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Background
In this paper, we investigate the following lp-regularization problems

where A ∈ Rm×n, b ∈ Rm, � ∈ (0,∞), �s�pp =
∑n

i=1 |si|p, p ∈ (0, 1). The problem (1) has 
a broad applications in compressive sensing, variable selection problems and sparse least 
squares fitting for high dimensional data (see Chartrand and Staneva 2008; Fan and Li 
2001; Foucart and Lai 2009; Frank and Freidman 1993; Ge et al. 2011; Huang et al. 2008; 
Knight and Wu 2000; Lai and Wang 2011; Natarajan 1995). The objective function of the 
problem (1) is consisted by a data fitting term �As − b�22 and a regularization term �‖s‖pp . 
In Chen et al. (2014) point out that the l2-lp minimization problem (1) is a strongly NP-
hard problem. Comparing with using the l1 norm, using the lp quasi-norm in the regu-
larization term we can find sparser solution, which has been extensively discussed in 
Candès et al. (2008), Chartrand (2007a, b), Chartrand and Yin (2008), Chen et al. (2010), 

(1)min
s∈Rn

f�(s) := �As − b�22 + ��s�pp
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Tian and Huang (2013), Tian and Jiao (2015), Xu et al. (2010, 2012), Shehu et al. (2013, 
2015), Bredies et  al. (2015), Fan et  al. (2016). In Chen et  al. (2010), Chen et  al. derive 
the lower bounds for the absolute value of nonzero entries in each local optimum solu-
tion of the model. Xu et al. (2012) presented an analytical expression in a thresholding 
form for the resolvent of gradient of ‖s‖1/21/2 and developed an alternative feature theorem 
on optimum solutions of the L1/2 regularization problem, and proposed an iterative half 
thresholding algorithm for fast solving the problem. But there is no result for the charac-
teristics of the global optimum solution for the problem (1).

In this article, we pay more attention to derive the characteristics of the global opti-
mum solution of problem (1), which is inspired by Xu et al. (2012). The remaining sec-
tions of the paper are organized as follows. In “Technical preliminaries” section, we 
portray some important technical results. “Lower bound and optimality conditions” 
section first develop the proximal operator associated with a non-convex lp quasi-norm, 
which can be looked as an extension of the well-known proximal operator associated 
with convex functions. Next, an exact lower bound for the absolute value of nonzero 
entries in every global optimum solution of (1) is derived, which clearly demonstrates 
the relation between the sparsity of the optimum solution and the choice of the regulari-
zation parameter and norm. We also establish the necessary condition for global opti-
mum solutions of the lp-regularization problems, i.e., the global optimum solutions are 
fixed points of a vector thresholding operator. In “Choosing the parameter λ for sparsity” 
section, we also propose a sufficient condition on the selection of � to meet the sparsity 
requirement of global minimizers of the lp-regularization problems. “Iterative threshold-
ing algorithm and its convergence” section proposes an iterative thresholding algorithm 
for the lp-regularization problems, and any accumulation point of the sequence pro-
duced by the designed algorithm is convergent to a fixed point of the vector thresholding 
operator. Finally, some conclusions are drawn in “Numerical experiments” section.

Technical preliminaries
By utilizing the objective function’s separability and the operator splitting technique, the 
lp-regularization problems (1) can be converted into n homologous single variable mini-
mization problems defined on (−∞,+∞). Therefore, at first we investigate the homolo-
gous single variable minimization problem

where � > 0 and p ∈ (0, 1) are all any real numbers, s ∈ R is a variable and r ∈ R is a 
parameter. Besides, we only need to consider the following two sub-problems

In Chen et al. (2014), investigated the subproblem (3) and presented some results, which 
can be used to derive our conclusions. Let

(2)min
s∈R

gr(s) := s2 − 2rs + �|s|p,

(3)min
s≥0

gr(s) = s2 − 2rs + �sp,

(4)min
s≤0

gr(s) = s2 − 2rs + �(−s)p.
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Lemma 1  (Lemma.2.2, Chen et  al. 2014) For any s > 0, denote 
G(s, r) := [gr(s)]

′ = 2s − 2r + �psp−1. For any known r0 > r̄, set s0 (s0 > s̄) be the posi-
tive root of the equation G(s, r0) = 0, where r̄ and s̄ are given in (5) and (6). Then, there 
is a unique implicit function s = h�,p(r) define on (r̄,+∞), which satisfies s0 = h�,p(r0) , 
h�,p(r) > s̄ and G(h�,p(r), r) ≡ 0 for ∀r ∈ (r̄,+∞). Furthermore, for the function 
s = h�,p(r), the following conclusions hold:

1.	 s = h�,p(r) is a continuous function defined on (r̄,+∞).
2.	 s = h�,p(r) is a differentiable function over (r̄,+∞) and h′

�,p(r) =
2

2+�p(p−1)h
p−2
�,p (r)

.
3.	 s = h�,p(r) is a strictly increasing function over (r̄,+∞).
Moreover, if r > r̄, then s = h�,p(r) is the sole local minimizer of gr(s) over (0,+∞).

Lemma 2  (Prop.2.4, Chen et  al. 2014) Set s∗ be the global optimum solution for the 
problem (3), then we have

where r∗ := 2−p
2(1−p) [�(1− p)]1/(2−p), h�,p(r) is defined by Lemma 1.

Proposition 1  Set s∗ be the global optimum solution for the problem (2), then we have

where r∗ := 2−p
2(1−p) [�(1− p)]1/(2−p), h�,p(r) is defined in Lemma 1 and 

L := (�(1− p))1/(2−p).

Proof  If s ≥ 0, then gr(s) = s2 − 2rs + �sp. Let s∗1 is a global optimum solution for the 
problem (3), then from Lemma 2, we have

(5)r̄ :=
2− p

1− p
[�p(1− p)/2]1/(2−p) > 0,

(6)s̄ := [�p(1− p)/2]1/(2−p) > 0.

s∗ = h�(r) :=











h�,p(r), r > r∗

(�(1− p))1/(2−p) or 0, r = r∗

0, r < r∗

(7)
s∗ = h�(r) :=



































h�,p(r), r > r∗

L or 0, r = r∗

0, −r∗ < r < r∗

−L or 0, r = −r∗

−h�,p(−r), r < −r∗

(8)s∗1 = h�(r) =











h�,p(r), r > r∗

(�(1− p))1/(2−p) or 0, r = r∗

0. r < r∗
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If s ≤ 0, then gr(s) = s2 − 2rs + �(−s)p = (−s)2 + 2r(−s)+ �(−s)p. Let y = −s, we have 
y ≥ 0 and g(−r)(y) = y2 + 2ry+ �yp, we follow the first case. If y∗ is a global optimum 
solution for the problem g(−r)(y) over [0,+∞), then from Lemma 2, we have

Therefore, if s ≤ 0, s∗2 is a global optimum solution for the problem 
mins∈R− gr(s) = s2 − 2rs + �(−s)p, then we have

Combining (8) and (9) together, we can get (7). Therefore, the proof is complete.�  �

Proposition 2  Assume that s∗ is a global optimum solution for the problem (2). When 
|r| = r∗ given in Proposition 1, set s∗ = h�(r) be simultaneously zero or nonzero. Then the 
following conclusions hold:

1.	 The function h�(r) is an odd function over (−∞,+∞).
2.	 The function h�(r) is continuous over (r∗,+∞), furthermore, limr↓r∗ h�(r) = L.
3.	 The function h�(r) is differentiable over (r∗,+∞).
4.	 The function h�(r) is strictly increasing over (r∗,+∞).

Proof  By Proposition 1 and Lemma 1, this proposition can be followed.�  �

When p = 1/2, in Xu et al. (2012), hν,p(r) of (7) has the following analytic corollary.

Corollary 1  (Theo. 1, Lemm. 1 and 2, Xu et al. 2012) When p = 1/2, the global opti-
mum solution s∗ of problem (2) has the following results:

where h�,1/2(r) = 2
3 r(1+ cos( 2π3 − 2ϕ(r)

3 )), ϕ(r) = arccos( �8 (
|r|
3 )

−3/2) and r∗ =
3√
54
4 �

2/3.

Proof  A brief proof is presented here for completeness. When p = 1/2, we have 
r∗ =

3√
54
4 �

2/3. When |r| > r∗, s∗ = h�(r) �= 0, by Proposition 2, then h�(r) is the root of 
the equation

y∗ = h�(−r) =











h�,p(−r), −r > r∗

(�(1− p))1/(2−p) or 0, −r = r∗

0. −r < r∗

(9)s∗2 = −y∗ =











−h�,p(−r), r < −r∗

−(�(1− p))1/(2−p) or 0, r = −r∗

0. r > −r∗

(10)
s
∗ = h�(r) :=



































h�,1/2(r), r > r∗

(�/2)2/3 or 0, r = r∗

0, −r
∗ < r < r

∗

−(�/2)2/3 or 0, r = −r
∗

−h�,1/2(−r), r < −r∗

s − r +
�sign(s)

4
√
|s|

= 0,
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which is followed by the first order optimum condition of (2). By Theorem 1 of Xu et al. 
(2012), we have h�,1/2(r) = 2

3 r(1+ cos( 2π3 − 2ϕ(r)
3 )), ϕ(r) = arccos( �8 (

|r|
3 )

−3/2). The 
proof is completed.�  �

Lower bound and optimality conditions
In this section, by using function’s separability and the operator splitting technique, 
we propose the proximal operator associated with lp quasi-norm. Next, we present the 
properties of the global optimum solutions of the lp-regularization problems (1). For 
convenience, first of all, we define the following thresholding function and thresholding 
operators.

Definition 1  (p thresholding function) Assume that r ∈ R, for any � > 0, the function 
h�(r) defined in (7) is called as a p thresholding function.

Definition 2  (Vector p thresholding operator) Assume that s ∈ Rn, for any � > 0, the 
vector p thresholding operator H�(s) is defined as

In this section, one of the main results is a proximal operator associated with the non-
convex lp (0 < p < 1) quasi-norm, and which can be also looked as an extension of the 
well-known proximal operator associated with convex functions.

Theorem 1  For given a vector y ∈ Rn and constants � > 0, 0 < p < 1. Assume that s∗ 
be the global optimum solution of the following problem

then s∗ can be expressed as

Furthermore, we can get the exact number of global optimum solutions for the problem.

Proof  From

Let gyi(si) = s2i − 2yisi + �|si|p, then

H�(s) := (h�(s1), h�(s2), . . . , h�(sn))
T .

(11)min
s∈Rn

f (s) := �s − y�22 + ��s�pp,

s∗ = H�(y).

f (s) = �s − y�22 + ��s�pp = �s�22 − 2�s, y� + �y�22 + ��s�pp

=
n

∑

i=1

(

s2i − 2yisi + �|si|p
)

+ �y�22.

f (s) =
n

∑

i=1

gyi(si)+ �y�22.
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Therefore, to solve the problem (11) is equivalent to solving the following n problems, 
for each i = 1, 2, . . . , n,

By Proposition 1, for each i = 1, 2, . . . , n, we can follow

and if |yi| = r∗ := 2−p
2(1−p) [�(1− p)]1/(2−p), the problem (12) has two solutions; else, 

unique solution. Hence we can know the exact number of global optimum solutions of 
(11). The proof is thus complete. � �

For any �, µ > 0, 0 < p < 1, and z ∈ Rn, let

For simplicity, let

Theorem  2  Assume that s∗ ∈ Rn be the global minimizer of fµ(s, z) for any fixed 
� > 0,µ > 0 and z ∈ Rn, then we have

Proof  Without loss of generality, fµ(s, z) can be rewritten as

Therefore, to solve mins∈Rn fµ(s, z) for any fixed ν,µ and Y is equivalent to solving

By Theorem 1, thus the proof is complete.�  �

Lemma 3  If s∗ ∈ Rn is a global minimizer of the problem (1) for any fixed ν > 0 and for 
any fixed µ which satisfies 0 < µ ≤ �A�−2, then s∗ is also a global minimizer of fµ(s, s∗) , 
that is,

Proof  For any s ∈ Rn, Since 0 < µ ≤ �A�−2, we have

(12)min
si∈R

gyi(si).

s∗i = arg min
si∈R

gyi(si) = h�(yi),

(13)fµ(s, z) := µ(f�(s)− �As − Az�22)+ �s − z�22,

(14)Bµ(z) := z + µAT (b− Az).

(15)s∗ = H�µ(Bµ(z)).

fµ(s, z) = µ(�As − b�22 + ��s�pp − �As − Az�22)+ �s − z�22
= �µ�s�pp + �s�22 − 2�s, z + µAT (b− Az)� + �z�22 + µ�b�22 − µ�Az�22
= �s − Bµ(z)�22 + �µ�s�pp + �z�22 + µ�b�22 − µ�Az�22 − �Bµ(z)�22.

min
s∈Rn

{�s − Bµ(z)�22 + �µ�s�pp}.

fµ(s
∗, s∗) ≤ fµ(s, s

∗) for all s ∈ Rn.

�s − s∗�22 − µ�As − As∗�22 ≥ �s − s∗�22 − µ�A�2�s − s∗�22 ≥ 0.
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Hence,

the proof is complete.�  �

Theorem 3  For any given � > 0, 0 < µ ≤ �A�−2, if s∗ be the global optimum solution of 
the problem (1), then s∗ satisfies

Especially, we have

where r∗ := 2−p
2(1−p) [�µ(1− p)]1/(2−p) and L := (�µ(1− p))1/(2−p).

Furthermore, we have: if s∗i ∈ (−L, L), then s∗i = 0.

Proof  Since s∗ is a global minimizer of fµ(s, z) for given z = s∗, by Theorem  2 and 
Lemma 3, we can directly get (16) and (17). By proposition 2, we can follow that

By Proposition 2, combining with the strict monotonicity of h�µ(·) on (r̄,+∞) and 
(−∞,−r̄), we can follow that s∗i > L as [Bµ(s

∗)]i > r∗, s∗i < −L as [Bµ(s
∗)]i < −r∗ and 

|s∗i | = L as |[Bµ(s
∗)]i| = r∗. Therefore, the proof is completed.�  �

Remark 1  In Theorem 3, the necessary condition for global optimum solutions of the 
lp-regularization problems is established, which is a thresholding expression associated 
with the global optimum solutions. Particularly, the global optimum solutions for the 
problem (1) are the fixed points of a vector-valued thresholding operator. In contrast, 
the conclusion does not hold in general, i.e., a point satisfying (16) is not the global opti-
mum solution for the lp-regularization problems (1) in general. This is related to the 
nature of the matrix A, for an instance, when A ≡ I and µ = 1, a fixed point of (16) is the 
global optimum solution for the lp-regularization problems (1) (i.e., Theorem 1).

fµ(s, s
∗) = µ(f�(s)− �As − As∗�2

2
)+ �s − s∗�2

2

= µ(�As − b�2
2
+ ��s�pp)+ (�s − s∗�2

2
− µ�As − As∗�2

2
)

≥ µ(�As − b�2
2
+ ��s�pp)

= µf�(s) ≥ µf�(s
∗)

= fµ(s
∗, s∗)

(16)s∗ = H�µ(Bµ(s
∗)).

(17)

s∗i = h�µ([Bµ(s
∗)]i)

=



































h�µ,p([Bµ(s
∗)]i), if [Bµ(s

∗)]i > r∗

L or 0, if [Bµ(s
∗)]i = r∗

0, if − r∗ < [Bµ(s
∗)]i < r∗

−L or 0, if [Bµ(s
∗)]i = −r∗

−h�µ,p(−[Bµ(s
∗)]i), if [Bµ(s

∗)]i < −r∗

lim
r↓r∗

h�µ(r) = [�µ(1− p)]
1

2−p =: L.
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Remark 2  In Theorem  3, the exact lower bound for the absolute value of nonzero 
entries in every global optimum solution of the model is also provided, which can be 
used to identify zero entries precisely in any global optimum solution. These lower 
bounds clearly demonstrate the relationship between the sparsity of the global optimum 
solution and the choices of the regularization parameter and norm, therefore, our theo-
rem can be used to select the desiring model parameters and norms.

Choosing the parameter � for sparsity
In many applications such that sparse solution reconstruction and variable selection, 
one need to seek out least square estimators with no more than k nonzero entries. Chen 
et al. (2014) present a sufficient condition on � for global minimizers of the lp-regulariza-
tion problems, which have desirable sparsity, and which are based on the lower bound 
theory in local optimum solutions. In this paper, we also present a sufficient condition 
on � for global minimizers of the lp-regularization problems, which also have desirable 
sparsity, but which are based on the lower bound theory in global optimum solutions.

Theorem 4  Set

The following conclusions hold.
1.	 If � ≥ β(k), then any global minimizer s∗ of the lp-regularization problems (1) satisfies 

�s∗�0 < k for 1 ≤ k ≤ n.
2.	 If � ≥ β(1), then s∗ = 0 is the unique global minimizer of the lp-regularization prob-

lems (1).

Proof  Assume that s∗ �= 0 is a global minimizer of the lp-regularization problems (1). 
Let B = AT ∈ Rm×|T |, where T = support(s∗) and |T | = �s∗�0 is the cardinality of the set 
T. Therefore, according to the first order necessary condition, s∗ must satisfy

which shows As∗ − b = Bs∗T − b �= 0. Hence, we have

By Theorem 3, we can follow that

Therefore, we have

(18)β(k) = k(p−2)/2[µ(1− p)]−p/2�b�2−p, 1 ≤ k ≤ n.

(19)2BT (Bs∗T − b)+ �p(|s∗T |
p−2 · (s∗T )) = 0,

(20)f�(s
∗) = �As∗ − b�2 + ��s∗�pp > �

∑

i∈T
|s∗i |

p.

|s∗i | ≥ (�µ(1− p))1/(2−p), i ∈ T .

(21)f�(s
∗) > �|T |(�µ(1− p))p/(2−p).



Page 9 of 13Jiao et al. SpringerPlus  (2016) 5:1873 

In the following, we will discuss different cases:

1.	 Assume that � ≥ β(k), we shall prove it through apagoge. If �s∗�0 ≥ k ≥ 1, then by 
(3.11) and the definition of β(k) in (3.8), we have 

 This is in contradiction with that s∗ is a global minimizer of (1). Therefore, we have 
�s∗�0 < k.

2.	 Assume that � ≥ β(1), we shall prove it through apagoge. If s∗ �= 0, then there exists 
i0 satisfying s∗i0 �= 0 and 

This is in contradiction with that s∗ is a global minimizer of (1). Therefore, s∗ = 0 must 
be the unique global minimizer of (1).�  �

Iterative thresholding algorithm and its convergence
By the thresholding representation formula (16), an iterative thresholding formula of the 
problem (1) can be presented in the following: initilized s0 ∈ Rn,

where

When |r| = r∗, the adjustment here is, we only select h�µ(r) = 0.
Firstly, some important lemmas are given in the following.

Lemma 4  Let 0 < µ < �A�−2 and {sk} be the sequence produced by the algorithm (22), 
then we can follow that the sequences {(f�(sk))k} and {(fµ(sk+1, sk))k} are non-increasing.

Proof  For 0 < µ < �A�−2, we have

Hence,

f�(s
∗) > �|T |(�µ(1− p))p/(2−p) = k�2/(2−p)(µ(1− p))p/(2−p)

≥ kk−1�b�2
= �b�2 = f�(0).

f�(s
∗) = �As∗ − b�2 + ��s∗�pp > �|s∗i0 |

p ≥ �(�µ(1− p))p/(2−p) ≥ �b�2 = fp(0).

(22)sk+1 = H�µ(s
k + µAT (b− Ask)),

(23)h�µ(r) :=







h�µ,p(r), r > r∗

0, −r∗ ≤ r ≤ r∗

−h�µ,p(−r), r < −r∗

�sk+1 − sk�22 − µ�Ask+1 − Ask�22 ≥ 0.

f�(s
k+1) ≤ µ−1(µf�(s

k+1)+ �sk+1 − s
k�2

2
− µ�Ask+1 − As

k�2
2
)

= µ−1fµ(s
k+1, sk)

≤ µ−1
fµ(s

k , sk)

= f�(s
k)

≤ µ−1(µf�(s
k)+ �sk − s

k−1�2
2
− µ�Ask − As

k−1�2
2
)

= µ−1fµ(s
k , sk−1).
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The first equality can be followed from the definition of fµ(s, z). The second inequality is 
because that the sk+1 is the minimizer of fµ(s, sk).�  �

This lemma demonstrate that, from iteration to iteration, the objective function f�(s) 
does not increase, moreover, using the proposed algorithm does not lead to worse results 
than not using the proposed algorithm. The algorithm (22) does not have a unique fixed 
point, therefore it is very important to analyze the fixed points in detail.

Lemma 5  Let Ŵ0 = {i : s∗i = 0} and Ŵ1 = {i : |s∗i | > (�µ(1− p))1/(2−p)}. The point s∗ is 
a fixed point for the algorithm (18) if and only if

Proof  A fixed point of the algorithm (22) is any s∗ satisfying 
s∗ = H�µ(s

∗ + µAT (b− As∗)), i.e., s∗i = h�µ(s
∗
i + µAT

i (b− As∗)). If i ∈ Ŵ0, the equal-
ity holds when and only when |µAT

i (b− As∗)| ≤ 2−p
2(1−p) [�µ(1− p)]1/(2−p), i.e., 

|AT
i (b− As∗)| ≤ 2−p

2 �
1/(2−p)[µ(1− p)](p−1)/(2−p). Similarly, i ∈ Ŵ1 when and only when 

s∗i = h�µ,p(s
∗
i + µAT

i (b− As∗)).�  �

The following lemma demonstrate that the sequence {sk} produced by the algorithm 
(22) is asymptotically regular, i.e., limk→∞ �sk+1 − sk�2 = 0.

Lemma 6  If f�(s0) < ∞, 0 < µ < �A�−2 and assume that {sk} be the sequence pro-
duced by the algorithm (22), ∀ǫ > 0, ∃K  satisfying ∀k > K , �sk+1 − sk�22 ≤ ǫ.

Proof  We prove the convergence of 
K
∑

k=0

�sk+1 − sk�22, which implies the lemma. First of 
all, we prove that 

K
∑

k=0

�sk+1 − sk�22 is monotonically increasing. We can follow monoto-
nicity from

Then, we will show the boundness of 
∑K

k=0 �sk+1 − sk�22. For 0 < µ < �A�−2, we have 
0 < δ := 1− µ�A�2 < 1 and

Therefore,

|AT
i (b− As∗)| ≤

2− p

2
�
1/(2−p)[µ(1− p)](p−1)/(2−p), if i ∈ Ŵ0,

s∗i = h�µ,p(s
∗
i + µAT

i (b− As∗)), if i ∈ Ŵ1.

K
∑

k=0

�sk+1 − sk�22 =
K−1
∑

k=0

�sk+1 − sk�22 + �sK+1 − sK�22

≥
K−1
∑

k=0

�sk+1 − sk�22.

�sk+1 − sk�22 ≤ δ−1(�sk+1 − sk�22 − µ�Ask+1 − Ask�22).

K
∑

k=0

�sk+1 − sk�22 ≤ δ−1
K
∑

k=0

(�sk+1 − sk�22 − µ�Ask+1 − Ask�22)

≤ δ−1
K
∑

k=0

µ(f�(s
k)− f�(s

k+1))

= µδ−1(f�(s
0)− f�(s

K+1))

≤ µδ−1f�(s
0) < ∞.
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The second inequality can be followed from the proof of Lemma 4 and the last inequality 
can be taken from f�(s0) < ∞.�  �

In the following, we present an very important property of the algorithm, i.e., any 
accumulation point of the sequence {sk} is a fixed point of the algorithm (22). Therefore, 
we have the following theorem and conclusion.

Theorem 5  If f�(s0) < ∞ and 0 < µ < �A�−2, then we have the following conclusion: 
any accumulation point of the sequence {sk} produced by the algorithm (22) is a fixed 
point of (22).

Proof  In Lemma 6, we take ǫ < �. If |ski | > (�µ(1− p))1/(2−p) and sk+1
i = 0, then 

we have �sk+1 − sk�22 ≥ �, by Lemma 6 which is impossible for k > K  for some K. 
Therefore, for large K, the set of zero and non-zero coefficients will not change and 
|ski | > (�µ(1− p))1/(2−p), ∀i ∈ Ŵ1, k > K . Assume that {skj } be a convergent subse-
quence and s∗ be its limit point, i.e.,

By the limitation (24) and Lemma 6, we have

which implies that the sequence {skj+1} is also convergent to s∗. Note that 
skj+1 = H�µ(Bµ(s

kj )), i.e., skj+1

i = h�µ(s
kj
i + µAT

i (b− Askj )), for all i = 1, 2, . . . , n.
Let Ŵ0 = {i : s∗i = 0} and Ŵ1 = {i : s∗i �= 0}. For skj , kj > K  for some K, if i ∈ Ŵ0, then 

by (23) and (7) we have

therefore, |AT
i (b− As∗)| ≤ 2−p

2 �
1/(2−p)[µ(1− p)](p−1)/(2−p). Similarly, if i ∈ Ŵ1, then by 

(23) and (7) we have

where r∗ := 2−p
2(1−p) [�µ(1− p)]1/(2−p). By Proposition 2, we can follow that the func-

tion h�µ,p() is continuous over (r∗,+∞) and (−∞, r∗). Therefore, we follow that 
s∗i = h�µ,p(s

∗
i + µAT

i (b− As∗)). By Lemma 5, s∗ is a fixed point of (22).�  �

Numerical experiments
Now we report numerical results to compare the performance of Iterative threshold-
ing algorithm (ITA) (p = 0.5) for solving (1) (Signal reconstruction) with LASSO to find 
sparse solutions. The computational test was conducted on a Intel(R) Core(TM)2 Duo 
CPU E 8400 @3.00GHZ Dell desktop computer with 2.0GHz of memory with using 
Matlab R2010A.

(24)skj → s∗, as kj → +∞.

�skj+1 − s∗�2 ≤ �skj+1 − skj�2 + �skj − s∗�2 → 0, as kj → +∞,

|AT
i (b− Askj )| ≤

2− p

2
�
1/(2−p)[µ(1− p)](p−1)/(2−p),

s
kj+1

i = h�µ(s
kj
i + µAT

i (b− Askj )), |skji + µAT
i (b− Askj )| > r∗,
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Consider a real-valued, finite-length signal x ∈ Rn. Suppose x is T-sparse, that is, only 
T of the signal coefficients are nonzero and the others are zero. We use the following 
Matlab code to generate the original signal, a matrix A and a vector b.

The computational results for this experiment are displayed in Table 1.
From Table 1 we find that ITA has smaller prediction accuracy than LASSO in shorter 

time.

Conclusion
In this paper, an exact lower bound for the absolute value of nonzero entries in each 
global optimum solution of the problem (1) is established. And the necessary condition 
for global optimum solutions of the lp-regularization problems is derived, i.e., the global 
optimum solutions are the fixed points of a vector thresholding operator. In addition, we 
have derived a sufficient condition on the selection of � for the desired sparsity of global 
minimizers of the problem (1) with the given (A, b, p). Finally, an iterative thresholding 
algorithm is designed for solving the lp-regularization problems, and the convergence of 
algorithm is proved.
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xor = zeros(n, 1); q = randperm(n); xor(q(1 : T )) = 2 ∗ randn(T , 1);
A = randn(m, n);A = orth(A′)′; b = A ∗ xor;

Table 1  Comparison of ITA and LASSO algorithm

Problems LASSO ITA

n T m Time Error Time Error

800 60 150 0.572 4.16e−4 0.375 1.15e−4

800 80 180 0.461 3.58e−4 0.252 1.06e−4

2000 160 300 0.853 5.75e−4 0.516 1.62e−4

2000 200 500 0.853 5.86e−4 0.553 1.73e−4
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