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Background
Among the most commonly used stochastic algorithms, the differential evolution algo-
rithm (DE) Storn and Price (1995) proposed by Storn and Price in 1995 has been iden-
tified as one of the most powerful optimizers. DE is the only such algorithm that has 
secured competitive ranking in all optimization competitions at IEEE International 
Conferences on Evolutionary Computation (CEC) (Das and Suganthan 2011; Elsayed 
et al. 2011; LaTorre et al. 2011) since 1996. The competitiveness of DE is also supported 
by many comparative studies (Civicioglu and Besdok 2013; Wang et  al. 2011; Montes 
and MirandaVarela 2010; Vesterstrom and Thomsen 2004). However, there remains a 
shortfall in the search balance in the two mutation strategies, i.e., DE/best/1 and DE/
cur-to-best/1, which are good at exploitation and poor at exploration. This often causes 
stagnation during the solution of complex problems.

Artificial bee colony (ABC), developed by Karaboga (2005), is a novel heuristic algo-
rithm inspired by the foraging behavior of honey bee swarms. In ABC, a food source 
position represents a possible solution of the optimization problem and the amount of 
each food source represents its fitness. There is only one bee for each food source. The 
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colony is classified into three groups depending on their duties: employed bees, onlooker 
bees and scouts. The number of employed and onlooker bees is equal to one half of the 
population size. Based on the information shared by employed bees, onlooker bees 
select different food sources at different probabilities and explore their neighborhood. 
Some numerical comparisons (Civicioglu and Besdok 2013; Karaboga and Basturk 2007, 
2008, 2009) have demonstrated that the performance of the ABC algorithm is com-
petitive with other population-based algorithms, and it has the advantage of employing 
fewer control parameters.

The evolutionary operators of the DE and ABC are similar and, in some ways, comple-
mentary. Some recent studies combining the two algorithms have been proposed to ben-
efit from their advantages and overcome their drawbacks. Yang et al. (2013) proposed 
a hybrid ABC-DE algorithm, in which employed bees use the mutation and crossover 
strategies of DE to enforce their exploration ability, while onlooker bees keep their origi-
nal updating strategy to retain the exploitation capability. Gao et al. (2012) proposed a 
modified ABC algorithm, which is based on the fact that each bee searches only around 
the best solution of the previous iteration. Gao (2013) gave an accelerated ABC algo-
rithm based on DE for solving the Van der pol-Duffing oscillator problem. Álvaro et al. 
(2012) developed a multi-objective ABC/DE algorithm by combining the collective intel-
ligence of the honey bee swarms with the properties of the DE algorithm. Many other 
successful combinations (Gao and Liu 2011; Li and Yin 2012; Li et al. 2013) of the two 
algorithms have also demonstrated complementarity of the operators in the searching 
ability.

In order to enhance the exploration ability of the DE/best/1 and DE/cur-to-best/1 
mutation strategies, the present study proposes two modified DE algorithms with an 
onlooker bee operator, called mDEOB (i.e., mDEOB/best/1 and mDEOB/cur-to-best/1). 
Inspired by ABC, the two mDEOB algorithms run the classical mutation and crosso-
ver operators of DE followed by a random search guided by an onlooker bee operator. 
The random search enhances the ability to explore promising individuals. Two numeri-
cal experiments were conducted on the benchmark function set of CEC2005 and a class 
of engineering design problems. Statistical analyses and comparative analyses were per-
formed on the results of the two experiments.

The rest of this paper is structured as follows: “Classical differential evolution” section 
briefly introduces the classical DE algorithm; “Modified differential evolution algorithm 
with onlooker bee operator” section presents and analyzes the proposed mDEOB algo-
rithms; numerical experiments and analyses are then presented in “Numerical experi-
ment” section, followed by conclusions in “Conclusion” section.

Classical differential evolution
DE is often used for dealing with the continuous optimization problem. This paper sup-
poses that the objective function to be minimized is f (�x), �x = (x1, . . . , xD) ∈ R

D, and 
the feasible solution space is � =

∏j=D
j=1 [Lj ,Uj]. The classical DE (Hu et al. 2008, 2013, 

2014, 2016; Su and Hu 2013) works through a simple cycle of operators including muta-
tion, crossover and selection operator after initialization. The classical DE procedures 
are described in detail as follows.
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Initialization

The first step of DE is the initialization of a population with N D-dimensional poten-
tial solutions (individuals) over the optimization search space. We shall symbolize each 
individual by �xgi = (x

g
i,1, x

g
i,2, . . . , x

g
i,D), for i = 1, . . . ,N , where g = 0, 1, . . . , gmax is the 

current generation and gmax is the maximum number of generations. For the first gen-
eration (g =  0), the population should be sufficiently scaled to cover the optimization 
search space as much as possible. Initialization is implemented by using a uniformly 
sampling to generate the potential individuals in the optimization search space. We can 
initialize the jth dimension of the ith individual according to

where rand(0, 1) is a uniformly distributed random number confined on the range [0,1].

Mutation operator

After initialization, DE creates a donor vector �vgi  corresponding to each individual �xgi  in 
the gth generation through the mutation operator. This article is interested in the follow-
ing two operators:

DE/best/1:

DE/current-to-best/1:

where �x
g
best denotes the best individual of the current generation, the indices 

r1, r2 ∈ Sr = {1, 2, . . . ,N }\{i} are uniformly random integers, mutually different and dis-
tinct from the sequential index i, and F ∈ (0, 1] is a real parameter, called mutation or 
scaling factor.

If the element values of the donor vector �vi exceed the pre-specified upper bound or 
lower bound, we can change the element values by the periodic mode rule as follow:

Crossover operator

Following mutation, the crossover operator is applied to further increasing the diversity 
of the population. In crossover, a trial vector, �ugi , is generated by the binomial crossover, 
which combines the elements of the target vectors, �xgi , and the donor vector, �vgi .

where CR ∈ (0, 1) is the probability of crossover, jrand is a random integer on [1, D].

x0i,j = Lj + rand(0, 1) · (Uj − Lj)

(1)�v
g
i = �x

g
best + F(�x

g
r1 − �x

g
r2);

(2)�v
g
i = �x

g
i + F(�x

g
best − �x

g
i )+ F(�x

g
r1 − �x

g
r2);

vi,j =

{

Uj − (Lj − vi,j) % |Uj − Lj| if vi,j < Lj
Lj + (vi,j − Uj) % |Uj − Lj| if vi,j > Uj

(3)u
g
i,j =

{

v
g
i,j if rand(0, 1) ≤ CR or j = jrand

x
g
i,j otherwise
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Selection operator

Finally, the selection operator is employed to maintain the most promising trial individu-
als in the next generation. The classical DE adopts a simple selection scheme. It compares 
the objective value of the target �xgi  with that of the trial individual �ugi . If the trial individual 
reduces the value of the objective function, it is accepted for the next generation; otherwise 
the target individual is retained in the population. The selection operator is defined as

Modified differential evolution algorithm with onlooker bee operator
DE/best/1 and DE/cur-to-best/1 algorithms find the global optimum of simple optimiza-
tion problems rapidly (e.g., low-dimensional convex optimization problems); however, 
both algorithms may easily become trapped in the local optima when solving complex 
multimodal problems, for the reason that exploration and exploitation capabilities are 
both necessary for a population-based optimizer. In fact, the exploration and exploita-
tion requirements are mutually contradictory. In order to achieve a good performance, 
the two capabilities should be well balanced, but the solution search Eqs.  (1) and (2), 
which are used to generate new candidate solutions, are based on the information of the 
current best solution. Thus the search ability of the algorithms is good at exploitation 
but poor at exploration.

In order to promote the balance of the exploitation and exploration capabilities, the 
present study adapts the ABC algorithm and proposes two modified differential evo-
lution algorithms with an onlooker bee operator, called mDEOB (i.e., mDEOB/best/1 
and mDEOB/cur-to-best/1). The mDEOB algorithms enhance DE’s exploration ability 
by adding some random searches around the promising individuals under the guidance 
of onlooker bees. The mDEOB algorithms work incorporate the two-stage cycle shown 
in Fig. 1, the first stage is the classical DE phase (including DE mutation, crossover and 
selection operators). The second stage is the onlooker bee phase inspired by the ABC 
algorithm. The implementation process of the onlooker bee phase is detailed below.

Algorithmic flowchart

In the ABC algorithm, the artificial bee colony consists of three groups of bees: 
employed bees, onlookers and scout bees. Each employed bee exploits a food source, 
bring the information about the food source back to the hive and shares the informa-
tion with onlooker bees waiting in the hive for this information. Each food source is a 
candidate solution of the problem. The amount of nectar in a food source represents the 
quality of the solution represented by the fitness value. An onlooker bee chooses a food 
source (candidate individual) depending on the probability value Pi associated with the 
amount of nectar(fitness). The probability Pi of the individual �xi is formulated as follows:

Note that the fitness should be changed appropriately when solving minimization prob-
lems. Here N denotes the number of food sources (population size).

(4)�x
g+1

i =

{

�u
g
i , if f (�u

g
i ) < f (�x

g
i )

�x
g
i , otherwise.

(5)
Pi =

fitness(�xi)
∑N

j=1 fitness(�xi)
.
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Unlike the original ABC algorithm, the onlooker bees in mDEOB use the following 
Eq. (6) to generate new candidate solutions.

Obviously, Eq. (6) brings to the selected individual �xgi  a perturbation whose center is its 
own value and whose radius is the difference between two randomly selected individu-
als. The greedy selection operator [Eq. (4)] is used to decide whether �xgi  or �ygi  will survive 
to the population generated next. In each mDEOB cycle, N (population size) onlooker 
bees are sent to choose individuals in roulette wheel fashion: the greater the individual’s 
fitness, the greater its perturbation chance.

(6)�y
g
i = �x

g
i + F(�x

g
r1 − �x

g
r2).

Set parameters N, F, CR

Initialize population

Generate donor vectors    by

Generate trial vectors     by formulate (3)

Select better vectors from     and     by 
formulate (4)

iv

iu

iv iu

Do for each individual ( D E phase )

Calculate selection probability for each 
individual by formulate (5 )

Select better vectors by formulate (4  ) for  
the next generation population 

onlooker bee phase

Choose satisfied individuals according to 
the probability to disturb by formulate (6) 

Do N times loops 

Termination criteria

End

 formulate (1  )

Fig. 1 Flowchart of mDEOB/cur-to-best/1 algorithm. Note If replacing Eq. (2) with Eq. (1), the above flowchart 
represents the mDEOB/best/1 algorithm
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Algorithmic analyses

Figure 2 illustrates how onlooker bees change the search process of the algorithms. Fig-
ure 2 shows the population distributions at various stages of DE/best/1 and mDEOB/
best/1 when solving the third function of CEC2005.

In Fig.  2, it is readily seen that the population distributions have the following 
characteristics:

  • For the same function evaluations (FEs), i.e., sub_figures (a) versus (d), (b) versus (e), 
(c) versus (f ), the sub_figures (d), (e), (f ) associated with mDEOB more diverse than 
those associated with DE.

  • In the sub_figures (e) and (f ), the candidate solutions are located on both sides of the 
global optimum, whereas they are located on one side in sub_figures (b) and (c).It is 
well known that the case where candidate solutions are distributed about the global 
optimum is more conducive to DE search. Thus, with the help of the onlooker bees, 
the mDEOB generates better more useful population distributions than DE alone.

  • In sub_figure (e), many candidate solutions cover the global optimum and the popu-
lation maintains better diversity; DE/best/1 (shown in sub_figure (c)) fails to do so. 
The figures illustrate the process by which this population diversity expedites more 
accurate solutions than is achievable using DE.

In summary, the numerical experiment results indicate that the modified strategy 
enhances the diversity of evolving populations, leading to improved of global search-
ing in the solution space. This mitigates to some extent the disadvantages caused by the 
search imbalance in the DE/best/1 and DE/cur-to-best/1 algorithm.
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Fig. 2 Population distribution observed at various stages of DE/best/1 and mDEOB/best/1. Note ‘FEs’ denotes 
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Set parameters: population size N = 30, problem dimension D = 2, mutation fac-
tor F = 0.5, crossover probability CR = 0.9. The global optimum of the third function 
(2-dimension) of CEC2005 is �x = (−32.2013, 64.9776) with the function value f (�x) = 0.

Numerical experiment
In order to test mDEOB/best/1 and mDEOB/cur-to-best/1 and show their performance, 
two numerical experiments are given in this section. One is conducted on the bench-
mark function set of CEC2005, the other is a group of application-oriented numerical 
examples related to two mixed discrete-continuous optimizations.

Experiment 1: test on CEC2005

This subsection deals with the following tasks:

  • Two comparative experiments on the benchmark function set of CEC2005 are con-
ducted for mDEOB/best/1 versus DE/best/1 and mDEOB/cur-to-best/1 versus DE/
cur-to-best/1.

  • Sign Tests on the experimental results are used to demonstrate the advantage of 
mDEOB algorithms.

  • Convergence figures on the first 14 benchmark functions, which include all functions 
except for 11 hybrid composition functions, are given to show the difference of con-
vergence speed on the differential algorithms.

Designing experiments

The numerical experiments are conducted on 25 test instances proposed in the CEC2005 
special session on real-parameter optimization Suganthan et al. (2005). The benchmark 
function set can be divided into four classes:

  • 5 unimodal functions f1–f5;
  • 7 basic multimodal functions f6–f12;
  • 2 expanded multimodal functions f13–f14;
  • 11 hybrid composition functions f15–f25.

The number of decision variables, D, is set to be 10 for all the 25 benchmark functions. 
The population size, N, is set to be 60 for all the algorithms. The mutation factor, F, is 
set to be 0.5 while the crossover probability, CR, is set to be 0.9. For each algorithm and 
each test function, 25 independent runs are conducted with 150000 function evaluations 
(FEs) as the termination criterion. 

 Statistical analysis of experimental results

According to Suganthan et al. (2005), Table 1 reports seven results of 25 independent 
runs on each function by DE/best/1 and mDEOB/best/1: the minimal error of 25 runs, 
the 7th error, the 13th error, the 19th error, the maximal error, the average error (mean) 
and the standard deviation (std.) of 25 runs, in turn. In the “compare” row, simple com-
parison analyses are given. The priority of the comparison analyses is the best solution, 
the mean and the standard deviation in turn. Table 2 reports the similar results for DE/
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cur-to-best/1 and mDEOB/cur-to-best/1. From Table 1, we can see that mDEOB/best/1 
outperforms the DE/best/1 on the 5 unimodal functions and 9 multimodal functions. 
Especially, as shown in Table  2, mDEOB/cur-to-best/1 outperforms the DE/cur-to-
best/1 on all unimodal functions and all hybrid composition functions except for f17. 
mDEOB/cur-to-best/1 is superior to DE/cur-to-best/1 on the 5 functions (i.e., f6, f7, f10, 
f11 and f12) among the other 9 multimodal functions.

Sign Test Derrac et al. (2011) is a popular statistical method to compare the perfor-
mances of algorithms. As we all known, the average error (mean) and the best value 
are two most important factors for the performances of algorithms. So this paper uses 
Sign Test method to analyze the average errors and the best values, which are shown in 
Tables 1 and 2. Here the null hypothesis is that the performances of the two algorithms 
are not significantly differential, while the alternative hypothesis is that the perfor-
mances are clearly differential. As shown in Table 3, for the results in Table 1, the prob-
ability value of supporting the null hypothesis of Sign Test on the average errors equals 
1.000, but the probability on the best values is 0.021, which is less than the significance 
level 0.05. That is to say, we cannot reject the null hypothesis according to the average 
errors, but we can reject the null hypothesis according to the best values. This indicates 
that (1) judging by the average errors, the performances of the two algorithms are not 
significantly differential, but (2) judging by the best values, the performances of the two 
algorithms are obviously differential. So the overall performance of mDEOB/best/1 algo-
rithm is obviously differential with the other. Combining with the front “compare” rows 
in Table   1, we can then draw a conclusion that the overall performance of mDEOB/
best/1 is better than DE/best/1. For the results in Table 2, the probability values of sup-
porting the null hypothesis of Sign Test on the average errors and on the best values are 
equal to 0.004 and 0.167 respectively. In the similar way, we may draw a conclusion that 
mDEOB/cur-to-best/1 outperforms DE/cur-to-best/1.

Figure 3 shows the evolution landscapes of the average error of the best function val-
ues on 25 running derived from all the four algorithms on all unimodal functions and all 
basic multimodal functions (i.e., f1–f12). It is not difficult to find the overall superiority 
of mDEOB algorithms at the convergence speed.

In summary: we can get that onlooker bees strategy has positive effect on the perfor-
mance of DE/best/1 and DE/cur-to-best/1.

Experiment 2: mixed discrete‑continuous

In order to further illustrate the capabilities of the proposed algorithms, two mixed 
discrete-continuous optimization problems (i.e., Design of a coil spring and a speed 
reducer) are optimized here.

Design of a coil spring

The design of a coil spring Sandgren (1990), Shen et al. (2009) is a nonlinear engineering 
design optimization problem, which is designed to minimize the the volume of spring 
steel wire used to manufacture the spring (minimum weight). As shown in Fig. 4, the 
spring is to be a helical compression spring. The designing parameters are the number 
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Fig. 3 Evolution figures of the average error of the best function values on 25 running derived from mDEOB/
best/1, mDEOB/cur_to_best/1, and two corresponding DE algorithms a f1, b f2, c f3, d f4, e f5, f f6, g f7, h f8,  
i f9, j f10, k f11, l f12

Table 3 Sign test of experimental results in Tables 1 and 2

‘Neg. Dif.’ and ‘Pos. Dif.’ denote the number of the negative and positive differences, respectively ‘P value’ denotes the 
probability value supporting the null hypothesis

In Table 1 In Table 2

Neg. Dif. Pos. Dif. Tie Total P value Neg. Dif. Pos. Dif. Tie Total P value

On best value 3 13 9 25 0.021 6 13 6 25 0.167

On mean value 11 11 3 25 1.000 5 20 0 25 0.004
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of spring coils, x1, the outside diameter of the spring, x2, and the spring wire diameter, 
x3. Let f (x1, x2, x3) denote the objective function. The problem is formulated as follows:

min. f (x1, x2, x3) =
π2(x1 + 2)x2x

2
3

4

s.t. g1(x1, x2, x3) =
8CfFmaxx2

πx33
− S ≤ 0

g2(x1, x2, x3) = lf − lmax ≤ 0

g3(x1, x2, x3) = dmin − x3 ≤ 0

g4(x1, x2, x3) = x2 − Dmax ≤ 0

g5(x1, x2, x3) = 3.0−
x2

x3
≤ 0

g6(x1, x2, x3) = σp − σpm ≤ 0

g7(x1, x2, x3) = σp +
Fmax − Fp

K

+ 1.05(x1 + 2)x3 − lf ≤ 0

g8(x1, x2, x3) = σw −
Fmax − Fp

K
≤ 0

and 1 ≤ x1 ≤
lmax

dmin

3dmin ≤ x2 ≤ Dmax

dmin ≤ x3 ≤
Dmax

3

where Cf =
4(x2/x3)− 1

4(x2/x3)− 4
+

0.615x3

x2

K =
Gx43
8x1x

3
2

σp =
Fp

K

lf =
Fmax

K
+ 1.05(x1 + 2)x3

1x

3x

2x

Fig. 4 Spring design
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Here the above formula includes nine constants: Fmax = 1000.0, S = 189,000.0, 
lmax = 14.0, dmin = 0.2, Dmax = 3.0, Fp = 300.0, σpm = 6.0, σw = 1.25, G = 11.5× 106. 
x1 is an integer variable, x2 is a continuous variable and x3 may take on only discrete vari-
ables according to the available standard of the spring steel wire diameters. The detailed 
explanation about the coil spring design can be found in reference Sandgren (1990), 
Lampinen and Zelinka (1999).

As reference Lampinen and Zelinka (1999), the two proposed mDEOB algorithms 
employ the soft-constraint (penalty) approach to handle the constraint functions, and 
employ the INT() function to handle the integer variable. The algorithmic parameters 
are set as follows, D = 3, N = 40, F = 0.9 and CR = 0.8. 100 independent runs are con-
ducted with 2650 times iterations as the termination criterion.

 As shown in Table 4, the solutions of the coil spring problem are reported and com-
pared with the results obtained by other researchers. From the table, we can draw con-
clusions as follows:

  • Firstly, the proposed algorithms, mDEOB/best/1 and mDEOB/cur_to_best/1, can 
find the minimal objective value obtained in literatures. The best results obtained 
by other researchers in Table  4 is 2.65856. mDEOB/best/1 and mDEOB/cur_to_
best/1 can also find the optimal solution with the average CPU times of 0.02578s and 
0.02322s in 100 independent runs.

  • Secondly, mDEOB/cur_to_best/1 finds another optimal solution. The find provides 
another designing strategy of the coil spring. From Table  4, the optimal solution 
reported by Lampinen et.al. is (9, 1.223041, 0.238) of (x1, x2, x3). DE/best, mDEOB/
best/1 and DE/cur_to_best/1 algorithms find the same optimal solution, while 
mDEOB/cur_to_best/1 finds another optimal solution, (10, 1.18104, 0.283).

Table 4 Optimal solution for coil spring problem

‘S.A.’ is the percentage in multiple runs of successfully achieving the optimal value

Branch‑
Bound

GA Meta‑GA DE/rand This article: · / · / 1

Sandgren 
(1990)

Chen 
and Tsao 
(1993)

Wu 
and Chow 
(1995)

Lampinen 
and Zelinka 
(1999)

DE/best mDEOB/
best

DE/cur_
to_best

mDEOB/
cur_to_
best

x1 10 9 9 9 9 9 9 10

x2 1.180701 1.2287 1.227411 1.223041 1.22304 1.22304 1.22304 1.18104

x3 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283

g1 54309 415.969 550.993 1008.8114 1006.92 1006.93 1006.93 5389.66

g2 8.8187 8.9207 8.9624 8.94564 8.94562 8.94562 8.94562 8.64751

g3 0.08298 0.08300 0.08300 0.083000 0.08300 0.08300 0.08300 0.08300

g4 1.8193 1.7713 1.7726 1.77696 1.77696 1.77696 1.77696 1.81896

g5 1.1723 1.3417 1.3371 1.32170 1.32170 1.32170 1.32170 1.17330

g6 5.4643 5.4568 5.4585 5.46429 5.46427 5.46427 5.46427 5.46398

g7 0.0 0.0 0.0 2.68 × 10−16 0.0 0.0 0.0 0.0

g8 0.0 00174 0.0134 5.08 × 10−16 2.34 × 10−7 2.76 × 10−9 9.61 × 10−8 6.71 × 10−4

f(x) 2.7995 2.6709 2.6681 2.65856 2.65856 2.65856 2.65856 2.65856

S.A. – – – 95.0% 69.0% 88.0% 90.0% 95.0%
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  • Thirdly, the percentage of successfully achieving the optimal value in multiple runs 
demonstrates that the modified strategy of mDEOB is effective. The last row of Table  
4 reports the percentage in 100 runs of successfully achieving the optimal value. The 
percentages of DE/best and DE/cur_to_best/1 are 69.0, 90.0% respectively, while 
those of the proposed mDEOB/best/1 and mDEOB/cur_to_best/1 are 88.0, 95.0%. 
This indicates that the robustness of mDEOB/best/1 and mDEOB/cur_to_best/1 
algorithms are better than the corresponding DE algorithms. This improvement of 
algorithmic robustness could be only due to employing the onlooker bee operator.

Design of a speed reducer

Speed reducer design problem is a mixed programming problem containing one integer 
variable (i.e. the third variable x3) and six continuous variables xi, i = 1, 2, . . . , 7, (i �= 3) . 
The physical meaning of these variables can be seen in the reference Sadollah et  al. 
(2013). There are eleven constraints resulting in the high complexity of the problem. Let 
x denote a vector (x1, x2, x3, x4, x5, x6, x7). The problem is formulated as follows:

min. f(x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.933x3 − 43.0934)

− 1.508x1(x
2
6 + x27)+ 7.4777(x36 + x37)

+ 0.7854(x4x
2
6 + x5x

2
7)

s.t. g1(x) =
27

x1x
2
2x3

− 1 ≤ 0

g2(x) =
397.5

x1x
2
2x

2
3

− 1 ≤ 0

g3(x) =
1.93x34
x2x

4
6x3

− 1 ≤ 0

g4(x) =
1.93x35
x2x

4
7x3

− 1 ≤ 0

g5(x) =
[(745(x4/x2x3))

2 + 16.9× 106]1/2

110x36
− 1 ≤ 0

g6(x) =
[(745(x5/x2x3))

2 + 157.5× 106]1/2

85x37
− 1 ≤ 0

g7(x) =
x2x3

40
− 1 ≤ 0

g8(x) =
5x2

x1
− 1 ≤ 0

g9(x) =
x1

12x2
− 1 ≤ 0

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8,

17 ≤ x3 ≤ 28, 7.3 ≤ x4, x5 ≤ 8.3,

2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5
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The reference Sadollah et al. (2013) reported the best results in current literatures, which 
are the results of six optimization methods including DELC, DEDS, PSO-DE, MDE, 
HEAA and MBA. We compare the results of the proposed mDEOB/cur_to_best algo-
rithm with these best results. The comparative results are reported in Table   5. From 
the table, we can see that the proposed mDEOB/cur_to_best algorithm found a solution 
2994.468551, which is better than others. This means that the solution of the proposed 
mDEOB/cur_to_best algorithm is the optimum in current literatures.

In the constraint handling strategy and the handling method of integer variable x3, the 
proposed mDEOB/cur_to_best algorithm respectively employs the soft-constraint (pen-
alty) approach and the INT() function in reference Lampinen and Zelinka (1999) . The 
algorithmic parameters are set as follows, D = 7, N = 50, F = 0.9 and CR = 0.8. 100 
independent runs are conducted with 2500 times iterations as the termination criterion.

In summary: The improved algorithms, especially mDEOB/cur_to_best algorithm, 
have strong competitiveness on this kind of complex constrained optimization problems.

All the above algorithms were implemented in Visual C++ and the experiments were con-
ducted on a computer with a Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30GHz and 8GB RAM.

Conclusion
Two new algorithms, mDEOB/best/1 and mDEOB/cur-to-best/1, are proposed to deal 
with the imbalance between exploration and exploitation capabilities of the DE/best/1 
and DE/cur-to-best/1 algorithms. Inspired by the ABC algorithm, these offer improved 
exploration abilities by employing a random search guided by onlooker bees. Numeri-
cal experiments were conducted to test the two proposed algorithm on CEC2005 
benchmark functions and two engineering optimization problems. The results on the 
CEC2005 benchmark functions indicated the effectiveness of the improved strategy. 
Comparison with other algorithms for the engineering optimization problems showed 
the competitiveness of the proposed algorithms. In particular, the mDEDE/cur-to-best/1 
algorithm found the new optima in both problems.
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Table 5 Optimal solution for speed reducer design

DELC DEDS HEAA MDE PSO‑DE MBA mDEOB/
cur_to_best

x1 3.500000 3.500000 3.500022 3.500010 3.500000 3.500000 3.499998

x2 0.700000 0.700000 0.70000039 0.70000 0.700000 0.700000 0.700000

x3 17 17 17.000012 17 17.00000 17.00000 17.00000

x4 7.300000 7.300000 7.300427 7.300156 7.300000 7.300033 7.300003

x5 7.715319 7.715319 7.715377 7.80027 7.800000 7.715772 7.715313

x6 3.35024 3.35024 3.350230 3.350221 3.350214 3.350218 3.350214

x7 5.286654 5.286654 5.286663 5.286685 5.2866832 5.286654 5.286654

f(x) 2994.471066 2994.471066 2994.499107 2996.356689 2996.348167 2994.482453 2994.468551
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