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Background
In 1918, Gaston Julia investigated the iteration process of complex function and attained 
a Julia set. Julia sets are striking examples of computational experiments that were 
far ahead of its time. These mathematical objects were seen when computer graphics 
became available (Peitgen et al. 2004). In 1979, Benoit Mandelbrot introduced the Man-
delbrot set by using the complex function z2 + c with using c as a complex parameter 
and z as a complex function (Mandelbrot 1982). The visual beauty, complexity and self 
similarity of these objects have made a field of intense research nowadays. Convexity and 
its generalization plays a vital role in different parts of mathematics, mainly in optimiza-
tion theory. Presented paper deal with approximate convexity, a common generalization 
of s-convexity and results of Bernstein and Doetsch (1915). The concept of s-convexity 
and rational s-convexity was introduced by Breckner and Orb’an (1978). In 1978, Breck-
ner and Orb’an (1978), Hudzik and Maligranda (1994) proved that when 0 < s < 1, 
s-convex functions are nonnegative moreover as s decreases the set of s-convex func-
tions increases.

In 1994, Hudzik and Maligranda (1994) explained a few results connecting with 
s-convex functions in second sense. Some new results for s-convex functions about 
Hadamard’s inequality are discussed in Alomari and Darus (2008a, b), Kirmaci (2007). 
Takahashi (1970) introduced a notion of convex metric space and in 1999, for s-convex 
functions in second sense, (Dragomir and Fitzpatrick 1999) proved a variant of Her-
mite–Hadamard’s inequality. The fractal structures of Julia and Mandelbrot sets for 
quadratic, cubic, and higher degree polynomials, by using Picard orbit have been dem-
onstrated in Devaney (1992). In 2004, Rani and Kumar (2004a, b) introduced superior 

Abstract 

In this note, we give fixed point results in fractal generation (Julia sets and Mandel-
brot sets) by using Noor iteration scheme with s-convexity. Researchers have already 
presented fixed point results in Mann and Ishikawa orbits that are examples of one-
step and two-step feedback processes respectively. In this paper we present fixed point 
results in Noor orbit, which is a three-step iterative procedure.

Keywords: Noor orbit, Julia set, Mandelbrot set, S-convexity

Mathematics Subject Classification: 47H10

Open Access

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Cho et al. SpringerPlus  (2016) 5:1843 
DOI 10.1186/s40064‑016‑3530‑5

*Correspondence:   
nazeer.waqas@ue.edu.pk; 
smkang@gnu.ac.kr 
1 Department 
of Mathematics and RINS, 
Gyeongsang National 
University, Jinju 52828, Korea 
3 Division of Science 
and Technology, University 
of Education, Lahore, Pakistan
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3530-5&domain=pdf


Page 2 of 16Cho et al. SpringerPlus  (2016) 5:1843 

Julia and Mandelbrot sets using Mann iteration scheme. Rana et  al. (2010a, b) intro-
duced relative superior Julia and Mandelbrot sets using Ishikawa iteration scheme. Also, 
relative superior Julia sets, Mandelbrot sets and tricorn and multicorns by using S-iter-
ation scheme are presented in Kang et al. (2015a). Recently, (Ashish and Chugh 2014) 
introduced Julia and Mandelbrot sets using Noor iteration scheme which is a three-step 
iterative procedure.

Fixed point results can be found in the generation of the different types of fractals: for 
example, Iterated Function Systems (Prasad and Katiyar 2011; Singh et al. 2011), V-vari-
able fractals (Singh et al. 2011), Inversion fractals (Gdawiec 2015) and Biomorphs (Gda-
wiec et al. 2016). Some polynomiographs are types of fractals which can be obtained via 
different iterative schemes, for more detail (see Kang et al. 2015c, 2016; Rafiq et al. 2014; 
Kotarski et al. 2012; Nazeer et al. 2016) and references therein. Kang et al. (2015b) intro-
duced new fixed point results for fractal generation in Jungck Noor orbit with s-convex-
ity. Mishra et al. (2011a, b) develop fixed point results in relative superior Julia sets and 
tricorn and multicorns by using Ishikawa iteration with s-convexity. Nazeer et al. (2015) 
introduced fixed point results in the generation of Julia and Mandelbrot sets.

In this paper we present some fixed point results for Julia and Mandelbrot sets by 
using Noor iteration scheme with s-convexity. The results of Ashish and Chugh (2014) 
are a special case of the results of this paper for s = 1, so in this article we extend the 
results from Ashish and Chugh (2014). We define the Noor orbit and escape criteri-
ons for quadratic, cubic, and k + 1th degree polynomials by using Noor iteration with 
s-convexity.

Preliminaries

Definition 1 (see Barnsley 1993, Julia set) Let f : C −→ C symbolize a polynomial of 
degree ≥ 2. Let Ff  be the set of points in C whose orbits do not converge to the point at 
infinity. That is, Ff = {x ∈ C : {

∣

∣f n(x)
∣

∣, n varies from 0 to ∞} is bounded}. Ff  is called as 
filled Julia set of the polynomial f. The boundary points of Ff  can be called as the points 
of Julia set of the polynomial f or simply the Julia set.

Definition 2 (see Devaney 1992, Mandelbrot set) The Mandelbrot set M consists of all 
parameters c for which the filled Julia set of Qc(z) = z2 + c is connected, that is

In fact, M contains an enormous amount of information about the structure of Julia sets. 
The Mandelbrot set M for the quadratic Qc(z) = z2 + c is defined as the collection of all 
c ∈ C for which the orbit of the point 0 is bounded, that is

We choose the initial point 0, as 0 is the only critical point of Qc.

Definition 3 Let C be a nonempty set and f : C → C . For any point z0 ∈ C, the Pic-
ard’s orbit is defined as the set of iterates of a point z0, that is;

(1)M =
{

c ∈ C : FQc is connected
}

,

(2)M =
{

c ∈ C :
{

Qn
c (0)

}

; n = 0, 1, 2, . . . is bounded
}

,

(3)O
(

f , z0
)

=
{

zn; zn = f (zn−1), n = 1, 2, 3, . . .
}

.
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where the orbit O(f , z0)of f at the initial point z0 is the sequence {f nz0}.

Definition 4 (see Noor 2000, Noor orbit). Consider a sequence {zn} of iterates for initial 
point z0 ∈ C such that

where αn,βn, γn ∈ [0, 1] and {αn}, {βn}, {γn} are sequences of positive numbers. The 
above sequence of iterates is called Noor orbit, which is a function of five arguments 
(f , z0,αn,βn, γn) which can be written as NO(f , z0,αn,βn, γn).

Main results
The definition of the Mandelbrot set gives us an algorithm for computing it. We simply 
consider a square in the complex plane. We overlay a grid of equally spaced points in this 
square. Each of these points is to be considered a complex c-value. Then, for each such 
c, we ask the computer to check whether the corresponding orbit of 0 goes to infinity 
(escapes) or does not go to infinity (remains bounded). In the former case, we leave the 
corresponding c-value (pixel) white. In the latter case, we paint the c-value dark. Thus 
the dark points represent the Mandelbrot set. Indeed, it is not possible to determine 
whether certain c-values lie in the Mandelbrot set. We can only iterate a finite number of 
times to determine if a point lies in M . Certain c-values close to the boundary of M have 
orbits that escape only after a very large number of iterations.

Corollary 1 (The Escape Criterion) Suppose |c| is less than or equal to 2. If the orbit of 
0 under z2 + c ever lands outside of the circle of radius 2 centered at the origin, then this 
orbit definitely tends to infinity.

When calculating Julia sets, z is a variable representing a Cartesian coordinate within 
the image and c is a constant complex number, c does not change during the calculation 
of the entire image. However, when different values of c are used, different images repre-
senting different Julia sets will result.

The escape criterion plays a vital role in the generation and analysis of Julia sets and 
Mandelbrot sets. We now define escape criterions for Julia sets and Mandelbrot sets in 
Noor orbit with s-convexity.

We take zo = z ∈ C, αn = α,βn = β and γn = γ then can write Noor iteration scheme 
with s-convexity in the following manner where Qc(zn) be a quadratic, cubic or nth 
degree polynomial.

where 0 < α,β , γ ≤ 1 and 0 < s ≤ 1.

We used the notion NOs(Qc, 0,α,β , γ , s) for the Noor iteration with s-convexity.

(4)
{zn+1 : zn+1 = (1− αn)zn + αnfun;un = (1− βn)zn + βnfvn;

vn = (1− γn)zn + γnfzn; n = 0, 1, 2, . . .},

(5)

zn+1 = (1− α)szn + αsQc(un)

un = (1− β)szn + βsQc(vn)

vn = (1− γ )szn + γ sQc(zn)
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Escape criterion for quadratic polynomial

Theorem  1 Suppose that |z| ≥ |c| > 2
sα, |z| ≥ |c| > 2

sβ and |z| ≥ |c| > 2
sγ  where c be a 

complex number and 0 < α,β , γ ≤ 1. Let u◦ = u, v◦ = v and z◦ = z then for iteration (5) 
and Qc(z) = z2 + c we have |zn| → ∞ as n → ∞.

Proof Consider

For Qc(z) = z2 + c,

By binomial expansion upto linear terms of γ and (1− γ ), we obtain

and

By binomial expansion upto linear terms of β and (1− β), we obtain

Since |z| > 2/sγ implies sγ |z| − 1 > 1 and |z|2(sγ |z| − 1)2 > |z|2 using this in (8) we have

|v| =
∣

∣(1− γ )sz + γ sQc(z)
∣

∣

|v| =
∣

∣

∣
(1− γ )sz + γ s

(

z2 + c
)∣

∣

∣

=

∣

∣

∣
(1− γ )sz + (1− (1− γ ))s

(

z2 + c
)
∣

∣

∣

(6)

|v| ≥
∣

∣

∣
(1− sγ )z + (1− s(1− γ ))

(

z2 + c
)∣

∣

∣

≥

∣

∣

∣
(1− sγ )z + (1− s + sγ )(z2 + c)

∣

∣

∣

≥

∣

∣

∣
(1− sγ )z + sγ (z2 + c)

∣

∣

∣
, because 1− s + sγ ≥ sγ

≥

∣

∣

∣
sγ z2 + (1− sγ )z

∣

∣

∣
− |sγ c|

≥

∣

∣

∣
sγ z2 + (1− sγ )z

∣

∣

∣
− |sγ z|, because |z| ≥ |c|

≥

∣

∣

∣
sγ z2

∣

∣

∣
− |(1− sγ )z| − |sγ z|

=

∣

∣

∣
sγ z2

∣

∣

∣
− |z| + |sγ z| − |sγ z|

≥ |z|(sγ |z| − 1).

(7)
|u| =

∣

∣(1− β)sz + βsQc(v)
∣

∣

=

∣

∣

∣
(1− β)sz + (1− (1− β))s(v2 + c)

∣

∣

∣
,

(8)

|u| ≥
∣

∣

∣
(1− sβ)z + (1− s(1− β))(v2 + c)

∣

∣

∣

≥

∣

∣

∣
(1− sβ)z + (1− s + sβ)(v2 + c)

∣

∣

∣

≥

∣

∣

∣
(1− sβ)z + sβ((|z|(sγ |z| − 1))2 + c)

∣

∣

∣
, because 1− s + sβ ≥ sβ
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Also for

By binomial expansion upto linear terms of α and (1− α), we obtain

Since |z| > 2/sβ implies (sβ|z| − 1)2 > 1 and |z|2(sβ|z| − 1)2 > |z|2 using in (10) we have

Since |z| > 2/sα implies sα|z| − 1 > 1, there exist a number � > 0, such that 
sα|z| − 1 > 1+ � > 1. Consequently

Hence |zn| −→ ∞ as n → ∞. This completes the proof.  �

Corollary 2 Suppose that |z| ≥ |c|, |c| > 2
sα , |c| >

2
sβ and |c| > 2

sγ , then, the orbit 
NOs(Qc, 0,α,β , γ , s) escapes to infinity.

(9)

|u| ≥
∣

∣

∣
(1− sβ)z + sβ(|z|2 + c)

∣

∣

∣

≥

∣

∣

∣
sβz2 + (1− sβ)z

∣

∣

∣
− |sβc|

≥

∣

∣

∣
sβz2 + (1− sβ)z

∣

∣

∣
− |sβz|, because |z| ≥ |c|

≥

∣

∣

∣
sβz2

∣

∣

∣
− |(1− sβ)z| − |sβz|

=

∣

∣

∣
sβz2

∣

∣

∣
− |z| + |sβz| − |sβz|

≥ |z|(sβ|z| − 1).

z1 = (1− α)sz + αsQc(u)

|z1| =
∣

∣

∣
(1− α)sz + (1− (1− α))s(u2 + c)

∣

∣

∣
,

(10)

|z1| =
∣

∣

∣
(1− sα)z + (1− s(1− α))(u2 + c)

∣

∣

∣

=

∣

∣

∣
(1− sα)z + (1− s + sα)(u2 + c)

∣

∣

∣

≥

∣

∣

∣
(1− sα)z + sα((|z|(sβ|z| − 1))2 + c)

∣

∣

∣
(because 1− s + sα ≥ sα)

(11)

|z1| ≥
∣

∣

∣
(1− sα)z + sα(|z|2 + c)

∣

∣

∣

≥

∣

∣

∣
sαz2 + (1− sα)z

∣

∣

∣
− |sαc|

≥

∣

∣

∣
sαz2 + (1− sα)z

∣

∣

∣
− |sαz|, because |z| ≥ |c|

≥

∣

∣

∣
sαz2

∣

∣

∣
− |(1− sα)z| − |sαz|

=

∣

∣

∣
sαz2

∣

∣

∣
− |z| + |sαz| − |sαz|

≥ |z|(sα|z| − 1).

|z1| >(1+ �)|z|,

...

|zn| >(1+ �)n|z|.
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Hence the following corollary is the refinement of the escape criterion.

Corollary 3 (Escape Criterion) Suppose that |z| > max{|c|, 2
sα ,

2
sβ ,

2
sγ }, then 

|zn| > (1+ �)n|z| and |zn| −→ ∞ as n → ∞.

Escape criterions for cubic polynomials

We prove the following result for the cubic polynomial Qa,b(z) = z3 + az + b, where a 
and b are complex numbers, as it is conjugate to all other cubic polynomials.

Theorem  2 Suppose |z| ≥
∣

∣b
∣

∣ > (|a| + 2
sα )

1/2, |z| ≥
∣

∣b
∣

∣ > (|a| + 2
sβ )

1/2 and |z| ≥
∣

∣b
∣

∣ > (|a| + 2

sγ )
1/2 exist, where 0 < α,β , γ ≤ 1 and a,  b are in complex plane. Let 

u◦ = u, v◦ = v and z◦ = z for 5 and Qa,b we have |zn| → ∞ as n → ∞.

Proof Consider

For Qa,b(z) = z3 + az + b,

By binomial expansion upto linear terms of γ and (1− γ ) we obtain

Also for

By binomial expansion upto linear terms of β and (1− β), we obtain

|v| =
∣

∣(1− γ )sz + γ sQa,b(z)
∣

∣,

|v| =
∣

∣

∣
(1− γ )sz + γ s

(

z3 + az + b
)∣

∣

∣

=

∣

∣

∣
(1− γ )sz + (1− (1− γ ))s

(

z3 + az + b
)∣

∣

∣
,

(12)

|v| ≥
∣

∣

∣
(1− sγ )z + (1− s(1− γ ))

(

z3 + az + b
)∣

∣

∣

≥

∣

∣

∣
(1− sγ )z + (1− s + sγ )

(

z3 + az + b
)∣

∣

∣

≥

∣

∣

∣
(1− sγ )z + sγ

(

z3 + az + b
)∣

∣

∣
, because 1− s + sγ ≥ sγ

≥

∣

∣

∣
sγ z3 + sγ az + (1− sγ )z

∣

∣

∣
−

∣

∣sγ b
∣

∣

≥

∣

∣

∣
sγ z3 + sγ az

∣

∣

∣
− |(1− sγ )z| − |sγ z|, because |z| >

∣

∣b
∣

∣

=

∣

∣

∣
sγ z3 + sγ az

∣

∣

∣
− |z| + |sγ z| − |sγ z|

≥

∣

∣

∣
sγ z3

∣

∣

∣
− |sγ az| − |z|

≥ |z|
(

sγ
(

|z|2 − |a|
)

− 1
)

.

(13)
|u| =

∣

∣(1− β)sz + βsQa,b(v)
∣

∣

=

∣

∣

∣
(1− β)sz + (1− (1− β))s

(

v3 + av + b
)∣

∣

∣
,
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Since |z| > (|a| + 2/sγ )1/2 implies sγ (|z|2 − |a|)− 1 > 1, so |z|(sγ (|z|2 − |a|)− 1) > |z| 
and |z|3(γ (|z|2 − |a|)− 1)3 > |z|3 using in (14) we have

Now,

By binomial expansion upto linear terms of α and (1− α), we obtain

Since |z| > (|a| + 2/sβ)1/2 implies sβ(|z|2 − |a|)− 1 > 1, so |z|(sβ(|z|2 − |a|)− 1) > |z| 
and |z|3(sβ(|z|2 − |a|)− 1) > |z|3 using in (16) we have

(14)

|u| ≥
∣

∣

∣
(1− sβ)z + (1− s(1− β))

(

v3 + av + b
)∣

∣

∣

≥

∣

∣

∣
(1− sβ)z + (1− s + sβ)

(

v3 + av + b
)
∣

∣

∣

≥

∣

∣

∣
(1− sβ)z + sβ

(

v3 + av + b
)
∣

∣

∣
, because 1− s + sβ ≥ sβ

≥

∣

∣

∣

∣

(1− sβ)z + sβ

(

(

|z|
(

sγ
(

|z|2 − |a|
)

− 1
))3

+ a|z|
(

sγ
(

|z|2 − |a|
)

− 1
)

+ b

)∣

∣

∣

∣

,

(15)

|u| ≥
∣

∣

∣
(1− sβ)z + sβ

(

|z|3 + a|z| + b
)∣

∣

∣

≥

∣

∣

∣
sβ|z|3 + sβa|z| + (1− sβ)z

∣

∣

∣
−

∣

∣sβb
∣

∣

≥

∣

∣

∣
sβ|z|3 + sβa|z| + (1− sβ)z

∣

∣

∣
− |sβz|, because |z| >

∣

∣b
∣

∣

≥

∣

∣

∣
sβ|z|3

∣

∣

∣
− |sβa|z|| − |(1− sβ)z| − |sβz|

≥

∣

∣

∣
sβ|z|3

∣

∣

∣
− |sβa|z|| − |z| + |sβz| − |sβz|

≥ |z|
(

sβ
(

|z|2 − |a|
)

− 1
)

.

z1 = (1− α)sz + αsQa,b(u)

|z1| =
∣

∣

∣
(1− α)sz + (1− (1− α))s

(

u3 + au+ b
)∣

∣

∣
,

(16)

|z1| =
∣

∣

∣
(1− sα)z + (1− s(1− α))

(

u3 + au+ b
)∣

∣

∣

=

∣

∣

∣
(1− sα)z + (1− s + sα)

(

u3 + au+ b
)∣

∣

∣

≥

∣

∣

∣
(1− sα)z + sα

(

u3 + au+ b
)∣

∣

∣
, because 1− s + sα ≥ sα

≥

∣

∣

∣

∣

(1− sα)z + sα

(

(

|z|
(

sβ
(

|z|2 − |a|
)

− 1
))3

+ a|z|
(

sβ
(

|z|2 − |a|
)

− 1
)

+ b

)∣

∣

∣

∣

,

(17)

|z1| ≥
∣

∣

∣
(1− sα)z + sα

(

|z|3 + a|z| + b
)∣

∣

∣

≥

∣

∣

∣
sα|z|3 + sαa|z| + (1− sα)z

∣

∣

∣
−

∣

∣sαb
∣

∣

≥

∣

∣

∣
sα|z|3 + sαa|z| + (1− sα)z

∣

∣

∣
− |sαz|, because |z| >

∣

∣b
∣

∣

≥

∣

∣

∣
sα|z|3

∣

∣

∣
− |sαa|z|| − |(1− sα)z| − |sαz|

≥

∣

∣

∣
sα|z|3

∣

∣

∣
− |sαa|z|| − |z| + |sαz| − |sαz|

≥ |z|
(

sα
(

|z|2 − |a|
)

− 1
)

.
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Since |z| > (|a| + 2/sα)1/2 implies sα(|z|2 − |a|)− 1 > 1. Hence there exists � > 1 such 
that, |z1| > �|z|. Repeating the argument n times, we get |zn| > �

n|z|. Therefore, the orbit 
of z under the cubic polynomial Qa,b(z), tends to infinity. This completes the proof.  �

Corollary 4 (Escape criterion) Let Qa,b(z) = z3 + az + b, where a and b are complex 

numbers. Suppose |z| > max

{

∣

∣b
∣

∣,
(

|a| + 2
sα

)1/2
,
(

|a| + 2
sβ

)1/2
,
(

|a| + 2
sγ

)1/2
}

 then 

|zn| → ∞ as n → ∞.

A general escape criterion

We will obtain a general escape criterion for polynomials of the form Gc(z) = zk+1 + c.

Theorem  3 For general function Gc(z) = zk+1 + c, k = 1, 2, 3, . . . , suppose that 

|z| ≥ |c| >
(

2
sα

)1/k
, |z| ≥ |c| >

(

2
sβ

)1/k
 and |z| ≥ |c| >

(

2
sγ

)1/k
 where c be a complex 

number and 0 < α,β , γ ≤ 1. Let u◦ = u, v◦ = v and z◦ = z then from the iteration 5, we 
have |zn| → ∞ as n → ∞.

Proof Let Gc(z) = zk+1 + c and |z| ≥ |c| >
(

2
sα

)1/k
, |z| ≥ |c| >

(

2
sβ

)1/k
 as well as 

|z| ≥ |c| >
(

2
sγ

)1/k
 exists then for Gc(z) = zk+1 + c, consider

By binomial expansion upto linear terms of γ and (1− γ ), we obtain

and

|v| =
∣

∣

∣
(1− γ )sz + γ s

(

zk+1 + c
)∣

∣

∣

=

∣

∣

∣
(1− γ )sz + (1− (1− γ ))s

(

zk+1 + c
)∣

∣

∣
,

(18)

|v| ≥
∣

∣

∣
(1− sγ )z + (1− s(1− γ ))

(

zk+1 + c
)∣

∣

∣

≥

∣

∣

∣
(1− sγ )z + (1− s + sγ )

(

zk+1 + c
)∣

∣

∣

≥

∣

∣

∣
(1− sγ )z + sγ

(

zk+1 + c
)∣

∣

∣
, because 1− s + sγ ≥ sγ

≥

∣

∣

∣
sγ zk+1 + (1− sγ )z

∣

∣

∣
− |sγ c|

≥

∣

∣

∣
sγ zk+1 + (1− sγ )z

∣

∣

∣
− |sγ z|, because |z| ≥ |c|

≥

∣

∣

∣
sγ zk+1

∣

∣

∣
− |(1− sγ )z| − |sγ z|

=

∣

∣

∣
sγ zk+1

∣

∣

∣
− |z| + |sγ z| − |sγ z|

≥ |z|
(

sγ |z|k − 1
)

.

(19)
|u| =

∣

∣(1− β)sz + βsGc(v)
∣

∣

=

∣

∣

∣
(1− β)sz + (1− (1− β))s

(

vk+1 + c
)∣

∣

∣
,
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By binomial expansion upto linear terms of β and (1− β), we obtain

Since |z| > (2/sγ )1/k implies sγ |z|k − 1 > 1 also (sγ |z|k − 1)2 > 1 and 
|z|k+1(sγ |z| − 1)2 > |z|k+1 using this in (20) we have

Also for

By binomial expansion upto linear terms of α and (1− α), we obtain

Since |z| > (2/sβ)1/k implies (sβ|z|k − 1)k+1 > 1 and |z|k+1(sβ|z|k − 1)k+1 > |z|k+1 
using in (22) we have

(20)

|u| ≥
∣

∣

∣
(1− sβ)z + (1− s(1− β))

(

vk+1 + c
)∣

∣

∣

≥

∣

∣

∣
(1− sβ)z + (1− s + sβ)

(

vk+1 + c
)
∣

∣

∣

≥

∣

∣

∣

∣

(1− sβ)z + sβ

(

(

|z|
(

sγ |z|k − 1
))k+1

+ c

)
∣

∣

∣

∣

, because 1− s + sβ ≥ sβ

(21)

|u| ≥
∣

∣

∣
(1− sβ)z + sβ

(

|z|k+1 + c
)∣

∣

∣

≥

∣

∣

∣
sβzk+1 + (1− sβ)z

∣

∣

∣
− |sβc|

≥

∣

∣

∣
sβzk+1 + (1− sβ)z

∣

∣

∣
− |sβz|, because |z| ≥ |c|

≥

∣

∣

∣
sβzk+1

∣

∣

∣
− |(1− sβ)z| − |sβz|

=

∣

∣

∣
sβzk+1

∣

∣

∣
− |z| + |sβz| − |sβz|

≥ |z|
(

sβ|z|k − 1
)

.

z1 = (1− α)sz + αsGc(u)

|z1| =
∣

∣

∣
(1− α)sz + (1− (1− α))s

(

uk+1 + c
)∣

∣

∣
,

(22)

|z1| ≥
∣

∣

∣
(1− sα)z + (1− s(1− α))

(

uk+1 + c
)∣

∣

∣

≥

∣

∣

∣
(1− sα)z + (1− s + sα)

(

uk+1 + c
)∣

∣

∣

≥

∣

∣

∣
(1− sα)z + sα

(

(|z|(β|z| − 1))k+1 + c
)∣

∣

∣
, because 1− s + sα ≥ sα

(23)

|z1| ≥
∣

∣

∣
(1− sα)z + sα

(

|z|k+1 + c
)∣

∣

∣

≥

∣

∣

∣
sαzk+1 + (1− sα)z

∣

∣

∣
− |sαc|

≥

∣

∣

∣
sαzk+1 + (1− sα)z

∣

∣

∣
− |sαz|, because |z| ≥ |c|

≥

∣

∣

∣
sαzk+1

∣

∣

∣
− |(1− sα)z| − |sαz|

=

∣

∣

∣
sαzk+1

∣

∣

∣
− |z| + |sαz| − |sαz|

≥ |z|
(

sα|z|k − 1
)

.
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Since |z| > (2/sα)1/k implies sα|z|k − 1 > 1, there exist a number � > 0, such that 
sα|z|k − 1 > 1+ � > 1. Consequently

Hence |zn| −→ ∞ as n → ∞. This completes the proof.  �

Corollary 5 Suppose that |c| >
(

2
sα

)1/k
, |c| >

(

2
sβ

)1/k
 and |c| >

(

2
sγ

)1/k
 exists, then 

the orbit NOs(Gc, 0,α,β , γ , s) escape to infinity.

This corollary gives an algorithm for computing the Julia sets and Mandelbrot sets for 
the functions of the form Gc(z) = zk+1 + c, k = 1, 2, 3, . . .

Generation of Julia sets and Mandelbrot sets
In this section we present some Mandelbrot sets for quadratic and cubic functions by 
using the computational work in Mathematica 9.0. and following code

Mandelbrot sets for the quadratic polynomial Qc(z) = z2 + c

In Figs. 1, 2, 3, 4, 5, and 6, quadratic Mandelbrot sets are presented in Noor orbit with 
s-convexity by using maximum number of iterations 30 and grid [−7, 2] × [−4, 4].

|z1| >(1+ �)|z|,

...

|zn| >(1+ �)n|z|.

Fig. 1 Quadratic Mandelbrot set for α = β = γ = 0.3 and s = 0.1

Fig. 2 Quadratic Mandelbrot set for α = β = γ = 0.3 and s = 0.2
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Fig. 3 Quadratic Mandelbrot set for α = β = γ = 0.3 and s = 0.3

Fig. 4 Quadratic Mandelbrot set for α = β = γ = 0.3 and s = 0.8

Fig. 5 Quadratic Mandelbrot set forα = β = γ = 0.3 and s = 0.9

Fig. 6 Quadratic Mandelbrot set for α = β = γ = 0.3 and s = 1
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Fig. 7 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.2

Fig. 8 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.3

Fig. 9 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.4

Fig. 10 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.5
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Fig. 11 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.7

Fig. 12 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.8

Fig. 13 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 0.9

Fig. 14 Cubic Mandelbrot set for α = β = γ = 0.05 and s = 1
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Mandelbrot sets for the cubic polynomial Q0,c(z) = z3 + c

In Figs.  7, 8, 9, 10, 11, 12, 13, and 14 cubic Mandelbrot sets are presented in 
Noor orbit with s-convexity by using maximum number of iterations 30 and grid 
[−3.5, 3.5] × [−6, 6].

Julia sets for the quadratic polynomial Qc(z) = z2 + c

Quadratic Julia sets are presented in Figs. 15, 16, 17, and 18 for Noor iteration scheme 
with s-convexity by using maximum number of iterations 20 and s = 1.

Conclusions
In this paper we presented new fixed point results for Noor iteration with s-convexity 
in the generation of fractals (Julia sets and Mandelbrot sets). The new escape criterions 
have been established for complex quadratic, cubic, and (k + 1)th degree polynomials. 

Fig. 15 Quadratic Julia set for α = 1,β = 1, γ = 1 and c = −1.38

Fig. 16 Quadratic Julia set for α = 0.1,β = 0.9, γ = 0.9 and c = 0.23+ 0.23i

Fig. 17 Quadratic Julia set for α = 0.1,β = 0.1, γ = 0.9 and c = −0.23+ 0.23i
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Very interesting changes in Mandelbrot sets can be seen when s varies from lowest to 
higher values but variation of s does not effect Julia sets. The results of escape criterions 
for Julia sets and Mandelbrot sets in Noor orbit presented in Ashish and Chugh (2014) 
are as special case of our results for s = 1.
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