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Background
Two astrophysicists, Jonathan Homer Lane and Robert had explained the Lane–Emden 
type differential equations. In this study, they had designed these types of differential 
equations, which is a dimensionless structure of Poisson’s equation for the gravitational 
potential of a self-gravitating, spherically symmetric,  polytropic  fluid and the thermal 
behavior of a spherical bunch of gas according to the laws of thermodynamics (Lane 
1870; Richardson 1921). The Lane–Emden type of differential equation is also called the 
polytropic differential equations and it is given by:

where τ is a dimensionless radius and Γ  is linked to the density (and accordingly the 
pressure) by ρ = ρcτ

n for central density ρc. The index n is the polytropic index to make 
easy in the form of polytropic equation of state, P = Kρ1+ 1

n, where P and ρ are the pres-
sure and K density, respectively, and n is a constant of proportionality.

1

τ 2

d

dτ

(

τ 2
dΓ

dτ

)

+ Γ n = 0

Abstract 

In this communication, we describe the Homotopy Perturbation Method with Laplace 
Transform (LT-HPM), which is used to solve the Lane–Emden type differential equa-
tions. It’s very difficult to solve numerically the Lane–Emden types of the differential 
equation. Here we implemented this method for two linear homogeneous, two linear 
nonhomogeneous, and four nonlinear homogeneous Lane–Emden type differential 
equations and use their appropriate comparisons with exact solutions. In the current 
study, some examples are better than other existing methods with their nearer results 
in the form of power series. The Laplace transform used to accelerate the convergence 
of power series and the results are shown in the tables and graphs which have good 
agreement with the other existing method in the literature. The results show that LT-
HPM is very effective and easy to implement.

Keywords:  Homotopy Perturbation Method (HPM), Laplace Transform (LT),  
Singular Initial value problems (IVPs), Lane–Emden type equations
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Boundary conditions are

Thus, the solutions describe the gallop of pressure and density (with radius), which is 
known as polytropes of n.

The Lane–Emden equation has been useful to model some phenomena in astrophysics 
and mathematical physics such as the principle of stellar structure, the thermal nature 
of the spherical bunch of the gas, isothermal gas spheres (IGSs), and the principle of 
thermionic currents (Wazwaz 2011). According to the extensive study of many physi-
cists, these equations have been applicable in the case of astrophysics such as kinetics 
of combustion and the Landau–Ginzburg major phenomenon (Dixon and Tuszynski 
1990; Fermi 1927; Fowler 1930; Frank-Kamenetskii 1921). The numerical solutions of 
the Lane–Emden equations [LEes] are very difficult due to the expressive nature of the 
nonlinearities term. Therefore, much attention has been applied to the better and more 
powerful methods for establishing a solution, approximate or exact, analytical or numer-
ical, to the Lane–Emden equations (LEes).

Recently many analytical techniques have been used for the solution of Lane–Emden 
type equation, for example, Hosseini and Abbasbandy (2015) described the hybrid 
Spectral Adomain Decomposition Method for solving Lane–Emden type of differen-
tial equations by combining the spectral method and Adomain Decomposition method. 
Since the description of this method is very long and difficult for solving these types of 
numerical problems. Our method is suitable and best to determine these results, Modi-
fied Laplace decomposition method for Lane–Emden type differential equations by Yin 
et al. (2013), A new algorithm for solving singular IVPs of Lane–Emden type differen-
tial equation by Motsa and Sibanda (2010). The author has solved the Lane–Emden type 
equations by Successive Linearization Method Since it is a very complicated method to 
get the solution of these types of problem in terms of an exact solution. Various meth-
ods for Lane–Emden equations have described by some authors in Rafiq et al. (2009),   
Baranwal et al. (2012), Liao (2003), Shawagfeh (1993), Wazwaz (2001), A new method 
for solving singular IVPs in the second order ordinary differential equations by Wazwaz 
(2001), Nouh (2004), Romas (2003) and other researchers have been studied several 
methods to attempt nonlinear problems. These methods have also been successfully 
applied to, analytical solution of convection–diffusion problem by combining Laplace 
transform method and homotopy perturbation method by Gupta et  al. (2015), Mand-
elzweig and Quasi (2001), Singh et  al. (2012), Nazari-Golshan et  al. (2013), Explicit 
solution of Helmholtz equation and sixth-order KdV equation by Rafei and Ganji 
(2006), Ganji and Rajabi (2006), Jang (2016), Exact solutions of some coupled nonlin-
ear partial differential equations(NPDE) using the homotopy perturbation method by 
Sweilam and Khader (2009), Homotopy perturbation method for solving viral dynami-
cal model (VDM) by Merdan and Khaniyev (2010), nonlinear population dynamics 
models(NPDMs) by Chowdhury and Hashim (2007, Hashim and Chowdhury (2007), 
A new dispersion-relation preserving method for integrating the classical boussinesq 
equation by Jang (2017), The modified homotopy perturbation method (MHPM) for 
solving strongly nonlinear oscillators by Momani et al. (2009), Pandit (2014) and pure 
nonlinear differential by Cveticanin (2006), Inverse problem (IP) of diffusion equation 

τ (0) = 1, τ ′(0) = 0.
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by He’s homotopy perturbation method by Shakeri and Dehghan (2007), A Higher order 
Numerical Scheme for singularly perturbed Burger–Huxley equation by Jiwari and Mit-
tal (2011).

The Laplace transform is a superb technique for solving linear and nonlinear Lane–
Emden type differential equation and has enjoyed much success in the field of science 
and engineering. On the other hand, Laplace Transform (LT) has played an important 
role in mathematics (Spiegel and Teoríay 1988), not only for its theoretical interest but 
also because such method allows solving, in a simpler fashion, many problems in the 
realm of science, in comparison with other mathematical techniques. It is totally diffi-
cult to solve nonlinear equations because of the problems caused by nonlinear terms. 
Homotopy perturbation technique by He (1999), the homotopy perturbation method 
using Laplace Transform by Madani et al. (2011; Abbasbandy (2006); Gupta and Gupta 
2011), a numerical solution of two-point boundary value problems using Galerkin-Finite 
element method by Sharma et al. (2012) have solved nonlinear problems. The Homotopy 
perturbation methods with Laplace transform (LT-HPM) and other methods have exter-
nal significant thought in the literature. Moreover, The Homotopy Perturbation Method 
(HPM) by He (1999a, b, 2003) and the Variational Iteration Method (VIM) (Khuri and 
Sayfy 2012) are combined with the Laplace transform (LT) to develop a more effective 
technique for handling many nonlinear problems. A comparative study of model of 
matrix and finite elements methods for two-point boundary value problems is given by 
Sharma et al. (2012).

In the present paper, a Homotopy Perturbation Method (HPM) with Laplace Trans-
form (LT) to solve the general type of Lane–Emden differential equations is proposed; 
the paper is organized as follows: The Homotopy Perturbation method is given in “Pre-
liminaries” section. The Lane–Emden Equations (LEes) is given in “The Land–Emden 
equation” section. Homotopy Perturbation Method with Laplace Transform (LT-HPM) 
is given in “Homotopy perturbation method” section. Some examples of a different 
kind are given in “Results and discussion” section. Finally, the conclusion is explained in 
“Conclusions” section.

Preliminaries
Homotopy perturbation method

Consider the nonlinear differential equation

with the boundary conditions of

where A, B, ζ(r) and χ are a general differential operator, a boundary operator, a known 
analytic function and the boundary of the domain Ω, respectively and ∂Γ

∂n  denotes the 
differentiation of Γ  with respect to n.

We can distribute the operator A into a linear part K and a nonlinear part N. Equa-
tion (1) may possibly be written as:

(1)A(Γ )− ζ(r) = 0, r ∈ Ω ,

(2)B

(

Γ ,
∂Γ

∂n

)

= 0, r ∈ χ .

(3)K (Γ )+ N (Γ )− ζ(r) = 0.
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By the Homotopy technique, we construct a Homotopy v(r, p) : Ω × [0, 1] → R which 
satisfies:

p∈ [0, 1] is an embedding parameter, while Γ0 is an initial approximation which satisfies 
the boundary conditions. Obviously, from above equations, we will have

Now changing the process of p from 0 to 1 is even-handed that of v(r, p) from Γ0 
to Γ (r) . According to the concept of topology, this is called deformation, whereas 
K (v)− K (Γ0) and A(v)− ζ(r) are called homotopy. If we consider the embedding 
parameter p is a minor parameter, applying the classical perturbation technique, we can 
assume that the solution of Eqs. (4) and (5) can be defined as a power series in p:

putting p = 1 in Eq. (6), we have

The coupling of the perturbation method and the homotopy method is said to be 
HPM. The series (6) is convergent for most cases. However, the convergent rate depends 
on the nonlinear operator A(v). Moreover, He (1999) made the following suggestions:

(1)	The second derivative of N (v) with respect to v must be minor because the param-
eter may be comparatively large, i.e. p → 1.

(2)	The norm of K−1
(

∂N
∂v

)

 must be lesser than one so that the series converges.

Laplace transform method

Definition  The Laplace transform of a function ξ(τ), is defined by 

 (Whenever integral on RHS exists) where, τ ≥ 0, s is real and L is the Laplace transform 
operator.

H(v, p) = (1− p)[K (v)− K (Γ0)] + p[A(v)− ζ(r)] = 0,

or

H(v, p) = K (v)− K (Γ0)+ pK (Γ0)+ p[N (v)− ζ(r)] = 0,

(4)H(v, 0) = K (v)− K (Γ0) = 0.

(5)H(v, 1) = A(v)− ζ(r) = 0.

(6)v = v0 + v1p+ v2p
2 + v3p

3 + · · · · · ·∞,

(7)Γ = lim
p→1

v = v0 + v1 + v2 + v3 + · · · · · · .

ξ(s) = L[ξ(τ )] =

∞
∫

0

e−sτ ξ(τ )dτ ; τ ≥ 0
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The Lane–Emden equation
Lane–Emden type differential equations are singular initial value problems (IVPs) 
describing the second order homogeneous and nonhomogeneous linear and nonlinear 
differential equations which have been applicable in the many fields. The mathematical 
representation of Lane–Emden equation is:

subject to conditions,

where A and B are constants ζ(Γ ) is a real-valued continuous function.
These types of equations generally occur in the principle of stellar structure, the ther-

mal behaviour of a spherical bunch of gas, isothermal gas spheres (IGSs) and the princi-
ple of thermionic currents (Richardson 1921; Chandrasekhar 1967; Davis 1962).

On the other hand, A nonlinear class of singular initial value problems of Lane–Emden 
type has the following form:

The solution of the Lane–Emden type differential equation is numerically challenging 
because of the singularity behaviour at the origin. The solutions of the Lane–Emden 
equation were given by Wazwaz (2001), Shawagfeh (1993), Mishra (2014), the homotopy 
perturbation method (HPM) of above type by Davis (1962), Yildrim and Ozis (2007), He 
(2003), 2006), Ramos (2008), Exact solution of Generalized Lane–Emden equation is 
given by Goenner and Havas (2000). The major advantage of this method is its capability 
of combining the two powerful methods to obtain exact solutions of nonlinear equa-
tions. Therefore, Homotopy Perturbation Method using Laplace transform (LT-HPM) 
accelerates the rapid convergence of the series solution. In this paper, we will apply the 
(LT-HPM) to obtain exact or approximate analytical solutions of the Lane–Emden type 
equations.

Homotopy perturbation method with laplace transform (LT‑HPM)
In this section, we will briefly discuss the use of the LT-HPM for the solution of Lane–
Emden equation given in “The Land–Emden equation” section, consider the following:

Multiplying τ and then taking the Laplace transform on both sides of (11) we get:

where L is the operator of Laplace transform and L′(Γ ) =
dL(Γ )
ds

by integrating both sides of (13) with respect to s, we have

(8)Γ ′′ +
2

τ
Γ ′ + ζ(Γ ) = 0, 0 ≤ τ ≤ 1,

(9)Γ (0) = A, Γ ′(0) = B.

(10)Γ ′′ +
2

τ
Γ ′ + ζ(τ ,Γ ) = ϕ(τ), 0 ≤ τ ≤ 1

(11)Γ ′′ +
2

τ
Γ ′ + ζ(τ ,Γ ) = ϕ(τ), 0 ≤ τ ≤ 1.

(12)−s2L′(Γ )− Γ (0)+ L{τζ(τ ,Γ )− τϕ(τ)} = 0,

(13)L′(Γ ) = −s−2Γ (0)+ s−2L[τζ(τ ,Γ )− ϕ(τ)].
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taking inverse Laplace transform on both sides of (14), we get

By using initial condition (9), we have

We decompose ζ(Γ , τ ) into two parts

where K [Γ (τ)] and N [Γ (τ)] denote the linear term and the nonlinear term respectively. 
The Homotopy perturbation method and the He’s polynomials can be used to handle 
Eq.  (12) and to address the nonlinear term. LT-HPM defines a solution by an infinite 
series of components given by:

where the terms Γn(τ ) are to recursively calculate and the nonlinear term ζ (Γ ) can be 
given as

where N (Γ ) is a non-linear term and Hn(Γ ) is He’s polynomial.
For some He’s polynomial Hn (Mishra 2012) that are given by

Substituting the value of (19) and (20) in (18), we get

which is the coupling of the Laplace transformation and the Homotopy Perturbation 
Method (LT-HPM) using He’s polynomials by Mishra (2012, 2014). Comparing the coef-
ficient of like powers of p, the following approximations are obtain 

(14)
L(Γ ) = −

∫

s−2Γ (0)ds +

∫

s−2L[τζ(τ ,Γ )− τϕ(τ)]ds.

(15)Γ (τ) = −L−1

{
∫

(

s−2Γ (0)
)

ds

}

+ L−1

{
∫

s−2L[τζ(τ ,Γ )− τϕ(τ)]ds

}

.

(16)Γ (τ) = A+ L−1

{
∫

s−2L[τζ(τ ,Γ )− τϕ(τ)]ds

}

.

(17)ζ(τ ,Γ ) = K [Γ (τ)] + N [Γ (τ)].

(18)Γ (τ) =

∞
∑

n=0

pnΓn(τ ).

(19)N (Γ ) =

∞
∑

n=0

pnHn(Γ ).

(20)Hn(Γ0,Γ1,Γ2 . . . Γn) =
1

n!

∂n

∂pn

[

N

(

∞
∑

n=0

piΓi

)]

p=0

n = 0, 1, 2, . . . .

(21)

∞
�

n=0

pnΓn = A+p







L−1

s
�

0

s−2

��

L

��

∞
�

n=0

pnHn(τ )

�

− τ

�

∞
�

n=0

pnΓn(Γ )

����

ds







.
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Results and discussion
In this section, we will apply the method presented in this paper to solve singular IVPs of 
Lane–Emden-type.

Example 1  Consider the linear, homogeneous Lane–Emden differential equation 

 with initial conditions 

Applying the Laplace transform on both sides, we get

By integrating both sides of Eq. (25) with respect to s, we have

Taking Inverse Laplace transform on both sides, we get

Applying Homotopy perturbation method, we get a solution by an infinite series of com-
ponents given by:

Thus Eq. (23) becomes

(22)

p0 : Γ0(x) = A,

p1 : Γ1(τ ) = −L−1

�
�

s−2((L(τ (H0)− τ(Γ0))))ds

�

,

p2 : Γ2(τ ) = −L−1

�
�

s−2((L(τ (H1)− τ(Γ1))))ds

�

,

p3 : Γ3(τ ) = −L−1

�
�

s−2((L(τ (H2)− τ(Γ2))))ds

�

,

...































































(23)Γ ′′ +
2

τ
Γ ′ − 2(2τ 2 + 3)Γ = 0,

(24)Γ (0) = 1 Γ ′(0) = 0.

(25)

L(τΓ ′′)+ 2L(Γ ′)− L(2(2τ 3 + 3τ)Γ ) = 0,

− s2L′(Γ )− 1 = L{2(2τ 3 + 3τ)Γ },

L′(Γ ) = −
1

s2
−

L

s2
{2(2τ 3 + 3τ)Γ }.

Γ (s) =

∫

L(Γ )ds = −

∫

s−2ds −

∫

s−2L
(

2(2τ 3 + 3τ)Γ
)

ds.

L−1(Γ (s)) = −L−1

(
∫

s−2ds

)

−

(
∫

s−2L
(

2(2τ 3 + 3τ)Γ
)

ds

)

,

Γ (τ) = −L−1

(
∫

s−2ds

)

−

(
∫

s−2L
(

2(2τ 3 + 3τ)Γ
)

ds

)

,

Γ (τ) = 1− L−1

(
∫

L

s2
(2(2τ 3 + 3τ)Γ )ds

)

.

Γ (τ) =

∞
∑

n=0

pnΓn(τ ).
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Equating the coefficient of like power of p, we get

(26)
∞
∑

n=0

pnΓn(τ ) = 1− pL−1

(

∫

s−2

(

L

(

∞
∑

n=0

pn(2(2τ 3 + 3τ)Γn(τ )

)

ds

))

.

(27)

p0 : Γ0 = 1,

p1 : Γ1 = τ 2 + τ 4

5 ,

p2 : Γ2 =
3
10τ

4 + 13
105τ

6 + 1
90τ

8,

p3 : Γ3 =
3
70τ

6 + 17
630τ

8 + 59
11550τ

10 + τ 12

3510 ,

p4 : Γ4 :=
τ 8

280
+

τ 10

330
+

343 τ 12

386100
+

4987τ 14

47297250
+

τ 16

238680
,

...

Table 1  The comparison with exact solution and ADM (Wazwaz 2001)

τ LT-HPM ADM Exact Error (LT-HPM) Error (ADM)

0.0 1 1 1 0.0 0.0

0.1 1.0100501670842 1.01005017 1.0100501670842 0.0 0.0

0.2 1.0408107741924 1.04081078 1.0408107741924 0.0 1E−9

0.3 1.0941742836956 1.09417428 1.0941742837052 9.6E−12 1E−9

0.4 1.1735108704484 1.17351087 1.1735108709918 5.434E−10 2.3E−8

0.5 1.2840254041884 1.28402542 1.2840254166877 1.24993E−8 3.5E−7

0.6 1.4333292517888 1.43332623 1.4333294145603 1.627715E−7 3.2E−6

0.7 1.6323147871342 1.63229556 1.6323162199554 1.4328212E−6 2.1E−5

0.8 1.8964714019044 1.89637596 1.8964808793049 9.99706E−4 1.1E−4

Fig. 1  Comparison between LT-HPM, Exact and ADM solution
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Thus we get the solution of this series as follows:

The closed form of the series (28) is y = exp(τ 2) which gives an approximate solution 
of the problem.

In this problem, the Table 1 shows the comparison of values of LT-HPM with exact 
and ADM in the terms of different values of τ (Fig. 1). 

The graphical comparison of LT-HPM, exact solution and ADM solution are given as 
follows:

Example 2  Consider the linear, homogeneous Lane–Emden differential equation 

 subject to the initial condition 

Taking Laplace transform on both sides, we get

putting n = 0 in Eq. (31), we get

Integrating above equation with respect to s, we get

Taking inverse Laplace Transform on both sides, we get

which is the exact solution.
When n = 1 in Eq. (31), we get

(28)

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · ,

= 1+ τ 2 +
τ 4

2
+

τ 6

6
+

τ 8

24
+

τ 10

120
+

τ 12

720
· · · .

(29)Γ ′′ +
2

τ
Γ ′ + Γ n = 0, τ ≥ 0, n = 0, 1, . . . ,

(30)Γ (0) = 1, Γ ′(0) = 0.

(31)
L(τΓ ′′)+ 2L(Γ ′)+ L(τΓ n) = 0,

− s2L′(Γ )− Γ (0)+ L(τΓ n) = 0,

− s2L′(Γ )− Γ (0)+ L(τ ) = 0.

L′(τ ) = −
1

s2
+

1

s4
.

L(τ ) =

∫

(−s−2+s−4)ds.

Γ (τ) = L−1

∫
(

−
1

s2
+

1

s4

)

ds,

Γ (τ) = 1−
τ 2

6
.

−s2L′(Γ )− Γ (0)+ L(τΓ ) = 0.

L′(Γ ) = −
1

s2
+

1

s2
L(τΓ ) = 0
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Integrating above equation with respect to s, we get

Taking inverse Laplace transform on both sides, we get

Applying Homotopy Perturbation Method on both sides, we get

Equating the coefficient of like power of p, we get

Thus we get the solution of this series as follows:

The closed form of the series (32) is Γ (τ) = sin τ
τ

 which gives an exact solution of the 
problem.

The Table 2 shows the comparison of values of LT-HPM within the terms of different 
values of τ.

L(Γ (τ)) = −

∫

s−2ds +

∫

s−2L(τΓ )ds

Γ (τ) = −L−1

(
∫

s−2ds

)

+ L−1

(
∫

s−2L(τΓ )ds

)

,

Γ (τ) = 1+ L−1

(
∫

s−2L(τΓ )ds

)

.

∞
∑

n=0

pnΓn(τ ) = 1+ pL−1

(

∫

s−2

(

∞
∑

n=0

pnΓn(τ )

)

ds

)

.

p0 : Γ0 = 1,

p1 : Γ1 = −L−1
(∫

s−2L(Γ0)ds
)

= − τ 2

6 ,

p2 : Γ2 = −L−1
(∫

s−2L(Γ1)ds
)

= τ 4

5×4! ,

p3 : Γ3 = −L−1
(∫

s−2L(Γ2)ds
)

= − τ 6

7×6! ,

p4 : Γ4 = −L−1

(
∫

s−2L(Γ3)ds

)

=
τ 8

9× 8!
,

...

(32)

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · .

= 1−
τ 2

6
+

τ 4

5× 4!
−

τ 6

7× 6!
+

τ 8

9× 8!
+ · · · .

Table 2  Comparison with exact solution

τ LT-HPM Exact Error (LT-HPM)

0.1 0.9983341665 0.998334166 −5E−10

0.2 0.993346654 0.993346654 −0E+0

0.3 0.9850673555 0.9850673555 −0E+0

0.4 0.9735458558 0.9735458558 −0E+0

0.5 0.9588510772 0.9588510772 −0E+0

0.6 0.9410707891 0.941070789 −1E−10

0.7 0.9203109825 0.9203109818 −7E−10

0.8 0.8966951163 0.8966951136 −2.7E−9

0.9 0.8703632416 0.8703632329 −8.7E−9

1.0 0.8414710097 0.8414709848 −2.49E−8
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We established the graphical comparison of LT-HPM and exact solution as follows:

Example 3  Consider the linear, non-homogenous Lane–Emden equation 

 subject to initial conditions, 

Applying Laplace transform on both sides, we get

By integrating above equation with respect to s, we get

Applying Inverse Laplace transform on both sides, we get

Applying Homotopy Perturbation Method, we get

equating the coefficient of like power of p, we get

(33)Γ ′′ +
2

τ
Γ ′ + Γ = 6+ 12τ + τ 2 + τ 3, 0 ≤ τ ≤ 2,

(34)Γ (0) = 0, Γ ′(0) = 0.

L(τΓ ′′)+ 2L(Γ ′)+ L(τΓ ) = L(6τ + 12τ 2 + τ 3 + τ 4),

L′(Γ ) = s−2L(τΓ )− s−2L{6τ + 12τ 2 + τ 3 + τ 4}.

L(Γ ) = −

∫

s−2L
(

6τ + 12τ 2 + τ 3 + τ 4
)

ds +

∫

s−2L(τΓ )ds.

Γ (τ) = −L−1

(
∫

−s−2L(6τ + 12τ 2 + τ 3 + τ 4)ds

)

+ L−1

(
∫

s−2L(τΓ )ds

)

.

(35)
∞
∑

n=0

pnΓn = τ 2 + τ 3 +
τ 4

20
+

τ 5

30
+ pL−1

(

∫

s−2L

(

∞
∑

n=0

pnΓn(τ )

)

ds

)

.
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Thus we get the solution of this series as follows:

The closed form of the series (36) is Γ (τ) = τ 2 + τ 3 which gives an exact solution of 
the problem.

The comparison with exact solution is given by Table 3.
The Table 3 shows the comparison of values of LT-HPM with exact in the terms of dif-

ferent values of τ.

Example 4  Consider the non-linear, homogenous Lane–Emden equation 

 subject to the initial condition 

Applying Laplace transform on both sides, we

p0 : Γ0 = τ 2 + τ 3 + τ 4

20 + τ 5

30 ,

p1 : Γ1 = L−1
(∫

s−2(L(τΓ0(τ )))ds
)

= − τ 4

20 − τ 5

30 − τ 6

840 − τ 7

1680 ,

p2 : Γ2 = L−1
(∫

s−2(L(τΓ1(τ )))ds
)

= τ 6

840 + τ 7

1680 + τ 8

60480 + τ 9

151200 ,

p3 : Γ3 = L−1
(∫

s−2(L(τΓ2(τ )))ds
)

= − τ 8

60480 − τ 9

151200 − τ 10

6652800 − τ 11

19958400 ,

p4 : Γ4 = L−1
(∫

(L(τΓ3(τ )))ds
)

= τ 10

6652800 + τ 11

19958400 + τ 12

1037836800 + τ 13

363235600 ,

...

(36)
Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · .

Γ = τ 2 + τ 3.

(37)Γ ′′ +
2

τ
Γ ′ + Γ 3 − (6+ τ 6) = 0 τ ≥ 0,

(38)Γ (0) = 0, Γ ′(0) = 0.

L(τΓ ′′)+ 2L(Γ ′)+ L(τΓ 3)− L(6τ + τ 7) = 0,

− s2L′(Γ ) = L(6τ + τ 7)− L(τΓ 3),

L′(Γ ) = −s−2L(6τ + τ 7)+ s−2L(τΓ 3),

L(Γ (τ)) = −

∫

s−2L(6τ + τ 7)ds +

∫

s−2L(τΓ 3)ds,

Table 3  The comparison with the exact solution

τ LT-HPM Exact

0.0 0.0 0.0

0.1 0.011 0.011

0.2 0.048 0.048

0.3 0.117 0.117

0.4 0.224 0.224

0.5 0.375 0.375

0.6 0.576 0.576

0.7 0.833 0.833

0.8 1.152 1.152

0.9 1.539 1.539

1.0 2 2



Page 13 of 21Tripathi and Mishra ﻿SpringerPlus  (2016) 5:1859 

Applying Inverse Laplace Transformation, we get

Applying HPM both side, we get

Equating the coefficient of like power of p, we get

Thus we get the solution of this series as follows

Γ (τ) = −L−1

(
∫

s−2
(

L(τΓ 3)

)

ds

)

+ L−1

(
∫

s−2L(6τ + τ 7)ds

)

.

(39)
∞
∑

n=0

pnΓn(τ ) = τ 2 +
τ 8

72
+ pL−1

(

∫

s−2L

(

∞
∑

n=0

pnHn(Γ )

))

.

p0 : Γ0(τ ) = τ 2 +
τ 8

72
,

p1 : Γ1(τ ) =

∫

s−2L(τH0(Γ )) = −
τ 8

72
−

τ 14

5040
−

τ 20

725760
−

τ 26

262020096

p2 : Γ2(τ ) =

∫

s−2L(τH1(Γ )) =
τ 14

5040
+

53τ 20

12700800
+

25τ 26

611380224
+

67 τ 32

293462507520

+
491 τ 38

652367154216960
−

τ 44

896486037258240

p3 : Γ3(τ ) =

∫

s−2L(τH2(Γ )) = −
71τ 20

25401600
−

8173τ 26

106991539200
−

37369 τ 32

37661021798400

−
72109 τ 38

9133140159037440
−

4514651 τ 44

108501705089364787200

−
52841339τ 50

368905797303840276480000
−

276053τ 56

1068698394448207408005120

+
τ 62

101136362276346837073920
,

p4 : Γ4(τ ) =

∫

s−2L(τH3(Γ )) =
12619τ 26

320974617600
+

49591τ 32

37661021798400
+

124658383 τ 38

5860431602049024000

+
11319804851 τ 44

52216445574256803840000
−

19811411311 τ 50

12911702905634409676800000

+
575925932801τ 56

74185480214613064239022080000

+
3395344051061τ 68

56214318223818043730058301931520000

+
636488953519τ 70

9988541976464570807364056730289966153728000000

−
298992611τ 74

5632426047399250357186524610560000

+
18703τ 80

397496390291087651691073162444800
,

.

.

.

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · .

(40)Γ = τ 2.
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The closed form of the series (40), is Γ (τ) = τ 2 which gives an exact solution of the 
problem.

The comparison with exact solution is given by Table 4.
The Table 4 shows the comparison of values of LT-HPM with exact in the terms of dif-

ferent values of τ.

Example 5  Consider the linear homogeneous differential equation 

 with the initial conditions 

Applying the Laplace transform on both sides, we get

By integrating both sides with respect to s, we get

Applying inverse Laplace Transformation on both sides, we get

Applying HPM on both sides, we get

(41)Γ ′′ +
2

τ
Γ ′ + eΓ = 0,

(42)Γ (0) = 0, Γ ′(0) = 0.

L(τΓ ′′)+ 2Γ ′ + L(τeΓ ) = 0,

− s2L′(Γ ) = L(τeΓ ),

L′(Γ ) = −s−2L(τeΓ ).

L(Γ ) = −

∫

s−2L(τeΓ )ds.

Γ (τ) = −L−1

∫

s−2
(

L(τeΓ )
)

ds.

(43)
∞
∑

n=0

pnΓn(τ ) = −pL−1

((

∞
∑

n=0

∫

s−2
(

L(τeΓ )
)

))

ds.

Table 4  The comparison with exact solution

τ LT-HPM Exact

0.0 0.0 0.0

0.1 0.1 0.1

0.2 0.4 0.4

0.3 0.9 0.9

0.4 0.16 0.16

0.5 0.25 0.25

0.6 0.36 0.36

0.7 0.49 0.49

0.8 0.64 0.64

0.9 0.81 0.81

1.0 1.0 1.0
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Equating the coefficient of like power of p, we get

Thus we get the solution of this series as follows

Example 6  Consider the nonlinear, homogeneous Lane–Emden differential equation 

 subject to initial conditions, 

The exact solution of the problem is

Applying Laplace transform on both sides, we get

Integrating the above equation with respect to s, we get

Applying Inverse Laplace Transformation on both sides, we get

(44)

p0 : Γ0(τ ) = 0,

p1 : Γ1(τ ) = −
τ 2

3!
,

p2 : Γ2(τ ) =
τ 4

5!
,

p3 : Γ3(τ ) = −
τ 6

7!
,

p4 : Γ4(τ ) =
τ 8

9!
,

...

(45)

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · .

= −
τ 2

3!
+

τ 4

5!
−

τ 6

7!
+

τ 8

9!
− · · · .

(46)Γ ′′ +
2

τ
Γ ′ + 4(2e(Γ ) + e

(

Γ
2

)

) = 0, 0 ≤ τ ≤ 1,

(47)Γ (0) = 0, Γ
′

(0) = 0.

(48)Γ (τ) = −2In(1+ τ 2).

L(τΓ ′′)+ 2L(Γ ′)+ L

(

4

(

2τe(Γ ) + τe

(

Γ
2

)
))

= 0,

− s2L′(Γ )+ 4L

(

2τe(Γ ) + τe

(

Γ
2

)
)

= 0,

L′(Γ ) = s−24

(

L

(

2τe(Γ ) + τe

(

Γ
2

)
))

.

Γ (s) =

∫

s−2L(4(2τe(Γ ) + τe

(

Γ
2

)

))ds.

Γ = L−1

(
∫

s−2
(

L(4τΓ 3)

)

ds

)

.



Page 16 of 21Tripathi and Mishra ﻿SpringerPlus  (2016) 5:1859 

Applying HPM on both sides, we get

where N (Γ ) = (2e(Γ ) + e

(

Γ
2

)

) is the nonlinear operator, Hn(Γ ) is the He’s polynomial. 
Which is given by

using the value of Eq. (50) in Eq. (49) and equating the coefficient of like the power of p, 
we get

Thus we get the solution of this series as follows:

The closed form of the series (52) is Γ (τ) = −2In(1+ τ 2) which gives an exact solu-
tion of the problem.

Example 7  Consider the nonlinear, homogeneous Lane–Emden differential equation 

 subject to the initial condition, 

(49)
∞
∑

n=0

pnΓn(τ ) = pL−1

(

∫

s−2L

(

∞
∑

n=0

pn(4τHn(Γ ))ds

))

.

H0(Γ ) =

�

2e(Γ0) + e

�

Γ0
2

�
�

,

H1(Γ ) = Γ1

�

2e(Γ1) + 1
2e

�

Γ1
2

�
�

,

H2(Γ ) = Γ2

�

2e(Γ1) + 1
2e

�

Γ1
2

�
�

+
Γ 2
1
2!

�

2e(Γ1) + 1
4 e

�

Γ1
2

�
�

,































(50)
H3(Γ ) = Γ3

�

2e(Γ1) +
1

2
e

�

Γ1
2

�
�

+ Γ1Γ2

�

2e(Γ1) +
1

4
e

�

Γ1
2

�
�

+
Γ 3
1

3!

�

2e(Γ1) +
1

8
e

�

Γ1
2

�
�

,

.

.

.















p0 : Γ0 = 0,

p1 : Γ1 =
��

s−2(L(4τ (H0)))ds
�

= −2τ 2,

p2 : Γ2 =
��

s−2(L(4τ (H1)))ds
�

= τ 4,







(51)

p3 : Γ3 =
��

s−2(L(4τ (H2)))ds
�

= − 2
3τ

6,

p4 : Γ4 =
��

s−2(L(4τ (H3)))ds
�

= 1
2τ

8,
...











(52)

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · .

Γ (τ) = −2

(

τ 2 −
1

2
τ 4 +

1

3
τ 6 −

1

4
τ 8 + · · · .

)

(53)Γ ′′ +
2

τ
Γ ′ − 6Γ = 4Γ InΓ , 0 ≤ τ ≤ 1,

(54)Γ (0) = 1, Γ (0) = 0.
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The exact solution of the equation is

Applying Laplace Transform on both sides, we get

Taking integration on both sides of above equation, we get

Applying Inverse Laplace transform on both sides, we get

Applying HPM on both sides, we get

Equating the coefficient of like power of p, we get

Thus we get the solution of this series as follows:

(55)Γ (τ) = eτ
2
.

L(τΓ ′′)+ L(2Γ ′)− L(6τΓ )− L(4τ(Γ InΓ )) = 0,

− s2L′(Γ )− 1 = L{6τΓ + 4Γ τ InΓ },

L′(Γ ) = −
1

s2
−

1

s2
L{6τΓ + 4Γ τ InΓ }.

L(Γ ) = −

∫

s−2ds −

∫

s−2L{6τΓ + 4Γ τ InΓ }ds.

Γ (τ) = 1− L−1

(
∫

s−2L(6τΓ + 4Γ τ InΓ )ds

)

.

(56)
∞
∑

n=0

pnΓn(τ ) = 1− pL−1

(

∫

s−2L

(

∞
∑

n=0

pnΓn(τ )

)

ds

)

.

p0 : Γ0(τ ) = 1,

p1 : Γ1(τ ) = −

∫

s−2L(6τΓ0 + 4Γ0(τ InΓ0))ds = τ 2,

p2 : Γ2(τ ) = −

∫

s−2L(6τΓ1 + 4Γ1(τ InΓ1))ds =
1

2!
τ 4,

p3 : Γ3(τ ) = −

∫

s−2L(6τΓ2 + 4Γ2(τ InΓ2))ds =
1

3!
τ 6,

p4 : Γ4(τ ) = −

∫

s−2L(6τΓ3 + 4Γ3(τ InΓ3))ds =
1

4!
τ 8,

p5 : Γ5(τ ) = −

∫

s−2L(6τΓ4 + 4Γ4(τ InΓ4))ds =
1

5!
τ 10,

.

.

.

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · · · · ·

= 1+ τ 2 +
1

2!
τ 4 +

1

3!
τ 6 +

1

4!
τ 8 +

1

5!
τ 10 + · · · .

(57)Γ (τ) = exp(τ 2).
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The closed form of the series (57) is Γ (τ) = exp(τ 2) which gives an exact solution of 
the problem.

The Table 5 shows the comparison of values of LT-HPM with exact in the terms of dif-
ferent values of τ.

Example 8  Consider the following Lane–Emden type differential equation: 

 subject to the initial condition 

Applying Laplace Transform (LT) on both sides, we get

Integrating the above equation with respect to s, we get

Applying ILT on both sides, we get

Applying HPM on both sides, we get

Here ζ(Γ ) = sin(Γ ) is a non-linear term and Hn(Γ ) is He’s polynomial.

(58)Γ ′′ +
2

τ
Γ ′ + sin(Γ ) = 0,

(59)Γ (0) = 1, Γ ′(0) = 0.

L(τΓ ′′)+ 2Γ ′ + L(τ sin(Γ )) = 0,

−s2L′(Γ )− 1 = −L(τ sin(Γ )),

L′(Γ ) = −
1

s2
+

1

s2
(L(τ sin(Γ ))),

Γ (s) = −

∫

s−2ds +

∫

s−2((L(τ sin(Γ ))))ds.

Γ (τ) = 1+ L−1

(
∫

s−2((L(τ sin(Γ ))))ds

)

.

(60)
∞
∑

n=0

pnΓn(τ ) = 1− pL−1

(

∫

s−2

(

∞
∑

n=0

(L(τHn(Γ )))

)

ds

)

.

Table 5  The comparison with exact solution

τ LT-HPM Exact Error

0.0 1 1 0.0

0.1 1.010050167 1.010050167 0.0

0.2 1.040810773 1.040810774 1E−9

0.3 1.094174234 1.094174284 5E–8

0.4 1.173509973 1.173510871 8.98E−7

0.5 1.284016927 1.284025417 8.49E−6

0.6 1.43327584 1.433329415 0.19904038

0.7 1.632060167 1.63231622 2.56053E−4

0.8 1.895481173 1.896480879 9.99706E−4

0.9 2.359156039 2.247907987 −0.111248052

1.0 2.708333333 2.718281828 0.009948495
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Equating the coefficients like power of p, we get

Thus we get the solution of this series as follows:

 where 

Conclusions
In this communication, we have successfully employed the Homotopy Perturbation 
Method with Laplace Transform (LT-HPM) to obtain exact solutions for singular IVPs 
of Lane–Emden-type equations. We also find the accuracy of this method which gives us 
very attractive results in the terms of power series. This method can accelerate the rapid 
convergence of series solution when compared with Homotopy Perturbation Method 
using Laplace Transform. Very recently, the LT-HPM has been extensively applicable in 
many fields of science and engineering to solve these types of problems because of its 
dependability and the attenuation in the size of computations. The graphical representa-
tion of such types of problems shows that the LT-HPM is a promising tool for singular 
IVP’s of Lane–Emden type, and in some cases, yields exact solutions in two iterations.

H0 = sinΓ0,

H1 = Γ1 cosΓ0,

H2 = −

(

Γ 2
1

2

)

sinΓ0 + Γ2 cosΓ0,

H3 = −

(

Γ 3
1

6

)

cosΓ0 − Γ1Γ2 sinΓ0 + Γ3 cosΓ0,

...

p0 : Γ0 = 1,

p1 : Γ1 = L−1

{
∫

s−2L(τH0)ds

}

= −
τ 2

6
k1,

p2 : Γ2 = L−1

{
∫

s−2L(τH1)ds

}

=
1

120
k1k2τ

4,

p3 : Γ3 = L−1

{
∫

s−2L(τH2)ds

}

= k1

(

1

3024
k21 −

1

5040
k1k

2
2

)

τ 6,

p4 : Γ4 = L−1

{
∫

s−2L(τH3)ds

}

= k1k2

(

−107

3265920
k21 +

1

362880
k22

)

x8,

...

Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + · · ·

Γ = 1−
τ 2

6
k1 +

1

120
k1k2τ

4 + k1

(

1

3024
k21 −

1

5040
k1k

2
2

)

τ 6

+ k1k2

(

−107

3265920
k21 +

1

362880
k22

)

x8 + · · · (61)

k1 = sin(1), k2 = cos(1),
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