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Background
Distributed lag models (DLM) have become the dominant approach for modelling acute 
mortality effects of environmental exposures such as atmospheric ozone (Zanobetti and 
Schwartz 2008), fine particulate matter (Zanobetti et  al. 2002), ambient temperature 
(Basu 2009), heat waves (Hajat et al. 2002) etc.

Several arguments favour DLMs. Primarily, they provide an intuitive way of estimat-
ing risks when the delay between exposure and event is unknown or variable. Secondly, 
DLMs are flexible and have been extended to investigate thresholds (Muggeo 2008) 
and non-linear exposure-response relationships (Gasparrini et  al. 2010). Interactions 
between exposures have also been included (Filleul et al. 2006, e.g.). Thirdly, DLMs are 
fairly easy to implement in standard statistical software. And lastly, DLMs were consid-
ered to give both quantitative and qualitative information on mortality displacement.

Under the mortality displacement hypothesis not all attributable deaths originate in 
the general population, but weakened, near-death individuals are ‘targeted’ first by envi-
ronmental exposures such as air pollution. As this ‘frail population’ depletes, mortality 
rates can drop below the baseline as is illustrated in Fig. 1. Vice versa, when fitted relative 
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risks are significantly below the value of one for one or more lags, this is considered evi-
dence of mortality displacement.

The distinction between weakened individuals and the general population is important 
for impact calculations. The general population enjoys a residual life expectancy of sev-
eral years or decades. Consequently, when air pollution episodes increase mortality rates 
in this group, the impact on life expectancy is large. However, in the frail group residual 
life expectancies are very short. Hence, an exposure event can bring deaths in the frail 
group forward only some days or weeks and the effect on life expectancy is negligible in 
comparison with the general population.

Naturally, it is possible that there is an effect on both groups. In such a scenario it is 
preferable to disentangle the effects and consider only the effect on the general popula-
tion when calculating the impact on life expectancy. Often the sum of the lag estimates 
generated by a DLM, is used, as the individual lag estimates can be both positive and 
negative. In essence both the left and right pattern of Fig. 1 are allowed for by a DLM.

Unfortunately, it was shown in Roberts and Switzer (2004) that such estimates are 
biased. This bias does not seem to be an attenuation nor a consistent over-estimation. 
Instead their results show that the bias depends in some non-trivial manner on the num-
ber of lags included in the model, on the size of the true effect and on the mean lifetime 
in the frail population. Although the bias was negligible in some scenario’s, it was suffi-
ciently large to lead to spurious conclusions in other settings.

Nonetheless, DLMs remain the most popular class of models for acute effects of air 
pollution exposure. We believe that two factors contribute to this. Firstly, the motiva-
tion for the DLM is intuitive and although it has, to our knowledge, never been proven 
analytically that the estimates should be unbiased, it is difficult to understand why they 
are sometimes biased towards the null, yet at other times unbiased or biased away from 
the null. Secondly, there is no well-established alternative model. Even though alter-
native models have been proposed as early as 1999 (Smith et  al. 1999), they have not 
been extensively studied. In particular, the aforementioned, Bayesian, approach suf-
fered a large computational burden and only eighteen simulations were performed, all 
in the setting of zero mortality displacement. Other methods similarly lack feasibility or 
validation.

In this paper we revisit the multi state framework necessary for models that gener-
ate mortality displacement. Thereafter we recapitulate the DLM approach and provide 
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Fig. 1 Two scenario’s for daily mortality influenced by a peak in air pollution exposure on day five. Left twenty 
additional deaths, no displacement. Right The increase in mortality is followed by a lowered mortality and the 
total deaths over fifteen days is equal to what would be expected without a peak in pollution. The twenty 
deaths are ‘displaced’ by only a few days
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additional observations pertaining the factors that contribute to the bias of DLM esti-
mates. Using these insights as heuristics, we propose an intuitive modification of the 
DLM that corrects for bias: Simulation Enhanced Distributed Lag Models (SEDLM). 
Subsequently, we compare SEDLM to DLM with a simulation study and demonstrate 
that the SEDLM produces better estimates. We apply the method to the Chicago data as 
an illustrative example. Finally, we turn to the discussion and conclusion.

Mortality displacement
In order to generate mortality displacement, a multi state model with at least three states 
is needed. However, we will first consider the simple model depicted in Fig. 2a. Herein 
there are only two states: healthy and dead. All people start in the healthy state and there 
is only one possible transition: towards death. Let us assume that the base rate of dying 
is sufficiently low and the population large enough that the amount of healthy people 
(nt) is approximately constant. Thus daily mortality can be considered a Poisson pro-
cess with rate µt that is influenced by concurrent and recent exposure including lags 
of up to L days: xt, xt−1 . . . xt−L. Let us assume for simplicity that the effect is linear: 
logµt = α + β0xt + · · · + βLxt−L. Unless the exposure has a protective effect, none of 
the βi can be negative. If we believe that model in Fig. 2a is the underlying truth, then we 
should restrict our estimates to be non-negative (β̂i ≥ 0).

Next, we consider models with multiple starting groups such as shown in Fig.  2b. 
Herein we allow the initial states to differ in size. From each initial state there must be a 
direct path towards the dead state, however exchanges between groups are not allowed. 
Under similar conditions as for the two state model, the population sizes n(1)t  and n(2)t  
are considered constant. Consequently, the total number of daily deaths follows a Pois-
son distribution with expected deaths equal to the sum of expected deaths in both 
groups and the overall relative risk is a weighted sum of the relative risks per population, 
which cannot be negative unless the exposure has a protective effects on at least one 
population.

In contrast, the model described in Fig. 3 does allow reduced risks and hence mortal-
ity displacement. Like the previous model, it contains three states, but there is only one 
initial state. All people start in the healthy state and can move towards the frail state; 
only those in the frail state may die. Again we assume that the healthy state has a near 

Healthy: nt

Dead

E[yt] = µt

(a)
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(1)
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(2)
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E[y(1)t ] = µ
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E[y(2)t ] = µ
(2)
t

(b)
Fig. 2 Two multi state models that do not generate mortality displacement. a Basic model. b Multiple initial 
states
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infinite population (nt), however the frail state contains only a limited amount of people 
(mt) and is dynamic:

On day t, ut healthy people become frail. We will refer to this transition from healthy to 
frail as entry. Similarly, on day t, yt frail people die and we will refer to this transition as 
exit. Assuming that the healthy population is large and that the individual probability of 
entry is small, we assign a Poisson distribution to Ut. In addition, we assume that initially 
there is only a small finite number of frail individuals and that the probability of exit is 
high for all individuals in the frail state. This can be modelled with a Binomial distribu-
tion. As a direct consequence of these choices, the amount of people in the frail state 
varies from day to day. While the outflux is proportional to the size of the frail popula-
tion, the influx is independent thereof. It is easy to see that the size of the frail state will 
evolve towards a stable equilibrium (E[mt ] = E[mt−1]) wherein the expected influx is 
equal to the expected number of deaths. If the outflux is too large, then the frail popula-
tion will shrink and hence the outflux will decrease towards the equilibrium state. Vice 
versa, a too small frail population will experience a net increase until its size, multiplied 
by the base rate, becomes equal to the expected influx.

Coupled with a peak in exposure, this mechanism allows mortality displacement. If 
only the exit rate is increased by an exposure event, then it will immediately lead to an 
increase in mortality that is not compensated for by extra people becoming frail. On sub-
sequent days fewer people risk death until the size of the frail population has recovered. 
This creates a pattern similar to the right panel of Fig. 1. In a more general model, pollu-
tion can alter both the rate of becoming frail and the risk of death for a frail individual:

wherein Xt is the concurrent exposure and s1(t) and s2(covariatest) are smooth func-
tions of time and time dependent covariates. These are included in the entry rate (µt) to 

(1)

{
nt ∼ c
mt+1 = mt + ut − yt

(2)





mt+1 = mt + ut − yt
ut ∼ Poisson(µt)

yt ∼ Binomial(φt ,mt)

log(µt) = αentry + βentryXt + s1(t)+ s2(covariatest)
logit(φt) = αexit + βexitXt

Healthy: nt

Frail: mt

Dead

E[ut]= µt

E[yt]= φt

Fig. 3 A minimal multi state model that can generate mortality displacement
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allow seasonal effects in observed mortality because at equilibrium the expected daily 
deaths are equal to the expected daily amount of people becoming frail. On the contrary, 
low frequency variations in the probability of exit (φt) do not alter the seasonal pattern of 
daily mortality, but are reflected in (inverted) changes in the size of the frail population.

DLMs
If both the series of daily deaths yt and the daily population at risk mt are observed, esti-
mates of βentry and βexit can be obtained with Generalized Additive Models (Hastie and 
Tibshirani 1990) using only concurrent exposure. However, in environmental epidemiol-
ogy mt is usually not observed. Instead, a reduced model is fit on the observed data:

If φt ≡ 1, death in the frail state is immediate and model 2 reduces to model 3. However, 
if φt ≡ c2 < 1, the reduced model is likely to underestimate βentry as the excess deaths 
are spread out over the days or weeks subsequent to the exposure. An intuitive solution 
is to add L lagged exposure terms to capture the full effect of exposure:

thus the effect of an event is distributed over multiple lags. The sum of the lagged effect 
estimates is often used as a measure for the total impact and it is assumed that this effect 
is equal to the true entry effect:

When φt ≡ 1, this assumption is valid and the approximation is exact even when L = 0 . 
However if the base probability of dying in the frail state decreases, the mean lifetime 
increases and a larger number of lag terms must be included for the assumption to be 
plausible. As L increases so does the amount of degrees of freedom used. Furthermore 
the lagged exposure terms are anything but orthogonal. The combined effect is a sub-
stantial increase in the variance of the estimates. Adding conditions for the coefficients 
can reduce the number of degrees of freedom used and thus improve the model fit. One 
alternative is restricting the βi to a low order polynomial (Almon 1965; Schwartz 2000).

Together with assumption 5, this is a Polynomial Distributed Lag Model (PDLM) of 
order p, with L lags. Other options include, but are not limited to, cubic B splines and 
penalized splines (Zanobetti et al. 2000).

While these approaches improve efficiency, a maximum lag L must still be chosen and 
this influences the estimates. More importantly, to our knowledge, the assumption in 

(3)

{
yt ∼ Poisson(νt)
log(νt) = α + β0Xt + s1(t)+ s2(covariatest)

(4)

{
yt ∼ Poisson(νt)
log(νt) = α + β0Xt + β1Xt−1 + · · · + βLXt−L + s1(t)+ s2(covariatest)

(5)E

[
L∑

i=0

β̂i

]
≈ βentry

(6)
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Eq. 5 has not been proven. On the contrary, Roberts and Switzer (2004) reported sub-
stantial bias when data had been generated from a three state model similar to the one 
described above, and also when more complex models such as including multiple frail 
states were used (Roberts 2011). Results from the 2004 paper indicate that choice of the 
number of lags influences the bias in estimates. When the simulation assumed a pure 
entry model (φt ≡ c), estimates from distributed lag models with a lag number smaller 
than the mean lifetime in the frail population tended to underestimation, which is con-
sistent with current understanding of DLM’s. Yet the pattern remained unclear for more 
general simulation settings: ie when φt is time-dependent, assumption 5 may produce 
both over- and underestimation.

Bias correction through simulation
To better understand the relationship between the parameters of the three stage model 
and the estimates obtained under a reduced, distributed lag model, we performed a 
large simulation study. The left hand side of Fig. 4 shows the estimated sum of lag effects 
obtained with a typical DLM. If the assumption in Eq.  5 were true, there should be a 
gradient in the simulated entry effect only. For the chosen DLM, this is clearly not the 
case. By itself, the gradient in simulated entry effect explains only 74.3% of the varia-
tion, whereas 95.6% can be explained when the simulated exit is also considered. Simi-
lar departures hold for all DLM variants we tested. In conclusion the following weaker 
assumption provides a much better approximation:

wherein f model is a smooth and model-specific function. The assumption is automati-
cally satisfied if a similar assumption holds for all (restricted/transformed) lag estimates:

The middle panel of Fig. 4 displays the estimates for the first component of a DLM with 
40 lags restricted to a 5 degrees of freedom spline basis. The right hand side shows 

(7)E

[
L∑

i=0

β̂i

]
≈ f model

(
βentry ,βexit

)

(8)∀j : E
[
β̂⋆
j

]
≈ f model

j
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)
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Fig. 4 Heatmap of estimates in function of simulated entry and exit effects for a DLM with L = 40 and 
B-spline restriction on the lag coefficients (df = 5). Left sum of the lag estimates. Middle estimate of the first 
component (rescaled). Right difference between left and middle figure. Iso-estimate lines are superimposed 
as a visual aid
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the weighted sum of the second to fifth components. The panels display different pat-
terns, yet the functions appear equally smooth. By itself, none of the panels allows us 
to determine a unique pair of parameters (entry,exit) from a single estimate. However, 
the iso-estimate lines of different panels do intersect and this gives a unique solution. 
Unfortunately, the functions fj are unknown and therefore the curves determined by 
fj
(
βentry ,βexit

)
= βj are also unknown. Fortunately, it is possible to estimate these func-

tions by way of simulation.
More generally, the ideal situation is such that the probability distributions 

p
(
ˆβj|βentry ,βexit

)
 are known and the likelihood L

(
βentry ,βexit|β̂

)
 can readily be trans-

formed into a posterior for the entry and exit effects. In practise, we propose to approxi-
mate the likelihood by using simulation results. We refer to this approach as simulation 
enhanced distributed lag models (SEDLM):

0. Fit a DLM to the data and save the estimates β̂
realdata

.
1. Simulation

(a) Specify a three state model.
(b) Simulate time-series with known βentry ,βexit.
(c) Fit a DLM to each generated time-series, using the same specification as in step 

0. Save the sets of {βentry ,βexit, β̂DLM
0 , . . . , β̂DLM

J }.

2. Estimate the response surfaces f̂ DLMj

(
βentry ,βexit

)
.

(a) Choose a smoother s
(b) ∀j ∈ 0 . . . J , ∀βentry,βexit : E

[
β̂DLM
j |βentry ,βexit

]
≈ s

(
β̂DLM
j |βentry,βexit

)
.

(c) Calculate the residuals.
(d) Estimate the local covariance matrix.

3. Compare the estimates from step 0 with the information obtained in step 2

(a) ∀βentry,βexit: calculate the Mahalanobis distance between β̂
realdata

 and 
s
(
βentry ,βexit

)

(b) ∀βentry,βexit: calculate an approximate likelihood L̃ ≈ L
(
βentry ,βexit|β̂

realdata
)

(c) Use numerical integration to normalize the approximated likelihood L̃.

This procedure extends any DLM into a SEDLM that is appropriate for three state mod-
els. Because many variations are possible, we will consider each step in more detail 
before turning our attention to the data, simulation settings and results.

Simulation

In order to simulate a time series from model 2, appropriate values for the parameters 
need to be chosen. The goal is to mimic the conditions of the real dataset. Thus it is 
a natural choice to use the real exposure and covariate time series and to fix αentry to 
the long-run average of the observed deaths, noting that in the long term the number 
of deaths equals the number of entry transitions. Similarly an estimate of the smooth 
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seasonal variation and the smooth function of the covariates can be obtained from the 
real dataset.

Since no exact information on the mean lifetime in the frail state (MLT) is available, 
a value or a distribution must be chosen for it. Considering that a mean lifetime of sev-
eral months implies a relatively large possible loss of life expectancy and that mortality 
displacement aims to distinguish between very small losses and larger losses, it seems 
logical to limit the maximum value of this parameter. Likewise, noting that φt ≡ 1 is a 
degenerate case of the three state model, a mean lifetime of zero days seems of little 
added value. Nonetheless, limiting the MLT to a single value is not a realistic use-case. 
Therefore we decided to model the uncertainty of this parameter by sampling from a 
uniform distribution with range one to twenty eight days.

Two parameters can be derived from the MLT: the base probability of death αexit 
and the initial size of the frail population. In equilibrium, the expected number of new 
frail people is equal to the expected number of deaths. The latter is equal to the size 
of the frail population multiplied by the probability of dying. Vice versa, the product of 
the MLT and the mean daily deaths can be substituted for the initial size of the frail 
population.

This leaves only two more parameters to set: βentry and βexit. In order to obtain 
good estimates of the surfaces fj, it is necessary to evaluate them over a wide range of (
βentry ,βexit

)
 pairs. A straightforward solution is using an envelope: drawing the pairs 

from a uniform distribution on a square or rectangle S. In order to facilitate computa-
tions, this is modified by dividing the square S into several smaller cells Gi and drawing 
several pairs from uniform distributions on each Gi.

Smooth response surface

Using the assumption that the f DLMj  are continuous, a natural method for estimating 
them is a running mean smoother. By using a smoother with a limited span, this compu-
tation can be sped up. Any point a within the envelope S must lie within exactly one cell 
Gi and each cell Gi has at most eight neighbours. Only points lying in the cell Gi or in its 
neighbours, can have a non-zero weight. For each of these points, the Euclidean distance 
from a to the center of the kernel (p) is calculated. Subsequently a weight is assigned. 
We use the Epanechnikov kernel (Epanechnikov 1969) with span equal to the length (h) 
of the small squares Gi:

The local covariance matrix is estimated from the residuals (r(a|p) = β̂(a)− f̂
DLM

(p)) 
weighted with the same w(a). For computational efficiency, this process is repeated for 
each test point p within the cell Gi, before moving to the next cell.

Calculating the posterior probability by numerical integration

To calculate the likelihood of the observed DLM estimates for a given point a ∈ S we 
assume that the variation of the DLM estimates around the response surfaces f DLMj  
stems from a multivariate normal distribution:

(9)





w(a|p) = 3

4

�
1− �

p−a
h

�2
2

�
+

f̂
DLM

(p) =
�

a w(a|p)β̂(a)/
�

b w(b|p)
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which we approximate by using the estimated smooth surfaces and estimated local 
covariance matrices obtained in step two:

Plugging in the estimates of the real data, from step zero, allows application of Bayes’ 
theorem:

Finally, the factor c is estimated by approximating the integration over S by a sum.

Data and simulation setup
For maximal comparability, we based our simulations on the same dataset as Roberts 
and Switzer (2004). The data from the National Mortality, Morbidity, and Air Pollution 
Study (NMMAPS, Peng et al. (2004)) is freely available. It contains time series of daily 
deaths for multiple cities in the USA. These are stratified by cause of death (accidental, 
respiratory, pneumonia, ...) and age group (<65, 65–74, ≥75). It also contains time series 
of air pollutants and climatological variables for each city.

Following Roberts and Switzer, we selected the city of Chicago and the time period 
1987–1994 from the NMMAPS database. We selected all daily deaths in residents of 
age 65 and above. We used PM10 as exposure and removed both outliers (daily PM10 
concentration > 150µg/m3) and missing values. These days were also removed from the 
mortality series. Both the temperature (T), dew-point temperature (Td) and PM10 series 
were centralised.

We used a generalized linear model [GLM, McCullagh and Nelder 
(1989)] to obtain an estimate of the seasonal component of the mortal-
ity time series. More precisely, we fitted a Poisson model with linear predictor 
s1(t)+ DOW(t)+ s2(Td(t))+ s3(T (t))+ s4(T (t − 1)) wherein the si are natural cubic 
splines with respectively 7 degrees of freedom per year, 3, 6 and 6 df. DOW is the day of 
the week effect. We used the package mgcv (Wood 2011), R 3.0.2.(R Development Core 
Team 2011).

We chose a square S with corners (−0.02, −0.02) and (0.02, 0.02), corresponding to 
a maximum effect of 22% increase in mortality for each 10µg/m3 of PM10. This is rea-
sonably large with respect to current estimates, allowing for a large area away from the 
boundaries of the envelope while keeping the computational load low. We divided the 
square into 32 ×  32 smaller squares and drew 80 triplets 

(
βentry ,βexit,MLT

)
 for each 

(10)β̂
DLM

∼ MVN
(
f DLM(a),�(a)

)

(11)β̂
DLM

∼ MVN
(
f̂
DLM

(a), �̂(a)
)

(12)

d2 =
�
β̂
realdata

− f̂
DLM

(a)
�t
�̂

−1
(a)

�
β̂
realdata

− f̂
DLM

(a)
�

p(a) =





0 a /∈ S

c
e−d2/2

2π |�(a)|1/2
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small square, yielding a total number of 81,920 pairs. As noted in “Simulation” section, 
the MLT is sampled from a uniform distribution with range 1–28 days.

Subsequently, we randomly assigned the 80 samples in each square to five groups of 
size 16, thus creating training sets with 64 samples in each square and test sets with 16 
samples in each square. We applied the SEDLM algorithm to all five train- and test set 
combinations. To avoid artefacts at the edge of S, we calculated the posterior probabili-
ties only for points lying within the 30×30 inner squares.

Finally, to examine the effect of the envelope, we created an additional set of simu-
lations on a rectangle with entry effect range from −0.04 to 0.04 and exit effect from 
−0.02 to 0.02. We used the same size for the inner grid cells and generated 64 time series 
per cell. These were used to re-estimate the smooth functions with the larger envelope 
and provide new SEDLM estimates for the original 81,920 test samples.

Results
Table 1 shows the results of the simulation. We tested DLMs with multiple choices of L 
and both with and without restrictions. As the number of lag terms increases, the root 
mean squared error (RMSE) of the unconstrained DLMs decreases. Thus the DLMs’ abil-
ity to capture the full effect of exposure increases with the number of lag terms included. 
The performance of restricted DLMs is similar to the unconstrained DLMs with equal 
amount of lag terms, however the difference is rather small. For larger amounts of lagged 
terms, the entry performance decreases again unless the restrictions are lessened.

Comparing SEDLM with DLM, all SEDLMs have much lower RMSE than the cor-
responding DLM. SEDLMs based on restricted DLMs perform slightly better than 
SEDLMs based on unconstrained DLMs. The best SEDLM has a RMSE that is two times 
smaller than that of the best DLM. Furthermore, the difference in RMSE between the 
SEDLMs is much smaller than the difference between the DLMs. Comparison of Figs.  4 
and 5 confirms that SEDLM entry estimates are a function of simulated entry that is less 
perturbed by simulated exit.

SEDLMs provide information both on the entry and the exit effect. Results in Table 1 
indicate that the algorithm’s ability to capture the exit effect is even better than the accu-
racy of the entry effect estimates.

Table 1 Simulation results: RMSE × 500 for  estimated versus  simulated entry and  exit 
effects for  various (SE)DLM specifications: the maximum lag L included and  restrictions 
upon the lag structure

p4: polynomial of 4th degree. bs5 and bs10: cubic B-spline with five degrees of freedom, respectively ten. For compatibility 
between DLM and SEDLM, only points lying in the 30 × 30 inner squares were used

Maximum lag 10 20 10 p4 20 p4 40 p4 60 p4 10 bs5 20 bs5 40 bs5 60 bs5 60 bs10

Entry effect

DLM 4.11 2.79 4.15 2.59 2.85 5.01 4.14 2.55 3.07 5.27 1.91

SEDLM 1.62 1.20 1.61 1.13 0.98 1.00 1.61 1.13 0.99 1.03 0.93

Exit effect

SEDLM 0.34 0.33 0.35 0.36 0.63 0.92 0.35 0.38 0.70 0.97 0.36

Combined

SEDLM 1.65 1.24 1.65 1.19 1.16 1.36 1.65 1.19 1.21 1.41 1.00
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Figure 6 provides further insight into the advantages of SEDLMs. Clearly the DLM has 
a larger variance than the SEDLM. Both methods have negligible bias near the center, 
however this particular DLM suffers from a non-linear attenuation effect for negative 
entry, whereas positive entry is overestimated. For the SEDLM the bias remains negli-
gible for a larger range. However near to the edges of the envelope attenuation occurs. 
This effect can be mitigated by using a larger envelope at the cost of increased computa-
tional burden and a small variance penalty as is visible in the right panel.

Figure 7 reveals a similar pattern for the exit effect. The exit effect is estimated without 
bias over most of the simulation range, yet some bias remains near to the edges of the 
envelope. The pattern is similar to that of the entry effect, but the variance is much lower 
than that of the entry effect and the influence of the envelope is less extended.
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We analysed the data of Chicago with the two best performing SEDLMs. Figure  8 
shows the posterior probability density functions as well as the marginals. Zero lies 
within each marginal highest posterior density interval; these results do not provide evi-
dence of an entry or an exit effect.

Both specifications provide similar posteriors. Furthermore, the results are consistent 
with Table 1: the accuracy of the exit effect estimate is higher than that of the entry effect 
estimate, especially for the model with lags 0–60. Similar results were obtained using 
SEDLM with other lag specifications. To further test sensitivity, we repeated the pro-
cedure using subsets of the training set and using a secondary training set wherein the 
mean life time in the frail state was changed to 1 + Poisson(14). No meaningful changes 
were observed.
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Discussion
The SEDLM algorithm developed in this paper has multiple benefits over DLMs. Pri-
marily, it provides unbiased estimates. Secondly, it reduces the variance of the estimated 
entry effect. It also gives an additional estimate of the exit effect. Finally, it illustrates the 
issue of the strong assumptions necessary to use the sum of lag estimates as an estimate 
of the entry effect. However, besides these assumptions, other user inputs are required 
both for DLM and SEDLM.

First, DLMs can be sensitive to the number of lag terms L included in the model. The 
choice of L is based on user experience, previous results and intuition about the mean 
life time in the frail population. Similarly, prior information about the MLT is required 
for SEDLM. Although our results were not sensitive to changing the mean of the distri-
bution, there may exist sensitivity to more general changes or for other datasets. Even 
though the SEDLM approach might be generalized to derive a posterior for the MLT 
too, a prior distribution for the MLT will still need to be chosen. Using at least three 
non-parallel surfaces f DLMj

(
βentry ,βexit,MLT

)
, such a generalization is conceptually 

straightforward, but the required three dimensional grid will impose a much larger com-
putational challenge than the two dimensional grid we used. As grid based approaches 
do not scale well with dimensionality, such extensions are probably impractical.

A second necessary choice for DLMs is the number of degrees of freedom for the sea-
sonal effects. This can be made a priori in GLMs or by optimizing a selection criterion 
when GAMs are used. For SEDLM, this choice is moved to the Monte Carlo part of 
the three step process, wherein all time series were generated using the same seasonal 
smooth. Again, it is straightforward to extend the algorithm to include multiple seasonal 
functions.

For SEDLM only, an envelope needs to be chosen. It is clear that SEDLM can produce 
unbiased estimates only when the true effects lie within the envelope. The simulation 
results show how far from the edge these true effects ought to be. Thus SEDLM can 
always be made unbiased by increasing the envelope’s size, at the cost of extra compu-
tations. Currently, fitting a DLM to each time series, is the most time-consuming part. 
Fortunately, this step is ‘embarrassingly parallel’. Using eight threads allowed us to fit a 
set of 81,920 time series in less than three hours. The total computational cost increases 
slightly when unconstrained DLMs are used. The other steps, simulating the data, 
smoothing the response surfaces and performing the numerical integration, all take 
mere minutes or seconds with our code. Thus, in our implementation, the total compu-
tational burden depends linearly on the number of simulations; in essence on the size of 
the envelope.

The envelope can also be regarded as prior information on the entry and exit effects. 
They are uniform within the envelope and zero outside. Any bounded prior can be used 
with our algorithm and using a more informative prior may be advantageous when com-
bining results from multiple populations and cities. Because the changes occur only in 
the final step, they can be applied without intensive computations, provided that the 
boundaries themselves are not changed.

Another difference with DLMs is the necessity to specify a three state model. The 
model used in this work is the most simple non-degenerate three state model. More 
complex models can allow for bypassing the frail state, the existence of multiple frail 
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states (Roberts 2011) and non-linear entry and exit effects (Roberts 2011). In addition, 
the entry and exit effects themselves are sometimes treated as distributed lags. Although 
such does not strike us as parsimonious, the other variations cannot be as easily dis-
missed and must therefore be investigated. While not explicitly tested, it is unlikely that 
SEDLM estimates obtained from a poorly-specified three state model will be accurate 
and unbiased. DLMs however, remain agnostic with respect to the multi state model, 
even though they are sensitive to the underlying data generating process. Some pro-
cesses, including two state models, will not result in biased DLM estimates. Others can 
result in attenuation or overestimation.

Although SEDLM does not yield perfect answers for all choices a DLM necessitates, it 
provides better estimates without large downsides. These estimates have consistent fre-
quentist properties both with respect to bias and standard deviation. Noting that DLMs 
are the most frequently used models, the case for SEDLM is favorable. Other alternatives 
for DLM have been discussed by Murray and Lipfert (2010). They partition the methods 
into zero-sum studies and compartment models.

DLMs are zero-sum studies, as are Frequency Domain LogLinear regression (Kelsall 
et al. 1999) and Timescale LogLinear regression (Dominici et al. 2003). Fung et al. (2005) 
investigated the robustness of the latter method to data generated by a three state model 
and concluded that ‘time scale regression has limited value for detecting mortality dis-
placement in time-series data.’ No results are available for Frequency Domain LogLinear 
regression, but the method is quite similar to the other zero-sum approaches and we 
suspect it performs similarly.

Besides SEDLM, two other compartment models exist. The Kalman filter is relatively 
unknown to air pollution epidemiologists, having its origins in electronics. It can be 
applied to derive estimates of the exit effect and the mean lifetime in the frail popula-
tion (Murray and Lipfert 2010; Murray and Nelson 2000). However, the few documented 
implementations that we are aware of, used the assumption that the entry effect is null. 
This makes the Kalman filter a good candidate for combination with SEDLM. The for-
mer provides estimates of the MLT, which can be used as input for the latter to derive 
joint estimates of the entry and exit effects, assuming one is interested in the entry effect.

Smith et al. (1999) used a full Bayesian approach to derive simultaneous estimates of 
the MLT, entry and exit effects. Because of the computational intensity of the Markov 
Chain Monte Carlo, they were unable to check convergence in their simulation study. 
One iteration failed to converge altogether, rendering interpretation of the results quite 
difficult: the posterior standard deviations are too small when compared with the fre-
quentist properties.

When applying the SEDLM to Chicago data, the highest posterior density intervals 
for entry and exit effects both included zero. In other words, there is no evidence for a 
‘net’ effect—an effect of air pollution on the general population of residents of age 65 and 
above—and, neither is there evidence for a displacement effect. From the non-significant 
entry estimate it follows that the impact on life expectancy at birth is not significant. 
Even though the exit effect estimate is not significant, however, it cannot be concluded 
that the three state model must be degenerate. Because the exit effect represents the 
change in exit probability due to air pollution and not the base probability of exit, it 
remains possible that the latter is not equal to one. Further investigation of this would 
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require a combination with other approaches such as the Kalman filter, extension of the 
SEDLM method or development of a full Bayesian method. In addition to this and the 
issues outlined above, the interpretation of the SEDLM estimates keeps the traditional 
caveats: non/significant effects may be due to lack of power or bias through misspecifi-
cation of seasonal components or confounders.

Conclusion
SEDLM can be considered a compartment model whose posterior estimates have con-
sistent frequentist properties. The results of our simulation study allow us to be optimis-
tic about the algorithm as well as the other compartment based approaches.

SEDLM was developed when investigating the origin of the bias that DLMs suffer. By 
modifying one assumption, the SEDLM significantly improves upon the DLM in terms 
of mean squared error. This boon is the sum of a reduction in bias and a reduction in 
standard deviation. In addition to more accurate estimates of the entry effect, SEDLM 
also delivers simultaneous estimation of the exit effect. The exit estimate is even more 
accurate than the entry effect estimate. This provides valuable quantitative information 
on the mortality displacement hypothesis.

Besides a compartment based, full Bayesian approach, no other method for simulta-
neous estimation is available and SEDLM is currently the only approach that is feasi-
ble. These results warrant further investigation into SEDLM and/or the full Bayesian 
approach.
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