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Background
With the development of quantum computer, post-quantum cryptography (PQC) 
has gained intensive attention in recent years. Multivariate Public Key Cryptography 
(MPKC) is one among a few serious candidates to have risen to prominence as post-
quantum options. In the last two decades, MPKC was developed rapidly, with many 
schemes being proposed, attacked and then amended. Based on multivariate quadratic 
quasigroups (MQQ), Gligoroski et  al. recently proposed a novel type of MPKC-MQQ 
schemes (including both the signature scheme and the encryption scheme) (Gligoroski 
et al. 2008, 2011). As these schemes only need the basic operations of XOR and AND 
between bits during the encryption and decryption processes, they attain the speed of 
decryption/signature generation comparable to a typical symmetric block cipher (Had-
edy et al. 2008). The size of the set of MQQs is rather large, which makes MQQ scheme 
have a bigger scale of private key and public key than conventional MPKC schemes (Gli-
goroski et  al. 2008). Moreover, these schemes offer flexibility in their implementation 
from parallelization point of view (Hadedy et al. 2008). In a recent work, MQQ schemes 
have been successfully used in wireless sensor network (Maia et al. 2010).
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As the basic step for the MQQ scheme, generating MQQ is an important and chal-
lenging task. Gligoroski et al. established a sufficient condition of generating an MQQ 
for a given quasigroup (Gligoroski et al. 2008). Based upon this condition, a randomized 
generation algorithm for MQQs was also proposed therein. However, this algorithm 
is time-consuming and can only generate MQQs of order 2d(d ≤ 5). Subsequently, an 
improved algorithm to generate MQQs was proposed by Ahlawat et al. (2009), and the 
existence of MQQs from d = 2 to d = 14 was verified. Recently, the sufficient condition 
in Gligoroski et al. (2008) was simplified by Chen et al. (2010) and an efficient algorithm 
for generating bilinear MQQs (a subclass of MQQs) of any order 2d was proposed. In 
addition, new algorithms and theory for generating MQQs are also reported by Samard-
jiska et al. (2010) and Christov (2009), respectively.

Different from the aforementioned work on constructing MQQs, equipped with a new 
necessary and sufficient condition for bilinear MQQ, Zhang and Zhang (2013) proposed 
an algorithm for judging and generating bilinear MQQ from the multiplication table of a 
quasigroup, thus answering the question how to judge whether or not an arbitrary quasi-
group is a bilinear MQQ and providing a feasible way to generate all the bilinear MQQs 
in theory. Considering that bilinear MQQs are only a subclass of MQQs and the alge-
braic operation of Zhang and Zhang (2013) is only limited to GF(2), the objective of this 
paper is to extend the previous work (Zhang and Zhang 2013) by bringing out a solution 
on how to judge and generate MQQ over Galois fields. Specifically, we make the follow-
ing contributions:

(1) We establish a necessary and sufficient condition for a quasigroup of any order pkd 
to be MQQ over GF(pk), which answers a theoretical question: when is a quasi-
group an MQQ over GF(pk)?

(2) Based on the above condition, we propose an algorithm for justifying whether or 
not a given quasigroup of order pkd is an MQQ over GF(pk) and generating all its 
boolean functions if the quasigroup is an MQQ.

(3) Compared with the previous work (Zhang and Zhang 2013), the strategy proposed 
in this paper can identify all the MQQs, including both bilinear MQQs and non-
bilinear ones. Moreover, the algebraic operation in Galois fields provides more flex-
ibility in choosing p, k and d, which is useful for applying MQQ-design to various 
platforms and also benefits us to find more MQQs.

The remainder of the paper is organized as follows. Second section recalls the origi-
nal MQQ generation scheme (Gligoroski et al. 2008). Third section proposes a neces-
sary and sufficient condition and an algorithm for justifying and generating MQQs in 
GF(pkd). Two examples are provided to show the validity our algorithms in fourth sec-
tion. Finally, we conclude the paper in last section.

Original MQQ generation scheme

Definition 1 [Definition 1 in Chen et al. (2010)] A quasigroup (Q, ∗) is a set Q with a 
binary operation ∗ such that for any a, b ∈ Q, there exist unique x, y:
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Lemma 1 [Lemma 1 in Gligoroski et  al. (2008)] For every quasigroup (Q, ∗) of order 
2d and for each bijection Q → {0, 1, . . . , 2d − 1}, there are a uniquely determined vec-
tor valued Boolean function ∗vv and d uniquely determined 2d-ary Boolean functions 
f1, f2, . . . , fd such that for each a, b, c ∈ Q

In general, for a randomly generated quasigroup of order 2d(d ≥ 4), the degrees of 
Boolean functions are usually higher than 2. Such quasigroups are not suitable for the 
construction of multivariate quadratic public-key cryptosystem.

Definition 2 [Definition 3 in Gligoroski et al. (2008)] A quasigroup (Q, ∗) of order 2d is 
called multivariate quadratic quasigroup (MQQ) of type Quadd−kLink if exactly d − k of 
the polynomials fs are of degree 2 and k of them are of degree 1, where 0 ≤ k < d.

Main results
In this section, we first establish a necessary and sufficient condition for a given quasi-
group of order pkd to be an MQQ over GF(pk), and then use this condition to propose 
an algorithm for justifying whether or not a quasigroup of order pkd is an MQQ over 
GF(pk) and generating d Boolean functions of MQQ if it is.

For convenience the following notations are adopted: In denotes the identity matrix of 
order n; Ei,j is the shorthand for the elementary matrix of switching all matrix elements 
on row i with their counterparts on row j of In; Ei,j(1) denotes the elementary matrix of 
adding all matrix elements on row j (column i) to their counterparts on row i (column j) 
of In.

Necessary and sufficient condition for MQQs over GF(pkd)

Definition 3 [see Golub and Loan (1996)] Given an m× n matrix A = (aij), vec(A) is a 
vector defined as

Lemma 2 [see Golub and Loan (1996)] Let A ∈ Rm×u,B ∈ Rv×n,X ∈ Ru×v, then

Lemma 3 Let A = (aij)m×u,B = (blt)v×n,X = (xjl)u×v, where aij , blt , xjl ∈ {0, 1, . . . ,

pk − 1}, and p be prime number, then

(1)x ∗ a = b; a ∗ y = b.

(2)

a ∗ b = c ⇐⇒ ∗vv(x1, . . . , xd , xd+1, . . . , x2d)

= (f1(x1, . . . , xd , xd+1, . . . , x2d), . . . , fd(x1, . . . , xd , xd+1, . . . , x2d)).

vec(A) = (a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn)
T
.

vec(AXB) = (A⊗ BT )vec(X).

vec(AXB mod pk) = (A⊗ BT
mod pk) vec(X) mod pk .
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Lemma 4 [see Golub and Loan (1996)] Let A, B, C, D be suitably sized matrices. Then

Let a quasigroup (Q, ∗) of order pkd be given by the multiplication scheme in 
Table  1, where q(j)i ∈ Q, (i, j = 0, 1, . . . , pkd − 1). For given i and ∀j �= j′, we have 
q
(j)
i �= q

(j′)
i ; for given j and ∀i �= i′, we have q(j)i �= q

(j)
i′ . One can choose two bijections 

κ : Q → {0, 1, . . . , p− 1}dk and ι : {0, 1, . . . , p− 1}k → {0, 1, . . . , pk − 1}. Collect the ele-
ments of Table 1 into a vector

and convert every element of the vector into a kd-ary sequence over GF(p) according 
to the bijection κ. Then, divide every kd-ary binary sequence into d groups from left to 
right, where every group is a k-ary sequence, and represent every group by a unique ele-
ment in {0, 1, . . . , pk − 1} according to the bijection ι. In this way, we obtain a p2kd × d 
matrix [b1, . . . , bd], where every bs(s = 1, . . . , d) is a p2kd dimensional column vector 
over finite field GF(pk).

According to Lemma 1, whether a given quasigroup is an MQQ over GF(pk) mainly 
lies in whether there is 2d-ary quadratic Boolean function set {f1, f2, . . . , fd} satisfying 
Table 1. Note that, any fs(x1, . . . , xd , xd+1, . . . , x2d) can be written in the form

where As is a matrix of order 2d + 1 over finite field GF(pk). By (2) and Table 1, when 
(x1, . . . , xd) and (xd+1, . . . , x2d) are respectively assigned d-ary sequences in the order 
of {0, 1, . . . , pkd − 1} in which every element is written by d-ary sequence over GF(pk) , 
namely, (1, x1, . . . , xd , xd+1, . . . , x2d) in fs are assigned all row vectors of the following 
p2kd × (2d + 1) matrix of the form

(A+ B)⊗ (C + D) = A⊗ C + A⊗ D + B⊗ C + B⊗ D.

(3)

(

q
(0)
0 , q

(0)
1 , . . . , q

(0)

pkd−1
, q

(1)
0 , q

(1)
1 , . . . , q

(1)

pkd−1
, . . . , q

(pkd−1)

0 , q
(pkd−1)

1 , . . . , q
(pkd−1)

pkd−1

)T

,

(4)fs = (1, x1, . . . , xd , xd+1, . . . , x2d)As
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we know that every qk(k = 0, 1, . . . , p2kd − 1) for any bs(s = 1, . . . , d) needs to satisfy

By Lemma 3, (6) can be reshaped as

Thus, the given quasigroup in Table 1 is an MQQ over GF(pk) iff there is a set of matri-
ces {A1, . . . ,Ad} satisfying the following matrix equation

(5)
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where [vec(A1), . . . , vec(Ad)] is regarded as an unknown matrix [x1, . . . , xd].
By now we have proved the following necessary and sufficient condition that a given 

quasigroup is an MQQ over GF(pk).

Theorem 1 For a given quasigroup (Q, ∗) of order pkd, convert every element of (Q, ∗) into a kd-
ary sequence over GF(p) according to the bijection κ, divide every kd-ary sequence into d groups 
from left to right, and represent every k-ary sequence by a unique element in {0, 1, . . . , pk − 1} 
according to the bijection ι. Then (Q, ∗) is an MQQ over GF(pk) of type Quadd−kLink if and 
only if the matrix equation (8) has solution. Furthermore, fs (s = 1, 2, . . . , d) obtained by (4) 
are just d Boolean polynomials of the MQQ, and their degrees are not more than 2.

Proposed algorithm

Based on Theorem 1, now we begin to develop an algorithm for justifying whether or 
not a quasigroup of order pkd is an MQQ over GF(pk) and generating d Boolean func-
tions of MQQ if it is.

Write

then [Qk ,d , b1, . . . , bd] is the augmented matrix associated with matrix equation (8).
According to Theorem  1, the existence of the solution to the matrix equation (8) 

depends on whether the rank of Qk ,d is equal to the rank of [Qk ,d , b1, . . . , bd]. Firstly, we 
compute the rank of Qk ,d. Note that the coefficient matrix Qk ,d is fixed for all the quasi-
groups of order pkd. Write

(8)
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then Qk ,d takes the form

After a succession of elementary row operations, namely left multiplication by the 
matrix below

(10) can be reduced to the form P1 ·Qk ,d, which only has the following nonzero rows

From now we begin to investigate the solutions of the matrix equation (8) by distin-
guishing two cases: p �= 2 and p = 2.

(10)
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q0 ⊗ q0;

q0 ⊗ pi + pi ⊗ q0 + pi ⊗ pi, i = 1, . . . , 2d;

pi ⊗ pj + pj ⊗ pi, 2d ≥ i > j ≥ 1;

(j2 − j)pi ⊗ pi, i = 1, . . . , 2d, j = 2, . . . , pk − 1.
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We first consider Case 1: p �= 2.
By multiplying P1 ·Qk ,d on the left with the following matrix:

P1 ·Qk ,d can be changed into the matrix 
(

Q̄k ,d,p �=2

0(p2kd−2d2−3d−1)×(4d2+4d+1)

)

, where Q̄k ,d,p �=2 
is of full row rank.

Write

then (8) has solution if and only if [b̃1, . . . , b̃d] = 0(p2kd−2d2−3d−1)×d.
Next, suppose (8) has solution, then the solution matrix can be obtained. Note that

is equivalent to the matrix equation

Since the rank of Q̄k ,d,p �=2 is 2d2 + 3d + 1, there exists an invertible matrix Q1 of order 
(2d + 1)2, such that

where

Obviously, (14) is equivalent to the matrix equation

(13)
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�
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2

���

mod pk

�

.

P2 · P1 · [Qk ,d , b1, . . . , bd] =

(

Q̄k ,d,p �=2 b̄1 · · · b̄d
0 b̃1 · · · b̃d

)

,

Qk ,d[x1, . . . , xd] = [b1, . . . , bd]

(14)Q̄k ,d,p �=2[x1, . . . , xd] = [b̄1, . . . , b̄d].

(15)Q̄k ,d,p �=2Q1 =
[

I2d2+3d+1, 0(2d2+3d+1)×(2d2+d)

]

,

(16)

Q1 =





2d−1
�

j=0

2d+1
�

i=j+2

Ej(2d+1)+i,(i−1)(2d+1)+j+1(−1)





×





2d
�
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�

j=u+1

(
�u

l=1 l)−1
�

i=0

Eu(2d+1)+j−i,u(2d+1)+j−i−1



.

(17)Q̄k ,d,p �=2Q1Q
−1
1 [x1, . . . , xd] = [b̄1, . . . , b̄d].
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Let Q−1
1 [x1, . . . , xd] = [y1, . . . , yd], then (17) takes the form

According to the theory of linear system, the solution matrices of (18) can be repre-
sented by

where kuv are randomly selected from GF(pk), (u = 1, . . . , 2d2 + d; v = 1, . . . , d). Fur-
thermore, (14) has the following solution matrices

namely,

Since kuv is sampled from GF(pk), (u = 1, . . . , 2d2 + d; v = 1, . . . , d), it is obvious that 
the number of such solution matrices is pkd·(2d2+d). For an arbitrary solution matrix, 
{A1, . . . ,Ad} can be obtained immediately. Furthermore, by (4) we can obtain d quad-
ratic functions of MQQ.

We summarize the above deduction for Case 1 as the following theorem.

Theorem 2 Suppose p �= 2 and

then (8) has solution if and only if [b̃1, . . . , b̃d] = 0(p2kd−2d2−3d−1)×d. Furthermore, its 
solution are the matrices of the form

(18)
[

I2d2+3d+1, 0(2d2+3d+1)×(2d2+d)

]

[y1, . . . , yd] = [b̄1, . . . , b̄d].

(19)[y1, . . . , yd] =















b̄1 b̄2 · · · b̄d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+d,1 k2d2+d,2 · · · k2d2+d,d















,

(20)[x1, . . . , xd] = Q1 ·















b̄1 b̄2 · · · b̄d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+d,1 k2d2+d,2 · · · k2d2+d,d















,

(21)[vec(A1), . . . , vec(Ad)] = Q1 ·















b̄1 b̄2 · · · b̄d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+d,1 k2d2+d,2 · · · k2d2+d,d















.

P2 · P1 · [b1, . . . , bd] =

(

b̄1 · · · b̄d
b̃1 · · · b̃d

)

,

(22)[vec(A1), . . . , vec(Ad)] = Q1 ·















b̄1 b̄2 · · · b̄d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+d,1 k2d2+d,2 · · · k2d2+d,d















,
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where kuv ∈ GF(pk), (u = 1, . . . , 2d2 + d; v = 1, . . . , d), and P1,P2,Q1 are defined as 
(11),(13) and (16).

Now we begin to consider Case 2: p = 2.
By multiplying P1 ·Qk ,d on the left by the following matrix:

P1 ·Qk ,d can be changed into the matrix 
(

Q̄k ,d,p=2

0(22kd−2d2−d−1)×(4d2+4d+1)

)

, where Q̄k ,d,p=2 
is of full row rank.

Write

then (8) has solution if and only if [b̌1, . . . , b̌d] = 0(22kd−2d2−d−1)×d.
Suppose (8) has solution, then we show how the solution matrix can be obtained. Since 

Qk ,d[x1, . . . , xd] = [b1, . . . , bd] is equivalent to the matrix equation

and the rank of Q̄k ,d,p=2 is 2d2 + d + 1, then there exists an invertible matrix Q2 of order 
(2d + 1)2 such that

where

(23)

P3 =







2d−2
�

v=1

v−1
�

u=0

0
�

i=pvk+puk−(v+3)

E
pvk+puk+(v−u)−i+

2d−2−v
�

j=0

(2d−j),pvk+puk+(v−u)−i−1+
2d−2−v
�

j=0

(2d−j)







×





2d−2
�

u=0

0
�

i=p(2d−1)k+puk−(2d+2)

Ep(2d−1)k+puk+(2d−1−u)−i,p(2d−1)k+puk+(2d−1−u)−i−1





×





2d−1
�

u=1

0
�

i=puk−2

Epuk+2d−u−i,puk+2d−u−1−i





×





0
�

u=2d−1

pk−1
�

i=2

E1+ipuk (p
k−1) mod pk



,

P3 · P1 · [Qk ,d , b1, . . . , bd] =

(

Q̄k ,d,p=2 b̂1 · · · b̂d

0 b̌1 · · · b̌d

)

,

(24)Q̄k ,d,p=2[x1, . . . , xd] = [b̂1, . . . , b̂d]

(25)Q̄k ,d,p=2Q2 =
[

I2d2+d+1, 0(2d2+d+1)×(2d2+3d)

]

,

(26)

Q2 =

�

2d+1
�

i=2

Ei,(i−1)(2d+1)+1(−1)Ei,(i−1)(2d+1)+i(−1)

�

×





2d−1
�

j=1

2d+1
�

i=j+2

Ej(2d+1)+i,(i−1)(2d+1)+j+1(−1)





×















2d−1
�

u=1

2d+1
�

j=u+2

�

u+1
�

l=2

l

�

−1

�

i=0

Eu(2d+1)+j−i,u(2d+1)+j−i−1















.
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Obviously, (24) is equivalent to the matrix equation

Let Q−1
2 [x1, . . . , xd] = [z1, . . . , zd], then (27) takes the form

According to the theory of linear system, the solution matrices of (28) can be repre-
sented by

where kuv is sampled from GF(2k) (u = 1, . . . , 2d2 + 3d; v = 1, . . . , d). Furthermore, (24) 
has the following solution matrices

namely,

Since kuv is sampled from GF(2k), (u = 1, . . . , 2d2 + 3d; v = 1, . . . , d), it is obvious that 
the number of such solution matrices is 2kd·(2d2+3d). For an arbitrary solution matrix, 
{A1, . . . ,Ad} can be got immediately. Furthermore, according to (4) we can obtain d 
quadratic functions of MQQ.

We summarize the above deduction for Case 2 as the following theorem.

Theorem 3 Suppose p = 2 and

then (8) has solution if and only if [b̌1, . . . , b̌d] = 0(22kd−2d2−d−1)×d. Furthermore, its solu-
tion are the matrices of the form

(27)Q̄k ,d,p=2Q2Q
−1
2 [x1, . . . , xd] = [b̂1, . . . , b̂d].

(28)
[

I2d2+d+1, 0(2d2+d+1)×(2d2+3d)

]

[z1, . . . , zd] = [b̂1, . . . , b̂d].

(29)
[z1, . . . , zd] =















b̂1 b̂2 · · · b̂d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+3d,1 k2d2+3d,2 · · · k2d2+3d,d















,

(30)[x1, . . . , xd] = Q2 ·















b̂1 b̂2 · · · b̂d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+3d,1 k2d2+3d,2 · · · k2d2+3d,d















,

(31)
[vec(A1), . . . , vec(Ad)] = Q2 ·















b̂1 b̂2 · · · b̂d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+3d,1 k2d2+3d,2 · · · k2d2+3d,d















.

P3 · P1 · [b1, . . . , bd] =

(

b̂1 · · · b̂d
b̌1 · · · b̌d

)

,
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where kuv ∈ GF(2k), (u = 1, . . . , 2d2 + 3d; v = 1, . . . , d), and P1,P3,Q2 are defined as 
(11),(23) and (26).

To end this section, we summarize our proposed algorithm as follows:

Algorithm 1 Algorithm for checking whether a given quasigroup of order GF(pkd) is an 
MQQ over GF(pk)

 1. Write the given quasigroup of order pkd in a vector with the form of (3).
 2. Convert every element of the vector into a d-ary sequence over GF(pk), then a 

p2kd × d Boolean matrix [b1, . . . , bd] is obtained, where every bs(s = 1, . . . , d) is 
p2kd dimensional column vector.

 3. If p �= 2, for given k and d, compute the corresponding P1,P2,Q1 according to 
(11),(13) and (16).
 3.1 Compute P2 · P1 · [b1, . . . , bd] =

(

b̄1 · · · b̄d
b̃1 · · · b̃d

)

.
 3.2 If [b̃1, . . . , b̃d] �= 0(p2kd−2d2−3d−1)×d, then output “no MQQ”.
 3.3 If [b̃1, . . . , b̃d] = 0(p2kd−2d2−3d−1)×d, choose randomly kuv ∈ GF(pk), (u = 1, . . . , 

2d2 + d; v = 1, . . . , d), and compute Q1 ·















b̄1 b̄2 · · · b̄d

k11 k12 · · · k1d

k21 k22 · · · k2d

.

.

.
.
.
.

.

.

.
.
.
.

k2d2+d,1 k2d2+d,2 · · · k2d2+d,d















= 

[vec(A1), . . . , vec(Ad)].
 3.4 Write out {A1, . . . ,Ad} according to [vec(A1), . . . , vec(Ad)].
 3.5 Compute {f1, . . . , fd} by (4) and output “ f1, . . . , fd of MQQ”.

 4. If p = 2, compute P1,P3,Q2 according to (11), (23) and (26).

 4.1 Compute P3 · P1 · [b1, . . . , bd] =

(

b̂1 · · · b̂d
b̌1 · · · b̌d

)

.

 4.2 If [b̌1, . . . , b̌d] �= 0(22kd−2d2−d−1)×d, then output “no MQQ” .
 4.3 If [b̌1, . . . , b̌d] = 0(22kd−2d2−d−1)×d, choose randomly kuv ∈ GF(2k), (u = 1, . . . , 

2d2 + 3d; v = 1, . . . , d), and compute Q2 ·















b̂1 b̂2 · · · b̂d

k11 k12 · · · k1d

k21 k22 · · · k2d

.

.

.
.
.
.

.

.

.
.
.
.

k2d2+3d,1 k2d2+3d,2 · · · k2d2+3d,d















 

= [vec(A1), . . . , vec(Ad)].
 4.4 Write out {A1, . . . ,Ad} according to [vec(A1), . . . , vec(Ad)].
 4.5 Compute {f1, . . . , fd} by (4) and output “ f1, . . . , fd of MQQ”.

(32)[vec(A1), . . . , vec(Ad)] = Q2 ·















b̂1 b̂2 · · · b̂d
k11 k12 · · · k1d
k21 k22 · · · k2d
.
.
.

.

.

.
.
.
.

.

.

.

k2d2+3d,1 k2d2+3d,2 · · · k2d2+3d,d















,
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Two examples
In this section, we use two examples which are dealing with quasigroups of order 24 and 
32 respectively, to illustrate the validity of the theorems and the effectiveness of the pro-
posed algorithm.

Example 1

A quasigroup (Q, ∗) of order 24 and its corresponding representations based on GF(22) 
are given in Table 2.

Suppose P3 · P1 · [b1, b2] =

(

b̂1 b̂2

b̌1 b̌2

)

. Since (b̌1, b̌2) = 0245,2, according to Theorem 3, 

the quasigroup is a MQQ. For a random matrix

Table 2 A quasigroup (Q, ∗) of order 24 and its representations based on GF(22)

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

01 01 00 03 02 11 10 13 12 21 20 23 22 31 30 33 32

02 02 03 00 01 12 13 10 11 22 23 20 21 32 33 30 31

03 03 02 01 00 13 12 11 10 23 22 21 20 33 32 31 30

10 10 11 12 13 00 1 02 03 30 31 32 33 20 21 22 23

11 11 10 13 12 01 0 03 02 31 30 33 32 21 20 23 22

12 12 13 10 11 02 03 00 01 32 33 30 31 22 23 20 21

13 13 12 11 10 03 02 01 00 33 32 31 30 23 22 21 20

20 20 21 22 23 30 31 32 33 00 01 02 03 10 11 12 13

21 21 20 23 22 31 30 33 32 01 00 03 02 11 10 13 12

22 22 23 20 21 32 33 30 31 02 03 00 01 12 13 10 11

23 23 22 21 20 33 32 31 30 03 02 01 00 13 12 11 10

30 30 31 32 33 20 21 22 23 10 11 12 13 00 01 02 03

31 31 30 33 32 21 20 23 22 11 10 13 12 01 00 03 02

32 32 33 30 31 22 23 20 21 12 13 10 11 02 03 00 01

33 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
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the corresponding functions are achieved as follows:

Example 2

A quasigroup (Q, ∗) of order 32 and its corresponding representations based on GF(3) are 
given in Table 3.

Suppose P2 · P1 · [b1, b2] =

(

b̂1 b̂2

b̌1 b̌2

)

. Since (b̌1, b̌2) = 066,2, according to Theorem 2, 

the quasigroup is an MQQ. For a random matrix (kuv)10×2 ∈ GF(3)

(kuv)14×2 =

(

3 1 2 1 3 2 1 0 2 1 2 2 3 2

1 1 3 3 1 3 0 1 2 0 0 1 1 2

)T

,

f1 = (1, x1, x2, x3, x4)A1











1

x1
x2
x3
x4











= (1, x1, x2, x3, x4)











0 1 3 1 1

3 1 3 1 2

2 1 3 0 2

2 1 0 2 1

1 2 2 3 2





















1

x1
x2
x3
x4











= x2 + 3x3 + 2x4 + x21 + 3x22 + 2x1x3 + 2x23 + 2x24,

f2 = (1, x1, x2, x3x4)A1











1

x1
x2
x3
x4











= (1, x1, x2, x3x4)











0 2 1 3 3

1 1 1 0 0

3 3 1 3 1

3 0 1 2 3

0 0 1 1 2





















1

x1
x2
x3
x4











= 3x1 + 2x3 + 3x4 + x21 + x22 + 2x2x4 + 2x23 + 2x24.

(kuv)10×2 =

(

2 0 1 1 2 2 1 0 2 1

1 2 2 1 0 1 2 2 1 2

)T

,

Table 3 A quasigroup (Q, ∗) of order 32 and its representations based on GF(3)

* 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 2 0 4 5 3 7 8 6

2 2 0 1 5 3 4 8 6 7

3 3 4 5 6 7 8 0 1 2

4 4 5 3 7 8 6 1 2 0

5 5 3 4 8 6 7 2 0 1

6 6 7 8 0 1 2 3 4 5

7 7 8 6 1 2 0 4 5 3

8 8 6 7 2 0 1 5 3 4

* 00 01 02 10 11 12 20 21 22

00 00 01 02 10 11 12 20 21 22

01 01 02 00 11 12 10 21 22 20

02 02 00 01 12 10 11 22 20 21

10 10 11 12 20 21 22 00 01 02

11 11 12 10 21 22 20 01 02 00

12 12 10 11 22 20 21 02 00 01

20 20 21 22 00 01 02 10 11 12

21 21 22 20 01 02 00 11 12 10

22 22 20 21 02 00 01 12 10 11
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the corresponding functions are achieved as follows:

Conclusion
In this paper, a necessary and sufficient condition, which reveals that a given quasigroup 
(Q, ∗) of order pkd is an MQQ over GF(pk) of type Quadd−kLink if and only if the matrix 
equation (8) has solution, has been established. This condition provides a deep insight 
into the relationship between MQQ and the corresponding multiplication table from 
the point of view of quasigroup theory. Based on this condition, an algorithm has been 
developed to justify whether the given quasigroup is an MQQ over GF(pk) and gener-
ate the polynomials if it is. Compared with the previous work (Zhang and Zhang 2013), 
this algorithm can identify both bilinear MQQs and non-bilinear ones, and the algebraic 
operation in Galois fields provides more flexibility in choosing p, k and d, which is ben-
eficial for applying MQQ-design to various platforms. The validity of the theorems and 
the effectiveness of the proposed algorithm have been verified by two examples.
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1

x1
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x4











= (1, x1, x2, x3, x4)











0 2 0 0 2

2 0 2 1 0

0 1 0 1 1

1 2 2 0 2

1 0 2 1 0





















1
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x4
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1

x1
x2
x3
x4











= (1, x1, x2, x3, x4)











0 2 2 2 2

1 0 1 0 1

2 2 0 2 2

1 0 1 0 1

2 2 1 2 0





















1

x1
x2
x3
x4











= x2 + x4.
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