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Background
Introduction

Mathematical models based on Lane–Emden type equations (LEEs) have been studied 
in diverse fields of applied sciences, particularly, in the domain of astrophysics. Singular 
second order nonlinear initial value problem (IVP) of LEEs describes various real life 
phenomena. Generally, the most of the problems arising in astrophysics are modelled by 
second order nonlinear ordinary differential equations (ODEs) (Lane 1870; Emden 1907; 
Fowler 1914, 1931). The general form of LFE is represented mathematically as:

for α, x ≥ 0, having initial conditions as:

d2y

dx2
+

α

x

dy

dx
+ f (x, y) = g(x),

y(0) = a,
dy(0)

dx
= 0,
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This study reports novel hybrid computational methods for the solutions of nonlinear 
singular Lane–Emden type differential equation arising in astrophysics models by 
exploiting the strength of unsupervised neural network models and stochastic opti-
mization techniques. In the scheme the neural network, sub-part of large field called 
soft computing, is exploited for modelling of the equation in an unsupervised manner. 
The proposed approximated solutions of higher order ordinary differential equation 
are calculated with the weights of neural networks trained with genetic algorithm, and 
pattern search hybrid with sequential quadratic programming for rapid local conver-
gence. The results of proposed solvers for solving the nonlinear singular systems are in 
good agreements with the standard solutions. Accuracy and convergence the design 
schemes are demonstrated by the results of statistical performance measures based on 
the sufficient large number of independent runs.
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here a is constant and f(x, y) is a nonlinear function. LEE has a singularity at the origin, 
i.e., x = 0, for the above conditions. By taking α = 2, f (x, y) = yn, g(x) = 0 and a = 1 in 
the above equations, we get

with initial conditions as:

where n ≥ 0 is constant. The LEEs arise in the study of the theory of stellar structure, iso-
thermal gas spheres, thermal behavior of a spherical cloud of gas and thermionic current 
models (Davis 1962; Chandrasekhar 1967; Datta 1996). Reliable and accurate solution of 
ODEs, with singularity behavior in various linear and nonlinear IVPs of astrophysics is a 
new challenge for researchers now a day.

In astrophysics, a fluid obeys a polytropic equation of state under the assumption, and 
then with suitable transformation laws Eq. (1) is equivalent to equation of static equilib-
rium. Further in case of the gravitational potential of a self-gravitating fluids the LEE is 
also called Poisson’s equation. Physically, hydrostatic equilibrium provides a connection 
between the gradient of the potential, the pressure and the density. Numerical simula-
tion is presented in (Shukla et al. 2015) for two dimensional Sine–Gordon equation.

Analytically, it is difficult to solve these equations, so various techniques like Ado-
mian decomposition method (ADM), differential transformation method (DTM) and 
perturbation temple technique based on series solutions have been used (Wazwaz 2001, 
2005, 2006; Mellin et al. 1994). Ramos (2005) solved singular IVPs of ODEs using lin-
earization procedures. Liao (2003) presented ADM for solving LEEs (Chowdhury and 
Hashim 2007a). Chowdhury and Hashim (2007b) employed Homotopy-perturbation 
method (HPM) to get the solution for singular IVPs of LEEs. Dehghan and Shakeri 
(2008) provides the solution of ODEs models arising in the astrophysics field using the 
variational iteration procedure. Further, the solution of Emden–Fowler equation (EFE) 
is also reported by incorporating the method of Lie and Painleve analysis by Govinder 
and Leach (2007). Kusano provide solutions for nonlinear ODEs based on EFEs (Kusano 
and Manojlovic 2011). Muatjetjeja and Khalique (2001) given the exact solution for the 
generalized LEEs of two kinds. Modified Homotopy analysis method (HAM) is used by 
Singh et al. (2009) and Mellin et al. (1994) to get the numerical solution of LEEs. Demir 
and Sungu (2009) gives the numerical solutions of nonlinear singular IVP of EFEs using 
DTM. Shukla et al. (2015) provides the studies using the cubic B-spline differential quad-
rature method. Moreover, neural networks applications in astronomy, Astrophysics and 
Space Science can be seen in Bora et al. (2008, 2009), Bazarghan and Gupta (2008), Singh 
et al. (1998, 2006), Gupta et al. (2004), Gulati et al. (994).

Recently, a lot of effects has been made by the researcher in the field of artificial neural 
networks (ANNs) to investigate the solution of the IVPs and boundary value problems 
(BVP) (Ahmad and Bilal 2014; Rudd and Ferrari 2015; Raja 2014a; Raja et  al. 2015b). 
Well-established strength of neural networks as a universal function approximation 
optimized with local and global search methodologies has been exploited to solve the 
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linear and nonlinear differential equations such as problems arising in nanotechnology 
(Raja et al. 2016b, e), fluid dynamics problems based on thin film flow (Raja et al. 2015a, 
2016d), electromagnetic theory (Khan et  al. 2015), fuel ignition model of combustion 
theory (Raja 2014b), plasma physics problems based on nonlinear Troesch’s system (Raja 
2014c), electrical conducting solids (Raja et al. 2016c), magnetohydrodynamic problems 
(Raja and Samar 2014e) Jaffery-Hamel flow in the presence of high magnetic fields (Raja 
et  al. 2015c), nonlinear Pantograph systems (Ahmad and Mukhtar 2015; Raja 2014d; 
Raja et al. 2016a) and many others. These are motivating factors for authors to develop 
a new ANNs based solution of differential equations, which has numerous advantages 
over its counterpart traditional deterministic numerical solvers. First of all, ANN meth-
odologies provide the continuous solution for the entire domain of integration, general-
ized method which can be applied for the solution of other similar linear and nonlinear 
singular IVPs and BVPs. Aim of the present research is to develop the accurate, alter-
nate, robust and reliable stochastic numerical solvers to solve the Lane-Enden equation 
arising in astrophysics models.

Organization of the paper is as follows: “Methods” section gives the proposed math-
ematical modelling of the system. In “Learning methodologies” section, learning meth-
odologies are presented. Numerical experimentation based on three problems and cases 
is presented in “Results and discussion” section. In “Comparison through statistics” sec-
tion comparative studies and statistical analysis are presented. In last section conclu-
sions is drawn with future research directions.

Methods
Mathematical modelling

In this section, differential equation neural networks mathematical modelling of LEEs 
has been given. Arbitrary combine feed-forward ANNs are used to model the equation, 
while. Log-sigmoid based transfer function is used in the hidden layer of the networks. 
Following continuous mapping representing the solution y(x) and its respectively deriva-
tions is used to solve LEFs (Raja et al. 2016e; Raja 2014c).

where the ‘hat’ on the top of the symbol y(x) denotes their estimated values while δi, βi, 
and ωi are bounded real-valued representing the weights of the ANN models for m the 
number of neurons and f is the activation function, which is equal to:

(3)
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for the hidden layers of the networks.
Using log-sigmoid, ANNs based approximation of the solution and few of its deriva-

tives can be written as:

where ŷ(1)LS (x) and ŷ(2)LS (x) represent the first and second order derivative with respect to x.
In Eq.  (1), the generic form of nonlinear singular Lane–Emden equation is given. 

While in Eqs.  (3–5) continuous mapping of neural networks models for approximate 
solution ŷ(x) and its derivatives are presented in term of single input, hidden and output 
layers. Additionally, in the hidden layers log-sigmoid activation function and its deriva-
tives are used for y(t) and its derivatives, respectively.

Fitness function formulation

The objective function or fitness function is formulated by defining an unsupervised 
manner of differential equation networks (DEN) of given equation and its associated 
boundary conditions. It is defined as, where the mean square error term ∈1 is associated 
with Eq. (1) is given as (Raja 2014c, d):

where ŷk = ŷ(xk),N = 1
h
, xk = kh(k = 0, 1, 2, . . . ,N ).

The interval is divided into number of steps with step size and mean square error for 
Eq. (2) can be defined as follows:

By combining Eqs. (6) and (7), we obtain the fitness function

The ANNs architecture for nonlinear singular LEEs is presented in Fig. 1.

Learning methodologies
Pattern search (PS) optimization technique belongs to a class of direct search meth-
ods, i.e., derivative free techniques, which are suitable to solve effectively the variety 
of constrained and unconstrained optimization problems. Hooke et al., are the first to 
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introduce the name of PS technique (Hooke and Jeeves 1996), while the convergence 
of the algorithm was first proven by Yu (1979). In standard operation of PS technique, 
a sequence of points, which are adapted to desire solution, is calculated. In each cycle, 
the scheme finds a set of points, i.e., meshes, around the desired solution of the pre-
vious cycle (Dolan et al. 2003). The mesh is formulated by including the current point 
multiplied by a set of vectors named as a pattern (Lewis et  al. 1999). PS technique is 
very helpful to get the solution of optimization problem such as minimization subjected 
to bound constrained, linearly constrained and augmented convergent Lagrangian algo-
rithm (Lewis et al. 2000).

Genetic algorithms (GAs) belong to a class of bio-inspired heuristics develop on the 
basis of mathematical model of genetic processes (Man et al. 1996). GAs works through 
its reproduction operators based on selection operation, crossover techniques and 
mutation mechanism to find appropriate solution of the problem by manipulating can-
didate solutions from entire search space (Cantu-Paz 2000). The candidate solutions are 
generally given as strings which is known as chromosomes. The entries of chromosome 
are represented by genes and the values of these genes represents the design variables 
of the optimization problem. A set of chromosome in GAs is called a population which 
used thoroughly in the search process. A population of few chromosomes may suffer a 
premature convergence where as large population required extensive computing efforts. 
Further details, applications and recent trends can be seen in (Hercock 2003; Zhang 
et al. 2014; Xu et al. 2013).

Sequential quadratic programming (SQP) belong to a class of nonlinear programming 
techniques. Supremacy of SQP method is well known on the basis of its efficiency and 
accuracy over a large number of benchmark constrained and unconstrained optimiza-
tion problems. The detailed overview and necessary mathematical background are given 
by Nocedal and Wright (1999). The SQP technique has been implemented in numerous 

Fig. 1 Design of neural network architecture for nonlinear singular Lane–Emden type equation



Page 6 of 23Ahmad et al. SpringerPlus  (2016) 5:1866 

applications and a few recently reported articles can be seen in Sivasubramani et  al. 
(2011), Aleem and Eldeen (2012).

In simulation studies, we have used MATLAB optimization toolbox for running of 
SQP, PS, and GAs as well as hybrid approaches based on PS-SQP and GA-SQP to get the 
suitable parameters of ANN models. The workflow diagram of the proposed methodol-
ogy base on GA-SQP to get the appropriate design parameters is shown in Fig. 2 while 
the procedure of GA-SQP to find the optimized weight vector of ANN is given below:

Step 1: Initialization: create an initial population with bounded real numbers with 
each row vector represents chromosomes or individuals. Each chromosome has num-
ber of genes equal to a number of design parameters in ANN models. The parameter 
settings GAs are given in Table 1.
Step 2: Fitness evaluations: Determined the value of the fitness row vector of the popu-
lation using the Eq. (7).
Step 3: Stoppage: Terminate GAs on the basis of following criteria.
The predefined fitness value ∈ is achieved by the algorithm, i.e., ∈< 10−15.

Total number of generations/iterations are executed.
Any of the termination conditions given in Table 1 for GAs are achieved.

Fig. 2 Flow chart of genetic algorithm
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If any of the stopping criteria is satisfied, then go to step 6 otherwise continue

Step 4: Ranking: Rank each chromosome on the basis minimum fitness ∈ values. The 
chromosome ranked high has small values of the fitness and vice versa.
Step 5: Reproduction: Update population for each cycle using reproduction operators 
based on crossover, mutation selection and elitism operations. Necessary settings of 
these fundamental operators are given in Table 1.

Go to step 2 with newly created population

Step 6: Refinement: The Local search algorithm based on SQP is used for refinement 
of design parameters of ANN model. The values of global best chromosome of GA are 
given to SQP technique as an initial start weight. In order to execute the SQP algo-

Table 1 Parameters setting for SQP, PS and GA respectively

Methods Parameter Setting Parameter Setting

SQP Initial weight vector 
creation

Randomly between 
(−1, 1)

Maximum function 
evaluation

10000

Number of variable 30 Fitness limit 10−25

Total initial weight 
vectors

1000 X tolerance 10−25

Number of iterations 10000 Function tolerance 10−30

Derivative By solvers Nonlinear constraint 
tolerance

10−30

Finite difference type Central Upper bound −10

Hessian BFGS Lower bound 10

Algorithm SQP Others Default

PS Solver Pattern search Maximum size Inf

Start point Randn (1, 30) Scale On

Poll method GPS positive 2N Bind tolerance 10−03

Complete poll Off Maximum iteration 2000

Polling order Consecutive Max function evalu-
ation

1,000,000

Initial size 1 X tolerance 10−25

Expansion factor 2 Function tolerance 10−30

Tolerance Eps Nonlinear constraint 
tolerance

10−30

Mesh tolerance 10−32 Plot Function value

GA Solver GA Pop type Double vector

No of variables 30 Pop size [30, 30, 30, 30, 30, 30, 30, 
30, 30]

Time limit Default Initial range [0,1]

Generations 1,000,000 Scaling fun Rank

Stall generations 2000 Selection fun Stochastic

Function tolerance 10−28 Interval 20

Nonlinear constraint 
tolerance

10−28 Fraction 0.2

Initial penalty 10 Plot Best function

Penalty factor 100 Elite count 2

Crossover Forward Time limit Inf

Direction Forward Other Defaults
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rithm, we incorporated MATLAB build in function ‘fmincon’ with algorithm SQP. Nec-
essary parameter settings for SQP algorithm is given in Table 1.
Step 7: Data Generation and analysis: Store the global best individual of GA and GA-
SQP algorithm for the present run. Repeat the steps 2–6 for multiple independent runs 
to generate a large data set so that reliable and effective statistical analysis can be per-
formed.

Results and discussion
The results of simulation studies are presented here to solve LEEs by the proposed ANN 
solver. Proposed results are compared with reported analytical as well as numerical 
methods.

Problem I: (Case I: n = 0)

For n = 0, the Eq. (1) becomes linear ordinary differential equation, can be written as:

and its associated conditions are

The system given in Eqs. (8–9) is solved by taking 10 neuron in ANN model and result-
ant 30 unknown weights δi,βi, and ωi for I = 1, 2,…, 10. The fitness function is developed 
for this case by taking step size h = 0.1 and hence 11 numbers of grid points in the inter-
val (0, 1) as:

We have to find the weights for each model such that ∈→ 0. The optimization of these 
weights is carried out using global and local approach of algorithm with parameter set-
ting shown in Table 1. Training of weights is carried out by SQP, PS, GA, and also with a 
hybrid approach of PS-SQP and GA-SQP algorithms. Parameter setting given in Table 1 
will be used for these algorithms. These algorithms are run and weights are trained 
through the function of algorithms; one specific set of weights learned by SQP, PS, GA, 
PS-SQP, GA-SQP algorithms yield fitness values of 1.90E−09, 4.97E−07, 6.45E−07, 
5.60E−10, 9.38E−09, respectively, are given in Table 2. While the learning plots based 
on fitness against number of iterations for GA, GA-SQP, PS and PS-SQP algorithm are 
given Fig. 3.

Results of learning plots shows that rate of convergence (reduction in the fitness val-
ues) and accuracy of GA is relatively better than that of PS techniques, while, the results 
of the hybrid approaches i.e., PS-SQP and GA-SQP, are found better than that of GA and 
PS techniques. Additionally, very small difference is observed between the results of the 
hybrid approaches, however GA-PS results are a bit superior.
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Proposed results have been compared with the analytical results (Davis 1962) and 
numerical technique (Mall and Chakraverty 2014) which have been presented in Table 3. 
Mean Absolute errors (MAE) reported in SQP, PS, GA, PS-SQP, GA-SQP algorithms are 
5.44E−07, 3.18E−07, 1.51E−06, 9.03E−06, 6.67E−07 as given in Table 4. Mean square 
error (MSE) reported in SQP, PS, GA, PS-SQP, GA-SQP algorithms are 3.35E−06, 
2.95E−05, 2.73E−04, 1.65E−04, 5.58E−06 for data presented in Table  4. Further, a 
graphical representation of proposed results for these problems is shown in Fig. 4. After 
comparison of proposed solution with reported results of Mall and Chakraverty (2014), 
PS-SQP gives the absolute error 5.60E−10 while the absolute error of Mall and Chakrav-
erty (2014) is 1.00E−03 which definitely shows the better convergence of the proposed 
method. The mean absolute error (MAE) is defined as:

The MAE values for SQP, PS, GA, PS-SQP, GA-SQP algorithms are evaluated as 
1.01E−05, 4.09E−05, 4.09E−04, 3.40E−04, and 9.15E−06, respectively. The results of 
statistical analysis based on 100 independent runs of each algorithm for input with step 
size of 0.1 is given in Table 5. Smaller values of statistical performance indices verified 
the consistent correctness of the proposed schemes.

MAE = AVERAGE(i=1,2,3,...11)

∣

∣y(xi)− ŷ(xi)
∣

∣

Table 2 Best weights trained for neural network modelling by SQP, PS and PSO-SQP algo-
rithms

Methods I δi βi ωi i δii βi ωi

SQP 1 0.78636 0.11707 −1.72866 6 2.24414 −1.07067 3.55435

2 −2.80683 0.84866 −1.47352 7 0.72638 0.80491 −1.05825

3 −0.66561 0.11462 −1.56349 8 −0.35824 −0.30248 −0.81978

4 −2.77591 −0.10056 −0.56814 9 −0.93043 −0.67351 0.00426

5 0.35878 −1.54018 −0.39116 10 0.77053 1.44174 1.15517

PS 1 3.03789 −0.35385 0.02289 6 −1.38575 4.00223 −8.80831

2 0.82521 −0.82359 1.73409 7 1.10965 −0.74481 −1.14468

3 −8.99993 −3.18106 −4.91916 8 −0.27787 −3.01028 0.61488

4 −1.05818 0.54020 1.74266 9 −5.93029 0.35017 −2.00264

5 7.54212 0.28198 −0.83137 10 −2.05182 0.45484 2.87243

PS-SQP 1 −0.72218 0.55533 3.06589 6 −1.26715 1.30549 −1.92557

2 0.70591 3.76635 4.43837 7 −1.18046 −1.15109 −0.18455

3 0.09391 3.18733 1.15390 8 0.00790 1.08650 0.35001

4 7.63559 −0.07725 −1.55487 9 0.06668 −4.96006 7.78676

5 1.38422 −0.76144 −1.69561 10 0.00121 −6.38647 6.67553

GA 1 1.29680 −0.70586 0.94321 6 0.18766 2.70748 −1.62678

2 −1.08867 0.43791 1.16502 7 0.31812 2.33138 −0.61683

3 0.95837 −0.89643 1.47983 8 −0.06982 0.73937 −0.09366

4 0.415759 3.43301 1.48746 9 −0.55372 0.98114 1.17121

5 −0.01698 5.29995 −2.90769 10 0.14876 1.78333 0.46163

GA-SQP 1 −0.17494 1.78344 0.98665 6 −0.19778 0.02527 0.14497

2 −0.91882 −0.05487 0.84314 7 −0.18451 −0.15034 0.50728

3 −0.07822 0.34068 0.50753 8 0.32558 −1.24882 2.01797

4 0.75215 1.77652 1.46356 9 2.07449 −1.21908 3.30059

5 −0.08314 1.50680 −1.73595 10 −1.08201 0.038511 1.28033
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Problem II: (Case II: n = 1)

For n = 1, the Eq. (1) becomes linear ordinary differential equation of form

(11)
1

x2
d

dx

(

x2
dy

dx

)

+ y = 0,

Fig. 3 Learning curves for different optimization algorithms for Problem I. a GA, b GA-SQP, c PS, d PS-SQP
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along with initial conditions given as:

(12)y(0) = 1,
dy(0)

dx
= 0.

Table 3 Comparative studies of the results of proposed methodologies for Problem I

X Exact Reported solution Proposed approximated solution ŷ(x)

y(x) Analytical result ChNN (Mall 
and Chakraverty 
2014)

SQP PS GA PS-SQP GA-SQP

0 1.000000 1.0000 1.0000 1.000000 1.000001 1.000037 1.000000 1.000000

0.1 0.998333 0.9983 0.9993 0.998349 0.998322 0.998451 0.998224 0.998339

0.2 0.993333 0.9933 0.9901 0.993376 0.993513 0.993512 0.993197 0.993341

0.3 0.985000 0.9850 0.9822 0.985053 0.985395 0.985151 0.984859 0.985006

0.4 0.973333 0.9733 0.9766 0.973380 0.973868 0.973433 0.973186 0.973341

0.5 0.958333 0.9583 0.9602 0.958369 0.958901 0.958420 0.958184 0.958341

0.6 0.940000 0.9400 0.9454 0.940032 0.940514 0.940122 0.939851 0.940007

0.7 0.918333 0.9183 0.9134 0.918369 0.918761 0.918511 0.918183 0.918340

0.8 0.893333 0.8933 0.8892 0.893375 0.893700 0.893543 0.893182 0.893340

0.9 0.865000 0.8650 0.8633 0.865044 0.865370 0.865192 0.864848 0.865007

1 0.833333 0.8333 0.8322 0.833373 0.833750 0.833480 0.833181 0.833340

Table 4 Comparative studies based on values of absolute errors (AE) for Problem I

X Proposed methods (AE) Reported (AE)

SQP PS GA PS-SQP GA-SQP ChNN (Mall and  
Chakraverty 2014)

0 1.90E−09 4.97E−07 6.45E−07 5.60E−10 9.38E−09 0.00E+00

0.1 1.47E−06 3.47E−05 2.72E−05 1.03E−07 2.07E−06 1.00E−03

0.2 4.35E−06 8.80E−05 1.41E−05 3.60E−07 3.51E−06 3.20E−03

0.3 5.61E−06 1.03E−04 8.75E−05 4.93E−07 2.58E−06 2.80E−03

0.4 5.16E−06 8.88E−05 1.33E−04 4.67E−07 2.19E−06 3.30E−03

0.5 4.09E−06 7.04E−05 1.26E−04 3.73E−07 2.95E−06 1.90E−03

0.6 3.47E−06 6.62E−05 8.39E−05 3.12E−07 3.24E−06 5.40E−03

0.7 3.71E−06 7.61E−05 3.88E−05 3.12E−07 2.62E−06 4.40E−03

0.8 4.39E−06 8.77E−05 2.09E−05 3.50E−07 2.42E−06 4.10E−03

0.9 4.69E−06 8.86E−05 4.08E−05 3.78E−07 2.99E−06 1.70E−03

1 4.27E−06 8.01E−05 7.66E−05 3.46E−07 2.69E−06 1.10E−03
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Fig. 4 The graph between the approximated result and reported results of Problems I, II and III
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The system based on Eqs. (11–12) is solved on the similar pattern of last problems and 
fitness function for this case is constructed as:

The algorithms are executed and weights are trained through the process. One specific 
set of weights learned by the SQP, PS, GA, PS -SQP, GA-SQP algorithms yield fitness 
values of 5.56E−08, 1.84E−07, 9.06E−07, 7.06E−09 and 4.98E−09 respectively. The 
comparison of proposed fitness results for problem II with reported results Davis (1962) 
and Mall and Chakraverty (2014) is provided in Table 6. While the comparison on the 
basis of absolute error (AE) is given in Table 7. Mean Absolute error (MAE) reported 
in the SQP, PS, GA, PS-SQP, GA-SQP algorithms is 3.61E−03, 3.52E−02, 3.64E−03, 
3.86E−03, and 3.59E−03, respectively, while the Mean Square Error (MSE) these five 
algorithms are 1.05E−11, 6.86E−08, 2.98E−10, 3.45E−04 and 3.72E−11, respectively.

The working of the proposed ANN models is evaluated in terms of accuracy and con-
vergence on the basis of statistics through sufficient multiple runs rather on the single 
successful run of the scheme. The results and statistical analysis based on 100 runs of the 
algorithms in Table 8. In this case also relatively small values of statistical performance 
indices are obtained which show the worth of the proposed schemes.

(13)∈=
1

11

10
∑

k=0

[

d

dx

(

x2k
dŷk

dx

)

+ x2k ŷk

]2

+
1

2

[

(

y(0)− 1
)2

+

(

dy(0)

dx
− 0

)2
]

Table 5 Results of statistics based on 100 independent runs of each algorithm

Methods x Min Max Mean Median STD Variance MSE

SQP 0.1 2.06E−09 1.58E−05 3.35E−06 2.71E−06 2.81E−06 7.92E−12 3.35E−06

0.3 3.54E−07 7.33E−05 1.39E−05 1.10E−05 1.19E−05 1.41E−10 1.39E−05

0.5 3.19E−08 1.03E−04 1.23E−05 8.93E−06 1.32E−05 1.74E−10 1.23E−05

0.7 3.07E−07 8.17E−05 1.06E−05 7.53E−06 1.07E−05 1.15E−10 1.06E−05

0.9 4.25E−07 7.35E−05 1.19E−05 9.49E−06 1.08E−05 1.16E−10 1.19E−05

PS 0.1 8.94E−07 1.24E−03 2.73E−04 2.08E−04 4.82E−05 2.32E−09 2.95E−05

0.3 1.71E−06 1.52E−03 4.66E−04 3.66E−04 1.09E−04 1.20E−08 4.73E−05

0.5 2.67E−06 1.39E−03 4.76E−04 3.61E−04 1.06E−04 1.12E−08 4.74E−05

0.7 3.82E−07 1.56E−03 4.52E−04 3.65E−04 8.49E−05 7.20E−09 4.54E−05

0.9 1.56E−06 1.52E−03 4.65E−04 3.42E−04 1.01E−04 1.01E−08 4.74E−05

PS-SQP 0.1 7.20E−08 3.51E−04 2.95E−05 1.14E−05 2.65E−04 7.02E−08 2.73E−04

0.3 3.38E−07 9.57E−04 4.73E−05 1.72E−05 3.78E−04 1.43E−07 4.65E−04

0.5 3.73E−07 8.88E−04 4.74E−05 1.66E−05 3.87E−04 1.50E−07 4.76E−04

0.7 2.18E−07 6.01E−04 4.54E−05 1.81E−05 3.72E−04 1.39E−07 4.52E−04

0.9 1.37E−07 8.15E−04 4.74E−05 1.70E−05 3.86E−04 1.49E−07 4.65E−04

GA 0.1 1.34E−07 1.55E−03 1.65E−04 7.79E−05 2.54E−04 6.45E−08 1.65E−04

0.3 1.75E−07 2.86E−03 3.20E−04 2.13E−04 3.83E−04 1.47E−07 3.20E−04

0.5 1.79E−07 5.57E−03 4.23E−04 1.66E−04 7.39E−04 5.46E−07 4.23E−04

0.7 1.07E−05 5.82E−03 4.59E−04 1.52E−04 8.02E−04 6.43E−07 4.59E−04

0.9 1.39E−06 4.39E−03 3.85E−04 1.67E−04 6.13E−04 3.76E−07 3.85E−04

GA-SQP 0.1 2.42E−07 3.68E−05 5.58E−06 4.46E−06 2.54E−04 6.45E−08 5.58E−06

0.3 4.71E−08 5.00E−05 1.19E−05 7.77E−06 3.83E−04 1.47E−07 1.18E−05

0.5 1.01E−07 5.00E−05 9.80E−06 7.51E−06 7.39E−04 5.46E−07 9.80E−06

0.7 7.70E−07 5.10E−05 9.94E−06 7.26E−06 8.02E−04 6.43E−07 9.94E−06

0.9 1.20E−07 5.21E−05 1.07E−05 7.77E−06 6.13E−04 3.76E−07 1.07E−05
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Problem III: (Case III: n = 5)

For n = 5, the Eq. (1) can be represented as:

with initial conditions as given below

The Eqs. (14–15) has been solved by formulating the fitness function ∈ as:
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Table 6 Comparative studies of the results of proposed methodologies for Problem II

X Exact Reported solution Proposed approximate solution ŷ(x)

y(x) Analytical 
results

ChNN (Mall 
and Chakraverty 2014)

SQP PS GA PS-SQP GA-SQP

0 1.00000 1.00000 1.00000 1.00000 0.99998 0.99999 1.00000 0.99999

0.1 0.99800 0.99830 1.00180 0.99800 0.99805 0.99828 0.99833 0.99833

0.2 0.99300 0.99330 0.99050 0.99300 0.99278 0.99346 0.99335 0.99336

0.3 0.98500 0.98510 0.98390 0.98500 0.98470 0.98542 0.98513 0.98513

0.4 0.97300 0.97350 0.97340 0.97400 0.97343 0.97418 0.97375 0.97375

0.5 0.95800 0.95890 0.95980 0.95900 0.95891 0.95983 0.95935 0.95935

0.6 0.94100 0.94110 0.94170 0.94200 0.94169 0.94255 0.94209 0.94209

0.7 0.91800 0.92030 0.92100 0.92200 0.92187 0.92256 0.92217 0.92217

0.8 0.89300 0.89670 0.89250 0.91200 0.89943 0.90019 0.89979 0.89979

0.9 0.86500 0.87040 0.87000 0.87500 0.87489 0.87544 0.87521 0.87521

1 0.83300 0.8415 0.8431 0.84900 0.84832 0.84868 0.84865 0.84865

Table 7 Comparative studies based on values of absolute errors (AE) for Problem II

X Proposed methods (AE) Proposed (AE)

SQP PS GA PS-SQP GA-SQP ChNN (Mall 
and Chakraverty 
2014)

0 5.56E−08 1.84E−07 9.06E−07 7.06E−09 4.98E−09 0.00E+00

0.1 3.28E−06 6.20E−06 2.49E−06 1.40E−06 5.89E−06 3.50E−03

0.2 3.08E−05 8.52E−06 2.87E−05 2.08E−05 3.41E−05 2.80E−03

0.3 1.39E−04 6.54E−06 1.36E−04 1.29E−04 1.41E−04 1.20E−03

0.4 4.25E−04 7.20E−06 4.21E−04 4.17E−04 4.26E−04 1.00E−04

0.5 1.02E−03 8.28E−06 1.02E−03 1.02E−03 1.02E−03 9.00E−04

0.6 2.09E−03 7.49E−06 2.09E−03 2.08E−03 2.10E−03 6.00E−04

0.7 3.84E−03 7.19E−06 3.84E−03 3.83E−03 3.84E−03 7.00E−04

0.8 6.47E−03 7.98E−06 6.47E−03 6.46E−03 6.46E−03 4.20E−03

0.9 1.02E−02 7.58E−06 1.02E−02 1.02E−02 1.02E−02 4.00E−04

1 1.53E−02 7.95E−06 1.53E−02 1.53E−02 1.53E−02 1.60E−03
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We apply SQP, PS, GA, PS-SQP, GA-SQP algorithms to find the unknown weights of 
ANNs to solve Eq. (14). One set of weight for SQP, PS, GA, PS-SQP, GA-SQP algorithms 
with fitness vales 4.13E−09, 3.36E−06, 6.48E−07, 6.90E−06, and 6.09E−08, respec-
tively, is used to obtain the solution of the equation and results are given in Tables  9 
and 10. The comparison of proposed results for Problem III with reported results Davis 
(1962) and Mall and Chakraverty (2014) is also given in Table 9. MAE reported in the 
SQP, PS, GA, PS-SQP, GA-SQP algorithms is 7.91E−02, 9.17E−02, 7.80E−02, 7.47E−02 
and 7.92E−03. MSE values reported for SQP, PS, GA, PS-SQP, GA-SQP algorithms are 
6.29E−05, 7.05E−05, 8.41E−05, 5.58E−05 and 6.27E−05, respectively. The complete 
statistical analysis has been displayed in Table 11.

Comparison through statistics
We present the comparative studies on the basis of following:

  • The comparative studies for the given five proposed artificial intelligence solvers are 
presented for solving LEEs in terms of fitness, mean square error (MSE) and root 
mean absolute error (RMAE) which is plotted in Figs. 5, 6 and 7, respectively. Fur-
thermore, MSE results of scattered data are shown in Fig. 8.

Table 8 Results of statistical operators based on 100 independent runs of each algorithm 
for Problem II

Methods X Min Max Mean Median STD Variance MSE

SQP 0.1 0.00E+00 1.00E−05 0.00E+00 0.00E+00 2.43E−06 5.92E−12 1.05E−11

0.3 0.12E−04 0.19E−02 0.14E−03 0.14E−03 9.59E−06 9.19E−11 1.92E−08

0.5 0.99E−03 0.10E−02 0.10E−02 0.10E−02 8.71E−06 7.59E−11 1.05E−06

0.7 0.31E−02 0.38E−02 0.38E−02 0.31E−02 6.10E−06 3.72E−11 1.47E−05

0.9 0.10E−01 0.10E−01 0.10E−01 0.10E−01 5.88E−06 3.45E−11 1.04E−04

PS 0.1 5.35E−06 1.16E−03 2.62E−04 1.94E−04 2.40E−04 5.75E−08 6.86E−08

0.3 6.54E−06 2.15E−03 3.46E−04 2.88E−04 3.18E−04 1.28E−07 1.20E−07

0.5 8.28E−06 1.83E−03 8.89E−04 9.11E−04 4.08E−04 1.66E−07 7.91E−07

0.7 7.19E−06 4.63E−03 3.67E−03 3.73E−03 5.62E−04 3.16E−07 1.34E−05

0.9 7.58E−06 1.09E−02 9.99E−03 1.01E−02 0.11E−02 1.16E−06 9.99E−05

PS-SQP 0.1 1.66E−08 2.00E−04 1.73E−05 7.01E−06 2.65E−05 7.01E−10 2.98E−10

0.3 8.63E−05 0.27E−02 0.14E−03 0.13E−03 2.64E−05 6.99E−10 2.09E−08

0.5 0.74E−03 0.11E−02 0.10E−02 0.10E−02 3.65E−05 1.33E−09 1.06E−06

0.7 0.37E−02 0.39E−02 0.38E−02 0.38E−02 3.38E−05 1.14E−09 1.48E−05

0.9 0.10E−01 0.10E−01 0.10E−01 0.10E−02 3.05E−05 9.29E−10 0.10E−03

GA 0.1 2.04E−07 9.47E−01 0.18E−01 7.54E−05 1.18E−02 0.14E−01 0.34E−03

0.3 0.71E−05 9.17E−02 0.18E−01 0.22E−03 1.16E−02 0.13E−01 0.33E−03

0.5 0.36E−03 8.75E−02 0.18E−01 0.10E−02 1.13E−02 0.11E−01 0.34E−03

0.7 0.14E−02 8.22E−02 0.20E−01 0.39E−02 1.07E−02 0.11E−01 0.40E−03

0.9 0.5068E−02 7.57E−02 0.24E−01 0.10E−01 1.00E−02 0.10E−01 0.61E−03

GA-SQP 0.1 4.04E−08 4.27E−05 6.15E−06 4.62E−06 6.24E−06 3.89E−11 3.72E−11

0.3 0.12E−02 0.18E−03 0.14E−03 0.14E−03 1.01E−05 1.02E−10 2.00E−08

0.5 0.10E−02 0.10E−02 0.10E−02 0.10E−02 8.79E−06 7.72E−11 1.05E−06

0.7 0.38E−02 0.38E−02 0.38E−02 0.38E−02 8.27E−06 6.84E−11 1.48E−05

0.9 0.10E−01 0.10E−01 0.10E−01 0.10E−01 7.59E−06 5.76E−11 0.10E−03
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  • The selection of appropriate number of neurons in the construction of ANN models 
has a significant role in the accuracy and complexity of the algorithms. The perfor-
mance measuring indices bases on MAE, MSE, and RMAE are used to determine/
evaluate the most suitable number of neurons in the proposed ANN models.

  • The histogram studies which show the relative frequency of obtaining performance 
indices values in certain range. Behavior of proposed methodologies through histo-
gram plots are analyzed for all three problems

In order to evaluate small differences, we presented a statistical analysis, particularly 
fitting of normal distribution based on absolute errors (AEs) of SQP, PS and GA algo-
rithms as shown in Figs. 9, 10 and 11 for problems I, II and III, respectively. The nor-
mal curve fitting is used to find how much the normal distribution accurately fits to 
AEs of our proposed results of algorithms with reported results as presented in Fig. 12. 

Table 9 Comparative studies of the results of proposed methodologies for Problem III

X Exact Reported solution Proposed approximate solution ŷ(x)

y(x) Analytical 
results

ChNN (Mall and  
Chakraverty 2014)

SQP PS GA PS-SQP GA-SQP

0 1.000 1.000 1.000 1.000 1.0013 1.0003 1.000 1.000

0.1 0.998 0.998 0.998 0.99835 1.001 0.9987 0.9983 0.99834

0.2 0.993 0.993 0.994 0.99342 0.9964 0.994 0.9935 0.99341

0.3 0.985 0.985 0.990 0.98535 0.9878 0.9861 0.9854 0.98534

0.4 0.973 0.974 0.971 0.97437 0.977 0.9751 0.9744 0.97436

0.5 0.958 0.961 0.968 0.96078 0.9635 0.9615 0.9608 0.96077

0.6 0.940 0.945 0.941 0.94492 0.9471 0.9455 0.9449 0.94492

0.7 0.918 0.927 0.930 0.92716 0.9289 0.9276 0.9271 0.92715

0.8 0.893 0.908 0.908 0.90785 0.9097 0.9082 0.9078 0.90785

0.9 0.865 0.887 0.883 0.88737 0.8888 0.8876 0.8873 0.88736

1 0.833 0.866 0.865 0.86603 0.8673 0.8662 0.866 0.86603

Table 10 Comparative studies based on values of absolute errors (AE) for Problem III

X Proposed methods (AE) Reported (AE)

SQP PS GA PS-SQP GA-SQP ChNN (Mall and  
Chakraverty 2014)

0 4.13E−09 3.361E−06 6.481E−07 6.901E−06 6.096E−08 0.00E+00

0.1 1.331E−05 5.361E−05 3.561E−05 6.251E−05 9.283E−06 2.001E−04

0.2 8.653E−05 0.171E−03 0.160E−03 0.106E−03 7.541E−05 0.123E−03

0.3 0.352E−03 0.437E−03 0.459E−03 0.113E−03 0.338E−03 0.461E−03

0.4 0.104E−02 0.114E−02 0.115E−02 0.825E−03 0.102E−02 0.324E−02

0.5 0.245E−02 0.248E−02 0.254E−02 0.228E−02 0.241E−02 0.761E−02

0.6 0.492E−02 0.497E−02 0.499E−02 0.477E−02 0.497E−02 0.384E−02

0.7 0.882E−02 0.888E−02 0.888E−02 0.867E−02 0.888E−02 0.321E−02

0.8 0.145E−01 0.145E−01 0.145E−01 0.143E−01 0.145E−01 0.234E−03

0.9 0.228E−01 0.224E−01 0.224E−01 0.222E−01 0.223E−01 0.443E−02

1 3.270E−02 3.274E−02 3.274E−02 3.259E−02 3.269E−02 9.000E−04
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Figure 13 and 14 for problems I, II and III, respectively. In the Figs. 9, 10 and 11 also dis-
play 95 % confidence intervals (dotted curves) for the fitted normal distribution.

These confidence levels indicate that the performance of all six methods based on 
the fitted normal distribution and SQP showed higher accuracy than the other five in 

Table 11 Results of statistics based on 100 independent runs of each algorithm for Prob-
lem III

Methods x Min Max Mean STD Variance MSE

SQP 0.1 8.691E−08 1.020E−03 2.640E−05 1.030E−04 1.070E−08 2.640E−05

0.3 0.132E−03 0.723E−03 0.333E−03 5.730E−05 3.290E−09 3.330E−04

0.5 0.134E−02 0.259E−02 0.242E−02 1.150E−04 1.320E−08 2.420E−03

0.7 0.783E−02 0.893E−02 0.880E−02 1.030E−04 1.050E−08 8.800E−03

0.9 0.218E−01 0.224E−01 0.223E−01 5.940E−05 3.530E−09 2.240E−02

PS 0.1 3.812E−06 5.934E−01 0.937E−02 0.661E−01 0.440E−02 0.937E−02

0.3 5.215E−06 4.442E−01 0.763E−02 0.511E−01 0.260E−02 0.763E−02

0.5 2.342E−05 3.891E−01 0.828E−02 0.436E−01 0.220E−02 0.828E−02

0.7 0.406E−03 3.695E−01 0.137E−01 0.391E−01 0.150E−02 0.137E−01

0.9 0.158E−01 3.648E−01 0.266E−01 0.355E−01 0.130E−02 0.266E−01

PS-SQP 0.1 3.824E−06 5.933E−01 0.937E−02 0.600E−01 0.440E−02 0.937E−02

0.3 5.232E−06 4.442E−01 0.763E−01 0.657E−01 0.260E−02 0.763E−02

0.5 2.341E−05 3.891E−01 0.828E−02 0.699E−01 0.190E−02 0.828E−02

0.7 0.406E−03 3.695E−01 0.137E−01 0.722E−01 0.150E−02 0.137E−01

0.9 0.158E−01 3.648E−01 0.266E−01 0.722E−01 0.130E−02 0.266E−01

GA 0.1 1.224E−06 4.256E−01 0.946E−02 0.600E−01 0.360E−02 0.946E−02

0.3 5.632E−05 4.670E−01 0.103E−01 0.657E−01 0.430E−02 0.103E−01

0.5 4.856E−05 4.981E−01 0.132E−01 0.699E−01 0.490E−02 0.132E−01

0.7 0.634E−01 5.172E−01 0.201E−01 0.722E−01 0.520E−02 0.201E−01

0.9 0.201E−02 5.224E−01 0.338E−01 0.722E−01 0.520E−02 0.338E−01

GA-SQP 0.1 6.86E−09 2.680E−05 7.920E−06 5.42E−06 2.940E−11 7.920E−06

0.3 0.293E−03 0.387E−03 0.338E−03 1.45E−05 2.110E−10 3.380E−04

0.5 0.241E−02 0.246E−02 0.244E−03 8.49E−06 7.200E−11 2.440E−03

0.7 0.879E−02 0.883E−02 0.881E−02 7.79E−06 6.060E−11 8.820E−03

0.9 0.223E−01 0.223E−01 0.223E−01 7.23E−06 5.220E−11 2.240E−02
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Fig. 5 Fitness of 100 independent runs taken by five different algorithms
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Problem I, in Problem II PS showed higher accuracy than the other five. But in the Prob-
lem III hybrid technique PS-SQP showed higher accuracy than the other five solvers.

It can be easily observed from these figures that, the result obtained by technique 
SQP in Problem I. PS in Problem II and hybrid PS-SQP in problem III is better than 
the results obtained by others algorithms. It is observed that for N = 30, our techniques 
show approximately better results from reported results and obtain the potential to min-
imize the errors.
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Fig. 6 A graphical representation for 100 independent runs and MSE
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Fig. 7 Fitness of 100 independent runs and RMAE for five different algorithms
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Conclusions
In this research work, a detailed simulation process and statistical analysis of each case 
with multi-time independent test of each algorithm has been presented. Therefore, on 
the basis of these runs, we concluded the following important points.

Fig. 9 Normal distribution plot for Problem I for different results

Fig. 10 Normal distribution plot for Problem II for different results
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  • The best advantage of the solver based on computational techniques with SQP, PS 
and GA algorithm to represent the approximate solution of Lane–Emden type dif-
ferential equations as shown in Fig. 4.

  • The multi-runs of each algorithm independently provide a strong evidence for the 
accuracy of the proposed method.

  • The problem is still open for future work with the combination of different activation 
functions like Bessel’s polynomial and B-Polynomial etc.

Fig. 11 Normal distribution plot for Problem III for different results

Fig. 12 Normality curve fitting of data for Problem I for different results
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  • The potential area of investigations to exploring in the existing numerical solver to 
deal with singularity along with strong nonlinear problems like nonlinear Lane–
Emden equation based systems.

  • In future one may explore in Runge–Kutta numerical methods with adjusted bound-
ary conditions as a promising future research direction in the domain of nonlinear 
singular systems for effective solution of Lane–Emden equation arising in astrophys-
ics models for which relatively few solvers are available.

Fig. 13 Normality curve fitting of data for Problem II for different results

Fig. 14 Normality curve fitting of data for Problem II for different results
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Appendix
The necessary description of the routines used in the simulation studies are given for the 
ease of reproduction of the results. The software package of Matlab is used, in particu-
larly Matlab optimization toolbox including ‘ga’ and ‘gaoptimset’ for Genetic algorithm, 
‘patternsearch’ and ‘psoptimset’ for pattern search method, and ‘fmincon’ and ‘optimset’ 
for sequential quadratic programming algorithm. While the necessary coding for artifi-
cial neural network modeling of the equation, a good source of references is available in 
Matlab central file exchange server.
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