)) and α is a positive constant. Throughout this paper, we 
assume that

(H1) r, p ∈ C([t0,∞),R), r(t) > 0, 0 ≤ p(t) ≤ 1, and
∫∞
t0

r−1/α(t)dt = ∞;
(H2)  r, p ∈ C([t0,∞),R), r(t) > 0, −1 < −p0 ≤ p(t) ≤ 0, and

∫∞
t0

r−1/α(t)dt = ∞, 
where p0 is a positive constant;

(H3) τ ∈ C([t0,∞),R), τ (t) ≤ t, and limt→∞ τ (t) = ∞;
(H4)σ ∈ C1([t0,∞),R), σ(t) ≤ t, σ ′(t) > 0, and limt→∞ σ(t) = ∞.

(H5)  f ∈ C([t0,∞)× R,R), uf (u) ≥ 0 for all u �= 0, and there exist a positive con-
stant β and a function q(t) ∈ C([t0,∞), (0,∞)) such that (f (t,u)/uβ) ≥ q(t), for 
all u �= 0, where 1 < β ≤ α.

It is recognized that Emden–Fowler equations have a number of applications in phys-
ics and engineering; see, e.g., Berkovich (1997). As a result, there has been a great deal 
of interest in investigating the oscillation or nonoscillation of differential equations; 
see, e.g., Hale (1977), Džurina and Stavroulakis (2003), Li (2004), Li et al. (2011, 2013, 

(1)
(

r(t)|z′(t)|α−1z′(t)
)′

+ f (t, x(σ (t))) = 0, t ≥ t0
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2015), Li and Rogovchenko (2015), Erbe et al. (2009), Manojlović (1999), Wang and Yang 
(2004), Wang (2001), Liu et al. (2012), Shi et al. (2016), Baculíková and Džurina (2011), 
Bohner and Li (2014), Yang et al. (2006), Xu and Meng (2006, 2007). As we known, many 
results of half-linear or nonlinear equations with positive neutral coefficients were estab-
lished, see, e.g., Baculíková and Džurina (2011), Erbe et al. (2009), Li et al. (2011, 2013), 
Li and Rogovchenko (2015), Liu et  al. (2012), Shi et  al. (2016), Yang et  al. (2006), Xu 
and Meng (2006, 2007). The equations with nonpositive neutral coefficients have been 
applied to practical life; see, for instance, Brayton (1966) and Kuang  (1993, sec. 1.1.7) 
provided a model about the system with lossless transmission lines. And, there have 
been a few oscillation and asymptotic results of the equations with nonpositive neu-
tral coefficients, see, e.g., Bohner and Li (2014), Erbe et al. (2009), Li et al. (2015), Yang 
et al. (2006). In the following, we provide some background details which motivated our 
research. Manojlović (1999), Wang (2001), and Wang and Yang (2004) considered the 
half-linear differential equation

and gave some different oscillation results by using an inequality due to Hardy, Lit-
tlewood and Ploya and averaging functions. Motivated by these ideas, many scholars 
extended the results to delay differential equations or neutral delay differential equa-
tions. Džurina and Stavroulakis (2003) and Li (2004) expanded the Eq. (2) to the delay 
differential equation

 Xu and Meng (2006, 2007) extended (2) to the neutral delay differential equation

provided that 0 ≤ p(t) ≤ 1. Li et al. (2015) established some oscillation and asymptotic 
results to (1) in the case where −1 < p(t) ≤ 0. By using Riccati transformation, Erbe 
et al. (2009) proposed some oscillation and asymptotic results for (1), under the assump-
tions that 0 ≤ p(t) < 1 and −1 < p(t) < 0. Liu et al. (2012) considered the the following 
equation

in the case where 0 ≤ p(t) ≤ 1 and α ≥ β > 0. They established some oscillation and 
asymptotic criteria by employing averaging technique and Riccati transformation. Shi 
et al. (2016) extended the results of Liu et al. (2012) to dynamic equations on time scales 
provided that 0 ≤ p(t) ≤ 1 and p(t) > 1.

However, the results of Liu et  al. (2012) and Shi et  al. (2016) cannot be applied to 
Eq. (1) due to −1 < p(t) ≤ 0 in (1), but, in Liu et al. (2012), Shi et al. (2016) the assump-
tion is 0 ≤ p(t) ≤ 1 or p(t) > 1. Similarly, the results in Erbe et al. (2009) and Li et al. 
(2015) cannot be applied to Eq.  (1) because there is another parameter β and the 

(2)
(

r(t)|x′(t)|α−1x′(t)
)′

+ q(t)|x(t)|α−1x(t) = 0,

(

r(t)|x′(t)|α−1x′(t)
)′

+ q(t)|x(τ (t))|α−1x(τ (t)) = 0.

(3)
(

r(t)
(

[x(t)+ p(t)x(τ (t))]′
)α)′ + q(t)(x(σ (t)))α = 0

(4)
(

r(t)
∣

∣[x(t)+ p(t)x(τ (t))]′
∣

∣

α−1
z′(t)

)′
+ q(t)|x(σ (t))|β−1x(σ (t)) = 0
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condition on function f in Li et al. (2015), Erbe et al. (2009) does not satisfy the hypoth-
esis (H5). In this paper, we will extend the results of Liu et al. (2012), Shi et al. (2016) to 
the case of −1 < p(t) ≤ 0 and improve the results of Erbe et al. (2009), Li et al. (2015). 
By employing Riccati transformation, several new oscillation and asymptotic criteria are 
obtained under the assumptions that (H1)− (H5). Throughout this paper, we suppose 
that all inequalities hold for sufficiently large t. Without loss of generality, we only con-
sider the positive solutions of (1).

In what follows, let D = {(t, s) : t0 ≤ s ≤ t} and D0 = {(t, s) : t0 ≤ s < t}. We say a 
function H = H(t, s) belongs to a function class P, if it satisfies

(i) H(t, t) = 0, t ≥ t0;H(t, s) > 0, (t, s) ∈ D0;
(ii) H has partial derivatives ∂H/∂t and ∂H/∂s on D0, such that 

 and 

 where h1 and h2 are nonnegative continuous functions on D0.

Main results
In this section, we discuss the Eq.  (1) under the assumptions that −1 < p(t) ≤ 0 and 
0 ≤ p(t) ≤ 1, respectively.

Oscillation of Eq. (1) when −1 < p(t) ≤ 0

Theorem  1 Assume that (H2)− (H5) hold. If there exists a function 
ρ ∈ C1([t0,∞), (0,∞)) such that, for any constant K > 0,

where �(t) = [βσ ′(t)(ξ(σ (t)))β−1]/[K (1−β/α)ρ(t)(r(σ (t)))1/α], then all solutions of 
Eq. (1) are oscillatory or tend to zero as t → ∞.

Proof Suppose x is a nonoscillatory solution of (1). Without loss of generality, there 
exists a t1 ≥ t0, such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0, for all t ≥ t1. From (1) 
and the hypothesis (H5), we get

Therefore, r|z′|α−1z′ is nonincreasing. We claim that z′ > 0. Otherwise, if z′ < 0, using 
the fact that r|z′|α−1z′ is nonincreasing, there exists a positive k > 0, such that

∂H(t, s)

∂t
= h1(t, s)

√

H(t, s)

∂H(t, s)

∂s
= −h2(t, s)

√

H(t, s),

(5)

∫ ∞

t0

[

ρ(t)q(t)−
(

ρ′(t)
)2

4ρ2(t)�(t)

]

dt = ∞,

(6)
(

r|z′|α−1z′
)′

≤ 0.

−r(t)
(

−z′(t)
)α ≤ −k < 0.
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That is,

Integrating the above inequality from t1 to t, we get

It follows from (H2) that

We consider the following two cases.
Case 1 If x is unbounded, then there exists a sequence {tm}, such that

where {tm} satisfies limm→∞ tm = ∞ and x(tm) = maxt0≤s≤tm{x(s)}. By the definition of 
x(tm) and τ (t) ≤ t, we have

Then we get

which contradicts (7).
Case 2 If x is bounded, from the definition of z and −1 < p(t) ≤ 0, z is also bounded, 

which also contradicts (7).
Hence, it is clear from the above discussion that z′ > 0, and then z > 0 or z < 0. We 

consider each of two cases separately.
Suppose first that z > 0. Considering the definition of z and −1 < p(t) ≤ 0, we get

From σ(t) ≤ t and the fact that r(z′)α is nonincreasing, we obtain

and there exist a positive constant K and a t2 ≥ t1, such that

From the fact that r(z′)α is nonincreasing, we get

−z′(t) ≥
k

1
α

r
1
α (t)

.

z(t1)− z(t) ≥ k
1
α

∫ t

t1

r−
1
α (s)ds.

(7)lim
t→∞

z(t) = −∞.

lim
m→∞

x(tm) = ∞,

x(τ (tm)) ≤ x(tm).

z(tm) = x(tm)+ p(tm)x(τ (tm)) ≥ x(tm)(1+ p(tk)) > 0,

(8)z(t) = x(t)+ p(t)x(τ (t)) ≤ x(t).

(9)(r(σ (t)))
1
α z′(σ (t)) ≥ (r(t))

1
α z′(t)

(10)r(t)
(

z′(t)
)α ≤ K , t ≥ t2.

(11)z(t) = z(t1)+
∫ t

t1

(

r(s)
(

z′(s)
)α)

1
α

r
1
α (s)

ds ≥ r
1
α (t)z′(t)

∫ t

t1

r−
1
α (s)ds = ξ(t)r

1
α (t)z′(t),
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where ξ(t) =
∫ t
t1
r−1/α(s)ds. Define a function ω by

then ω(t) > 0. Differentiating ω, we get

From (1) and (8), we conclude that

Taking into account (11), the last inequality implies

It follows from (9), (10), and (12) that

where �(t) = [βσ ′(t)(ξ(σ (t)))β−1]/[K (1−β/α)ρ(t)(r(σ (t)))1/α]. Integrating (13) from t2 
to t, we get

which contradicts (5).
If z < 0, we claim that limt→∞ x(t) = 0. Using z < 0 and z′ > 0, we deduce that

ω(t) = ρ(t)
r(t)

(

z′(t)
)α

zβ(σ (t))
,

ω′(t) =
ρ′(t)

ρ(t)
ω(t)+ ρ(t)

(

r(t)z′(t)
)′

zβ(σ (t))
− βσ ′(t)ρ(t)

r(t)
(

z′(t)
)α
zβ−1(σ (t))z′(σ (t))

z2β(σ (t))
.

ω′(t) ≤ −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)− βσ ′(t)ρ(t)

r(t)
(

z′(t)
)α

z2β(σ (t))
z′(σ (t))zβ−1(σ (t)).

(12)

ω′(t) ≤ −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)− βσ ′(t)(ξ(σ (t)))β−1

ρ(t)
r(t)

(

z′(t)
)α

z2β(σ (t))
(r(σ (t)))

β−1
α

(

z′(σ (t))
)β
.

(13)

ω′(t) ≤ −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)−

βσ ′(t)(ξ(σ (t)))β−1

(r(σ (t)))1/α
ρ(t)

r(t)
(

z′(t)
)α

z2β(σ (t))
(r(t))

β
α

(

z′(t)
)β

= −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)−

βσ ′(t)(ξ(σ (t)))β−1(r(t))
β
α

(r(σ (t)))1/αρ(t)r(t)
ω2(t)

1

(z′(t))α−β

≤ −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)−

βσ ′(t)(ξ(σ (t)))β−1

K 1− β
α (r(σ (t)))1/αρ(t)

ω2(t)

= −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)−�(t)ω2(t)

≤ −ρ(t)q(t)+
(ρ′(t))2

4ρ2(t)�(t)
,

0 < ω(t) ≤ ω(t2)−
∫ t

t2

[

ρ(s)q(s)−
(

ρ′(s)
)2

4ρ2(s)�(s)

]

ds,

lim
t→∞

z(t) = l ≤ 0,
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where l is a constant. That is, for all sufficiently large t, z is bounded. We can easily prove 
that x is also bounded. From the fact that x is bounded, we get

where a is a constant. We claim that a = 0. Otherwise, if a > 0, there exists a sequence 
{tn}, such that limn→∞ tn = ∞ and limn→∞ x(tn) = a. Letting

for large enough n, we obtain

Then, from the definition of z(t) and p(t) ≥ −p0, we have

which contradicts z < 0. Thus lim supt→∞ x(t) = 0. By x > 0, we get

The proof is complete.  �

From Theorem 1, letting ρ = 1, we get the following corollary.

Corollary 1 Assume that (H2)− (H5) hold. If

then all solutions of Eq. (1) are oscillatory or tend to zero as t → ∞.

Theorem  2 Assume that (H2)− (H5) hold. If there exist two functions H ∈ P and 
ρ ∈ C1([t0,∞), (0,+∞)), such that

where � is as in Theorem 1, then the conclusion of Theorem 1 remains intact.

Proof Suppose that x is a nonoscillatory solution of (1). Proceeding as in the proof of 
Theorem 1, we get z > 0 or z < 0.

Firstly, we consider z > 0. As the proof above (13) holds. That is

lim sup
t→∞

x(t) = a,

ε =
a(1− p0)

2p0
,

x(τ (tn)) < a+ ε.

lim
n→∞

z(tn) ≥ lim
n→∞

x(tn)− p0(a+ ε) =
a(1− p0)

2
> 0,

lim
t→∞

x(t) = 0.

∫ ∞

t0

q(t)dt = ∞,

(14)

lim sup
t→∞

1

H(t, t0)

� t

t0






H(t, s)ρ(s)q(s)−

�

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

�2

4H(t, s)�(s)






ds = ∞,

ω′(t) ≤ −ρ(t)q(t)+
ρ′(t)

ρ(t)
ω(t)−�(t)ω2(t).
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Multiplying this inequality by H(t, s) and integrating it from t2 to t, we have

By the property of ∂H(t, s)/∂s = −h2(t, s)
√
H(t, s) < 0, we conclude that

Adding 
∫ t2
t0

[

H(t, s)ρ(s)q(s)−
(

ρ′(s)
ρ(s) H(t,s)−h2(t,s)

√
H(t,s)

)2

4H(t,s)�(s)

]

ds to the latter inequality and 

multiplying this inequality by 1/H(t, t0), we get

Letting t → ∞ in (16), we can get a contradict to (14).
If z < 0, repeating the proof of Theorem 1, we have limt→∞ x(t) = 0. This completes 

the proof.  �

From Theorem 2, letting H(t, s) = (t − s)�(� > 0) and ρ(t) = 1, we may get the follow-
ing corollary.

Corollary 2 Assume that (H2)− (H5) hold. If

then the conclusion of Theorem 1 remains intact.

Theorem  3 Assume that (H2)− (H5) hold. If there exist three functions H ∈ P, 
ρ ∈ ([t0,∞), (0,∞)), and A ∈ C([t0,∞),R), such that

(15)

∫ t

t2

H(t, s)ω′(s)ds ≤
∫ t

t2

H(t, s)

[

−ρ(s)q(s)+
ρ′(s)

ρ(s)
ω(s)−�(s)ω2(s)

]

ds.

� t

t2






H(t, s)ρ(s)q(s)−

�

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

�2

4H(t, s)�(s)






ds

≤ H(t, t2)ω(t2) ≤ H(t, t0)ω(t2).

(16)

1

H(t, t0)

�
� t2

t0

+
� t

t2

�






H(t, s)ρ(s)q(s)−

�

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

�2

4H(t, s)�(s)






ds

≤
1

H(t, t0)

� t2

t0






H(t, s)ρ(s)q(s)−

�

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

�2

4H(t, s)�(s)






ds + ω(t2).

≤ ω(t2)+
� t2

t0







H(t, s)

H(t, t0)
ρ(s)q(s)−

�

ρ′(s)
ρ(s)

√
H(t, s)− h2(t, s)

�2

4H(t, t0)�(s)






ds

≤ ω(t2)+
� t2

t0

ρ(s)q(s)ds.

(17)lim sup
t→∞

1

(t − t0)�

∫ t

t0

(t − s)�−2

[

(t − s)2q(s)−
�
2

4�(s)

]

ds = ∞,

(18)

∫ ∞

t0

A2
+(t)�(t)dt = ∞
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and

for all T ≥ t0 and for some constant θ > 1, where A+(t) = max{A(t), 0}, � is as in Theo-
rem 1, and H satisfies

then every solution of Eq. (1) is oscillatory or tends to zero as t → ∞.

Proof Suppose that x is a nonoscillatory solution of Eq.  (1). Then, as in the proof of 
Theorem 1, z > 0 or z < 0.

We consider z > 0 firstly. By virtue of Theorem 2, (15) holds. That is, for all T ≥ t2 ≥ t1,

Thus,

Taking into account (19) and (21), we deduce that

then

and

Now we will prove that

(19)

lim sup
t→∞

1

H(t,T )

� t

T






h(t, s)ρ(s)q(s)−

θ

�

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

�2

4H(t, s)�(s)






ds ≥ A(T ),

(20)0 < inf
s≥t0

{

lim sup
t→∞

H(t, s)

H(t, t0

}

≤ ∞,

1

H(t,T )

∫ t

T
H(t, s)ρ(s)q(s)ds

≤ ω(T )+
1

H(t,T )

∫ t

T

θ

(

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

)2

4�(s)H(t, s)
ds

−
1

H(t,T )

∫ t

T

θ − 1

θ
H(t, s)�(s)ω2(s)ds.

(21)

1

H(t,T )

� t

T






H(t, s)ρ(s)q(s)−

θ

�

ρ′(s)
ρ(s)H(t, s)− h2(t, s)

√
H(t, s)

�2

4�(s)H(t, s)






ds

≤ ω(T )−
1

H(t,T )

� t

T

θ − 1

θ
H(t, s)�(s)ω2(s)ds.

A(T )+ lim inf
t→∞

1

H(t,T )

∫ t

T

θ − 1

θ
H(t, s)�(s)ω2(s)ds ≤ ω(T ),

(22)A(T ) ≤ ω(T ), for all T ≥ t2,

(23)lim inf
t→∞

1

H(t,T )

∫ t

T
H(t, s)�(s)ω2(s)ds ≤

θ

θ − 1
(ω(T )− A(T )) < ∞.



Page 9 of 15Wang and Li  SpringerPlus  (2016) 5:1956 

On the contrary, if

By the condition (20), there exists a positive constant c, such that

On the other hand, using (24), for arbitrary positive M, there exists a t3 ≥ T , such that

From the property (ii) of H and (25), we have

Taking account into the fact that M is arbitrary positive constant, (26) implies that

which contradicts (23). Thus,

Using (22) and �(t) > 0, we have

which contradicts (18).
If z < 0, repeating the proof in Theorem 1, we get limt→∞ x(t) = 0. The proof is com-

plete.  �

Remark 1 Theorem  1–3 and Corollaries  1 and 2 are the oscillation and asymptotic 
results of (1) under the assumption that −1 < p(t) ≤ 0. However, the results in Liu et al. 
(2012), Shi et al. (2016) are established in the case where 0 ≤ p(t) ≤ 1. In the hypothesis 
(H5), there is another parameter β and the condition on function f in Li et  al. (2015), 

lim
t→∞

∫ t

T
�(s)ω2(s)ds < ∞.

(24)lim
t→∞

∫ t

T
�(s)ω2(s)ds = ∞.

(25)inf
s≥t0

{

lim inf
t→∞

H(t, s)

H(t, t0)

}

> c > 0.

∫ t

T
�(s)ω2(s)ds ≥

M

c
, t ≥ t3.

(26)

1

H(t,T )

∫ t

T
H(t, s)�(s)ω2(s)ds

=
1

H(t,T )

∫ t

T

[

−
∂H(t, s)

∂s

][
∫ s

T
�(u)ω2(u)du

]

ds

≥
1

H(t,T )

∫ t

t3

[

−
∂H(t, s)

∂s

][
∫ s

T
�(u)ω2(u)du

]

ds

≥
M

c

H(t, t3)

H(t,T )
≥

M

c

H(t, t3)

H(t, t0)
≥ M.

lim
t→∞

1

H(t,T )

∫ t

T
H(t, s)�(s)ω2(s)ds = ∞,

lim
t→∞

∫ t

T
�(s)ω2(s)ds < ∞.

∫ ∞

T
A2
+(t)�(t)dt ≤

∫ ∞

T
ω2(t)�(t)dt < ∞,
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Erbe et al. (2009) does not satisfy (H5). Therefore, the results of Li et al. (2015), Erbe et al. 
(2009) can not apply to Eq. (1).

Oscillation of Eq. (1) when 0 ≤ p(t) ≤ 1

Theorem  4 Assume that (H1) and (H3)− (H5) hold. If there exists a function 
ρ(t) ∈ C1([t0,∞), (0,∞)) such that for any positive number M,

where p(t) = q(t)(1− p(σ (t)))β and ξ(t) =
∫ t
t1
r−1/α(s)ds, then the Eq. (1) is oscillatory.

Proof See “Appendix”.  �

Letting ρ(t) = 1, we can get the following result.

Corollary 3 Assume that (H1) and (H3)− (H5) hold. If

then the Eq. (1) is oscillatory.

Example 1 Consider the second-order nonlinear neutral delay differential equation

where β = 2,α ≥ 2, r(t) = 1, p(t) = 1− t−
1
2 , σ(t) = t, and q(t) = γ

t2
, where γ is a posi-

tive constant.
Letting ρ(t) = t2, we have

and

(27)

∫ ∞

t0

[

ρ(t)p(t)−
M1− β

α

(

ρ′(t)
)2
(r(σ (t)))

1
α

4βσ ′(t)ρ(t)(ξ(t))β−1

]

dt = ∞,

∫ ∞

t0

q(t)(1− p(σ (t)))βdt = ∞,

(28)

(

∣

∣

∣

∣

(

x(t)+
(

1− t−
1
2

)

x(τ (t))
)′
∣

∣

∣

∣

α−1
[

x(t)+
(

1− t−
1
2

)

x(τ (t))
]′
)′

+
γ

t2
|x(t)|x(t) = 0,

ξ(t) =
∫ t

t1

r−1/α(s)ds =
∫ t

t1

1ds = t − t1

∫ t

T

[

ρ(t)p(t)−
(

ρ′(t)
)2
(r(σ (t)))

1
α )

4βσ ′(t)M1− β
α ρ(t)(ξ(t))β−1

]

ds =
∫ t

T

[

γ

s
−

1

2K 1− 2
α (s − t1)

]

ds

= γ ln t −
1

2M1− 2
α

ln(t − t1)− γ lnT +
1

2M1− 2
α

ln(T − t1).
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Therefore, if γ > 1
2M1−(2/α), then

It follows from Theorem 4 that all solutions of (28) are oscillatory if γ > 1
2M1−(2/α). How-

ever, the Eq.  (28) is oscillatory when γ > 1
M1−(2/α) from Theorem 1 in Liu et al. (2012). 

That is, if 1
2M1−(2/α) < γ ≤ 1

M1−(2/α), then Theorem 1 in Liu et al. (2012) can not apply to 
(28).

Remark 2 From Theorem 4, the Eq. (28) is oscillatory if γ > 1
2M1−(2/α). However, from 

Theorem 1 in Liu et al. (2012), when γ > 1
M1−(2/α), the Eq. (28) is oscillation. Thus, Theo-

rem 4 improves Theorem 1 in Liu et al. (2012) in the case where 0 ≤ p(t) ≤ 1.

Examples
In this section, we will present two examples to illustrate the main results.

Example 2 Consider the second-order nonlinear neutral delay differential equation

where r(t) = 1, p(t) = −1/2, τ (t) = t − 2, σ(t) = t, and q(t) = 2
(

e2

2 − 1
)2

.
We see that

It follows from Corollary 1 that all solutions of (29) are oscillatory or converge to zero. 
Letting α = β = 2, we can certify that x(t) = e−t is an asymptotic solution of (29).

Example 3 Consider the second-order nonlinear neutral delay differential equation

where α > β ≥ 1, 0 < �0 < 1, 0 < σ0 < 1, r(t) = 1, p(t) = �0, τ (t) ≤ t, q(t) = γ

t2
, and 

σ(t) = σ0t.
Letting ρ(t) = γ

2

βσ0

(

t− t1
σ0

)β−1

K 1− β
α

 and H(t, s) = (t − s)2, then

and

∫ ∞

T

[

ρ(t)p(t)−
(

ρ′(t)
)2
(r(σ (t)))

1
α )

4βσ ′(t)M1− β
α ρ(t)(ξ(t))β−1

]

ds = ∞.

(29)

(

∣

∣

∣

∣

(

x(t)−
1

2
x(t − 2)

)′∣
∣

∣

∣

α−1[

x(t)−
1

2
x(t − 2)

]′
)′

+ 2

(

e2

2
− 1

)2

|x(t)|β−1x(t) = 0,

∫ ∞

T
q(s)ds = ∞.

(30)
(

∣

∣(x(t)− �0x(τ (t)))
′∣
∣

α−1[x(t)− �0x(τ (t))]
)′

+
γ

t2
|x(σ0t)|β−1x(σ0t) = 0,

ξ(t) =
∫ t

t1

r−
1
α (s)ds = t − t1,

�(t) =
βσ ′(t)(ξ(σ (t)))β−1

K 1− β
α ρ(t)(r(σ (t)))

1
α

=
βσ0(t − t1

σ0
)β−1

K 1− β
α ρ(t)

=
2

γ
,
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That is, (17) holds. It follows from Corollary 2 that all solutions of (30) are oscillatory or 
converge to zero.

Remark 3 If α > β, the results of Erbe et al. (2009) and Li et al. (2015) can not apply to 
(29) and (30). The results of Liu et al. (2012) and Shi et al. (2016) also can not apply to 
(29) and (30) because −1 < p(t) ≤ 0 which does not satisfy the assumptions in Liu et al. 
(2012), Shi et al. (2016).

Conclusion
In this paper, we consider the oscillation of a class of second-order differential equations 
with positive and nonpositive neutral coefficients. It is difficult to study the nonpositive 
neutral coefficients equations because the sign of z is not explicit. Using Riccati trans-
formation, some oscillation and asymptotic criteria are obtained under the assumptions 
that (H1)− (H5). In Liu et al. (2012), Shi et al. (2016), the results were established for (1) 
in the case when 0 ≤ p(t) ≤ 1 or p(t) > 1. This paper states some oscillation and asymp-
totic criteria for (1) in the case where −1 < p(t) < 0 and 0 ≤ p(t) ≤ 1. Erbe et al. (2009), 
Li et al. (2015) assume that α = β, however, in this paper α �= β is allowed. We give some 
examples to illustrate our results. There are two interesting questions for future study:

(Q1)  Could we obtain oscillation criteria for Eq.  (1) when −∞ < p(t) ≤ 1

or−∞ < p(t) ≤ −1?
(Q2)  Could we obtain some sufficient conditions which ensure that all solutions of (1) 

are oscillatory?
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Appendix
In this section, we give the proof of Theorem 4.

Proof Assume that x is a nonoscillatory solution of the Eq. (1). Without loss of general-
ity, there exists a t1 ≥ t0, such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0, for all t ≥ t1. 
Then, by the definition of z, we know

From (1) and the assumption (H5), we get

lim sup
t→∞

1

(t − s)2

∫ t

t0

[

(t − s)2q(s)−
1

�(s)

]

ds = lim sup
t→∞

1

(t − s)2

∫ t

t0

[

γ (
1

2
−

2t

s
+

t2

s2
)

]

ds = ∞.

(31)z(t) = x(t)+ p(t)x(τ (t)) ≥ x(t) and z > 0.

(32)
(

r|z′|α−1z′
)′

≤ 0.
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So, r|z′|α−1z′ is a nonincreasing function. We claim that z′ > 0. Otherwise, if z′ < 0, 
using the fact that r|z′|α−1z′ is a nonincreasing, there exists a positive c > 0, such that

Then, we have

Integrating the above inequality from t1 to t, we obtain that

Letting t → ∞, from (H1), we have

which contradicts z > 0. Thus, z′ > 0.
From (1), (31), and the fact that z is increasing, we conclude that

Using the fact that r(z′)α is nonincreasing, (11) holds and there exists a positive constant 
M and t2 ≥ t1, such that

and form σ(t) ≤ t, we get

Define a function ω by

then ω(t) > 0. Differentiating ω, we get

From (33), we conclude that

where p(t) = (1− p(σ (t)))β. Taking into account (11) and α ≥ β ≥ 1, the last inequality 
implies

−r
(

−z′
)α ≤ −c < 0.

−z′(t) ≥
(

c

r(t)

)
1
α

.

z(t1)− z(t) ≥ c
1
α

∫ t

t1

(

1

r(t)

)
1
α

ds

lim
t→∞

z(t) = −∞,

(33)
(

r(t)
(

z′(t)
)α)′ + q(t)zβ(σ (t))(1− p(σ (t)))β ≤ 0,

(34)r(t)
(

z′(t)
)α ≤ M, t ≥ t2,

(35)r(t)
(

z′(t)
)α ≤ r(σ (t))

(

z′(σ (t))
)α
.

ω(t) = ρ(t)
r(t)

(

z′(t)
)α

zβ(σ (t))
,

ω′(t) =
ρ′(t)

ρ(t)
ω(t)+ ρ(t)

(

r(t)z′(t)
)′

zβ(σ (t))
− βσ ′(t)ρ(t)

r(t)
(

z′(t)
)α
zβ−1(σ (t))z′(σ (t))

z2β(σ (t))
.

ω′(t) ≤ −ρ(t)q(t)p(t)+
ρ′(t)

ρ(t)
ω(t)− βσ ′(t)ρ(t)

r(t)
(

z′(t)
)α

z2β(σ (t))
z′(σ (t))zβ−1(σ (t)),
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It follows from (34) to (36) that

Integrating (37) from t2 to t, we get

which contradicts (27). This completes the proof.  �
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