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Background
The ideas of Graph theory are highly utilized by computer science applications and 
research areas such as data mining, image segmentation, clustering, image capturing, 
networking, etc. Modeling of network topologies can be done using graph concepts. 
Paths, walks, and circuits in graph theory are used in tremendous applications like trave-
ling salesman problem, database design concepts and resource networking. This leads to 
the development of new algorithms and new theorems.

A graph is a pictorial representation for a set of objects in which some pairs are con-
nected by links. The interconnected objects are represented by points called as vertices 
and the links that connect the vertices are called edges. Two vertices connected by an 
edge are said to be adjacent. An example of a graph is the route map that roadways pro-
duce. Here the vertices are the cities to which a bus runs and the roads are the edges that 
connect two vertices. The relationships between interconnected computers in a network 
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follow the principles of graph theory. For instance, the molecular and chemical structure 
of a substance, the DNA structure of an organism, etc., are represented by graphs.

One of the usages of graph theory is to give a unified formulary for varying distinct 
problems and then suffices algorithms to come up with the best solution. This has led to 
the birth of a special class of algorithms, the so–called graph algorithms. In many cases, 
however, some aspects of a graph theoretic problem may be uncertain. For example, a 
vehicle’s travel time or its capacity on a road may not be determined accurately. In such 
cases, it is very common to use fuzzy logic methods to deal with the uncertainty.

The concept of fuzzy sets and fuzzy relations was introduced by Zadeh (1965) in 1965 
and further studied in Zadeh (2005). A fuzzy set of a base set V  is specified by its mem-
bership function σ , where σ : V → [0, 1] assigning to each u ∈ V  the degree or grade to 
which u belongs to σ. It was Rosenfeld (1975) who considered fuzzy relations on fuzzy 
sets and developed the theory of fuzzy graphs in 1975. During the same time, Yeh and 
Bang (1975) have also introduced various connectedness concepts in fuzzy graphs. After 
the pioneering work of Rosenfeld (1975) and Yeh and Bang (1975) in 1975, several positive 
outcomes were found with deeper results. Also fuzzy analogues of many other graphically 
theoretic concepts that include cycles and co cycles of fuzzy graphs Mordeson and Nair 
(1996) were developed. Zadeh (1968, 2008) introduced a basic concept which was fuzzy 
rather than precise in nature, eventually prove to be useful in a wide variety of problems 
relating to information processing, control, pattern recognition, system identification, 
artificial intelligence and more generally, decision-making processes involving incomplete 
or uncertain data. The concept is called fuzzy algorithm. Fuzzy logic is not ‘fuzzy’. It is 
a precise logic of imprecision and approximate reasoning. Imprecision is meant in the 
sense of vagueness. Fuzzy set theory provides a strict mathematical framework in which 
vague conceptual phenomena can be precisely and rigorously studied Zimmermann 
(2010). Fuzzy sets are visualized by fuzzy graph theory. The concept of connectivity plays 
an important role in both theory and applications of fuzzy graphs. Bhattacharya (1987) 
has established some connectivity concepts regarding fuzzy cut nodes and fuzzy bridges.

A Hamiltonian cycle, also called a Hamiltonian circuit, Hamilton cycle or Hamilton 
circuit is a graph cycle through a graph that visits each node exactly once Skiena (1990). 
A graph possessing a Hamiltonian cycle is said to be a Hamiltonian graph. The Hamil-
tonian cycle is named after Sir William Rowan Hamilton, who devised a puzzle which 
resolved into a path along the polyhedron edges of a dodecahedron. There are n! dif-
ferent sequence of vertices that might be Hamiltonian paths in a given n-vertex graph. 
Testing all possible sequences would be very slow and tedious. Determining if a graph 
is Hamiltonian is well known to be NP-complete Karp (1972). So a single most efficient 
algorithm is not known. The only known way to determine whether a given general 
graph has a Hamiltonian cycle is to undertake an at most exhaustive search.

Related work
A number of sufficient conditions for a connected simple graph G of order n to be 
Hamiltonian have been proved. In 1952, Dirac (1952) derived some relations between 
the degree of the nodes in a graph and the lengths of the circuits contained in it. A 
graph with sufficiently many edges must contain a Hamiltonian cycle. This sufficient 
condition for a graph to be Hamiltonian was given by Ore (1960). He proved that in a 
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graph, if the sum of the degrees of every pair of non-adjacent vertices has a sum that 
at least equals the total number of vertices in the graph, then the graph is Hamilto-
nian. The relationship between the circumference of a graph and its order, size and ver-
tex degrees was examined by Bondy (1971). Chvatal (1972) provided the best possible 
generalizations of the theorems of Dirac (1952), Posa (1962) and Bondy (1969) that 
gave successively weaker sufficient conditions for a graph to be Hamiltonian. Also, he 
deduced some corollaries on Hamiltonian paths, n—Hamiltonian graphs and Hamil-
tonian bipartite graphs. During the same year Chvatal and Erdos (1972) proved that, 
if G is a graph with at least three vertices, for some s, G is s-connected and contains 
no independent set of more than s vertices, then G has a Hamiltonian circuit. A new 
sufficient condition for a graph to be Hamiltonian was given by Fan (1984) that does 
not require that the closure of the graph should be complete and so it is independ-
ent of the conditions given by Bondy (1971) and Chvatal (1972). Chen (1993) proved 
that if G is 2—connected graph and max

{

d(u), d(v)
}

≥ n/2, for each pair of non-
adjacent vertices u, v with 1 ≤ |N (u) ∩ N (v)| ≤ α − 1, then G is Hamiltonian, where α 
is the independence number of a graph G with order n. This result generalized Fan’s 
(1984) result on Hamiltonian graphs. In 1996, Chen et al. (1996) proved that if every 
essential independent set S of order k ≥ 2 in a k− connected graph of order p satisfied 
max

{

d(v)/v ∈ S
}

≥ p/2, then G is Hamiltonian (an independent set S of a graph G is 
said to be an essential independent set of a graph G if S has a pair of vertices distance 
two apart). Rahman and Kaykobad (2005) gave better conditions than that provided by 
Ore for the existence of Hamiltonian paths in a graph. Zhao et al. (2007) consolidated 
and extended the theorems of Dirac (1952), Ore (1960), Fan (1984), Chen (1993), Chen 
et al. (1996).

Hamiltonicity of random graphs was studied by Lee and Sudakov (2012). Shang (2015) 
proved that if p ≫ ln n/n, then every subgraph of random bipartite graph G(n, n, p) with 
minimum degree at least 

(

1
2
+ o(1)

)

np is Hamiltonian. The proof uses Posa’s (1976) 
rotation and extension method and is closely related to a recent work of Lee and Suda-
kov (2012). Dudek et al. (2012) studied the existence of properly colored and rainbow 
Hamilton cycles in colored k-uniform complete hypergraphs, k ≥ 3. Rahman et  al. 
(2014) presented a new degree based sufficient conditions for the existence of Hamilto-
nian paths in a graph. In 2015, Dudek and Ferrara (2015) revised the results proved by 
Dudek, Frieze, and Rucinski (2012) and showed that there is a constant c′ = c′(k , l) such 
that every 

(

l, c′k−l
n

)

—bounded edge—colored K (k)
n  contains a properly colored l− over-

lapping Hamilton cycle.
In 1974, Rubin (1974) gave a search procedure that would determine whether Hamil-

ton paths or circuits exist in a given graph and would find one or all of them. The search 
procedure divides the edges of the graph into three classes: those that must be in the 
path, those that cannot be in the path, and undecided. As the search proceeds, a set of 
decision rules classified the undecided edges, and determined whether to halt or con-
tinue the search. The importance of Hamiltonian graphs has been found in the case of 
the traveling salesman problem when the graph is a weighted graph. Several works have 
been done to find the number of Hamiltonian cycles in a Hamiltonian graph. As the 
number of vertices and edges grow, it becomes harder to keep track of all the different 
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ways the vertices are connected. Analysis of large graphs often requires computer assis-
tance. So it is necessary to express graphs through matrices.

An adjacency matrix  is a  square matrix that is used to represent a finite graph. The 
elements of the matrix indicate whether the pairs of vertices are adjacent or not in the 
graph. With an adjacency matrix, testing the existence of an edge between two verti-
ces can be determined at once. In this paper, we have developed another algorithm to 
find fuzzy Hamiltonian cycle using adjacency matrix of a fuzzy graph. In “Preliminaries” 
section basic definitions and theorems are presented. In “Algorithm to find fuzzy Ham-
iltonian cycle in a fuzzy graph G” section, two algorithms, one is using the adjacency 
matrix of a given fuzzy graph and the other is using the minimum vertex degree of a 
fuzzy graph are proposed. The proposed algorithms are illustrated with the route map of 
Indigo Airlines Prabir De (2015). A copy of the route map is given in Fig. 2. Here the ver-
tices are the cities to which Indigo Airlines fly and two vertices are connected if a direct 
flight flies between them and the paper is concluded in “Conclusion”. We consider simple 
and undirected fuzzy graph.

Preliminaries
Basic definitions are presented in this section.

Definition 1 Nagoor Gani and Chandrasekaran (2010) A fuzzy graph is a pair of func-
tions σ: V → [0, 1] and μ: V × V → [0, 1], where for all u, v in V we have μ (u, v) ≤ σ (u) 
Λ σ (v).

Definition 2 Nagoor Gani and Chandrasekaran (2010) Let G : (σ ,µ) be a fuzzy graph. 
The degree of a vertex u is dG(u) = d(u) =

∑

u�=v µ(u, v).

Definition 3 If G : (σ ,µ) is a fuzzy graph then its adjacency matrix is defined as X 
where Xij = µ

(

vi, vj
)

 for i �= j & when i = j, Xii = σ(vi), if the fuzzy relation is reflexive 
and Xii = 0, if the fuzzy relation is not reflexive.

In this paper, fuzzy relation which is not reflexive is considered. Hence the adjacency 
matrix A(G) of G is an n x n symmetric matrix with zero diagonal. The degree of the 
vertices of G represented by adjacency matrix is the row sums of A(G). Every non-zero 
entry in A(G) represents the edge weight eij = µ

(

ui,uj
)

 between two vertices ui and uj.

Definition 4 A path ρ in a fuzzy graph is a sequence of distinct vertices u0,u1,u2, . . .un 
such that µ(ui−1,ui) > 0, 1 ≤ i ≤ n; here n ≥ 0 is called the length of the path ρ. The 
path is called a cycle if u0 = un and n ≥ 3.

Definition 5 A fuzzy Hamiltonian path is a path that passes through each of the verti-
ces in a fuzzy graph exactly once.

Definition 6 A fuzzy Hamiltonian cycle is a cycle that visits every vertex in a fuzzy 
graph once with no repeats and being a fuzzy Hamiltonian cycle it must start and end at 
the same vertex.
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Proposition 1 In a fuzzy graph, if every vertex has exactly two adjacent vertices, then 
there exists a fuzzy Hamiltonian cycle.

Proof Let G : (σ ,µ) be a fuzzy graph with ‘n’ vertices u1,u2, . . . ,un satisfying the 
hypothesis.

Assume a contradiction. i.e. An edge between any two vertices is removed, say 
µ(u1,u2).

Now, we begin to explore a path starting with (i) the vertex u1(oru2) and it ends with 
u2(oru1) covering all the vertices of G (or) (ii) any vertex ui, either it takes the path 
ui+1,ui+2, . . . , and end with u1 or the path ui−1,ui−2, . . . , and end with u2, excluding 
some vertices of G. Both the cases results with a non-fuzzy Hamiltonian cycle.

Algorithm to find fuzzy Hamiltonian cycle in a fuzzy graph G
In this section, two algorithms are proposed to find a Fuzzy Hamiltonian cycle in a fuzzy 
graph.

Algorithm to find fuzzy Hamiltonian path and fuzzy Hamiltonian cycle in a fuzzy graph G 

using adjacency matrix of G

Let G : (σ ,µ) be a fuzzy graph of order n and A(G) be its adjacency matrix (Fig. 1).
Select a non-zero minimum entry from the adjacency matrix say aij = µ

(

ui,uj
)

, the 
edge weight between the vertices ui and uj. This gives the initial path that starts with the 
vertex ui and travels to uj. Now in the row of uj select an appropriate non-zero entry and 
this process is continued until it results in a fuzzy Hamiltonian path which may further 
extended to find a fuzzy Hamiltonian cycle if exists.

Algorithm 
Step 1: Form the adjacency matrix A(G).

Step 2: Search for a minimum non-zero entry in A(G), say aij. (If there are repetitions, 
then choose any one).
Step 3: If the minimum value chosen does not permit for a fuzzy Hamiltonian path, 
then the next higher minimum value is selected.
Step 4: Identify the row and column, say ui and uj respectively where the minimum 
entry appears.
Step 5: Search for a minimum non-zero entry in the row of uj , such that,

Fig. 1 Adjacency matrix of a fuzzy graph of order n
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(i) it forms a fuzzy Hamiltonian path. (no repetition of vertices in the path)
(ii) if the minimum value occurs more than once, then an appropriate entry is 

selected to get a fuzzy Hamiltonian path.
Step 6: Repeat Step 3 through Step 4 row-wise until a fuzzy Hamiltonian path is found 
with all n vertices of G. Else conclude, there is no fuzzy Hamiltonian path and go to 
Step 2 or Step 3 as required.
If fuzzy Hamiltonian path is true, then at this stage only one row will be left out with no 
entries marked.
Step 7: Select a non-zero entry from that row to form a fuzzy Hamiltonian cycle, if 
exists.

The above algorithm is illustrated in the following example.

Example 1 (Model formulation) A fuzzy graph structure is modeled from the airline 
network of Indigo airlines (Fig. 2) to illustrate the above algorithm by using the air dis-
tances between the cities to find fuzzy Hamiltonian cycle.

From the above map flight routes between the cities Delhi, Mumbai, Bangalore, Chen-
nai, Coimbatore, Kochi and Trivandrum are selected. Figure  3 represents the fuzzy 
graph of the airline route map in which the vertices denotes the cities Delhi (D), Mumbai 
(M), Bangalore (B), Chennai (C), Coimbatore (Ch), Kochi (K) and Trivandrum (T). The 
membership value of every vertex is the ratio of the air distance to all destinations from 
it to the total air distance of all the air routes and the edge weight is the ratio of the air 
distance between two cities to the total air distance of all the air routes in the selected 
network.

Fig. 2 Route map of Indigo Airlines



Page 7 of 10Nagoor Gani and Latha  SpringerPlus  (2016) 5:1854 

Step 1: Form the adjacency matrix of G (Fig. 4),
Step 2: The minimum non-zero entry appears in the third row and the fifth column of 
A(G). Choose the entry in the third row i.e. a35 = .010.
Step 4: This entry represents the row ‘K’ and column ‘B’ i.e., from ‘K’ it reaches ‘B’. 
(K − B)

Step 5: In the row ‘B’, the minimum non-zero entry is .021 which appears in the column 
‘Ch’. i.e., from ‘B’ it goes to ‘Ch’ (K − B− Ch)

Step 6: Iteration 1: Repeating Step 3 through Step 4, the path obtained is 
(K − B− Ch− C − D −M − K ), which is rejected as it is a fuzzy circuit.

Iteration 2: Now, start with the other minimum non-zero entry a53 = .010, repre-
sented by the row ‘B’ and column ‘K’ (B− K ). By algorithm, the path obtained is B 
−K − T − Ch− C − D −M is a fuzzy Hamiltonian path.

Step 7: At this stage, the row ‘M’ is left unmarked. From the row ‘M’, select the non-zero 
entry (which exists) corresponding to the column ‘B’, to get a fuzzy Hamiltonian cycle 
B− K − T − Ch− C − D −M − B (total length = .385).

Fig. 3 Fuzzy graph of selected cities

Fig. 4 Adjacency matrix of the fuzzy graph of selected cities
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Minimum vertex degree algorithm to find fuzzy Hamiltonian cycle in a fuzzy graph

This algorithm identifies fuzzy Hamiltonian cycle of a fuzzy graph G : (σ ,µ) using the 
degrees of the vertices of G. It starts with the vertex having the minimum degree and the 
process is iterated until a fuzzy Hamiltonian cycle is obtained.

Algorithm 
Step 1: Calculate the degrees of all vertices in G.
Step 2: Start with a vertex of minimum degree. (If there is more than one vertex with 
same minimum degree, then choose any one).
Step 3: Select a vertex whose degree is next higher to the minimum degree chosen.
Step 4: Identify the adjacent vertices of the minimum vertex degree selected.
Step 5: Reach to the unvisited adjacent vertex of minimum degree. (If more than one 
adjacent vertex has the same identified minimum degree, then choose any one vertex).
Step 6: Step 4 through Step 5 is repeated until a fuzzy Hamiltonian cycle is found. Else, 
go to Step 2 or Step 3 as required.

Remark 1 In the above algorithm step 4 and step 5 shall be repeated starting with each 
vertex of G to find all possible fuzzy Hamiltonian cycle (if exists). By calculating the 
length of every fuzzy Hamiltonian cycle, the minimum length covered by fuzzy Hamilto-
nian cycle(s) can be identified.

Illustration of the above algorithm is explained in the following example.
Example 2 Step 1: From the fuzzy graph in Fig.  3, the degrees of the vertices of G 
are d(M) = .297; d(D) = .63; d(K ) = .252; d(C) = .173; d(B) = .254; d(Ch) = .3; 
d(T ) = .094.
Step 2: Select the vertex T, as it has the least degree (d(T ) = .094).
Step 3: The adjacent vertices of T are K, B and Ch.
Step 4: From Step 1, (K ) = .252, d(B) = .254, d(Ch) = .3 and the minimum of these 
values is .252 which corresponds to the vertex K. Therefore, the path travels from T to 
K (T − K)
Step 5: Repeat Steps 3 and 4.

Iteration 1: The adjacent vertices of K are M, D, T, and B with 
d(M) = .297; d(D) = .63,

d(T ) = .094, d(B) = .254. The minimum value is .094 and that corresponds to the 
vertex T. But, from K, the path cannot move to the vertex T, as it would not form a 
fuzzy Hamiltonian cycle. Therefore, select the next higher minimum vertex degree B 
to form the path T −K − B.
Iteration 2: The adjacent vertices of B are D, M, K, T, and Ch with 
d(D) = .63, d(M) = .297

d(K ) = .252, d(T ) = .094, d(Ch) = .3. The next unvisited vertex with minimum 
degree is M and the path is T −K − B−M.

Iteration 3: The adjacent vertices of M are D, Ch, B, and K with 
d(D) = .63, d(Ch) = .3,

d(B) = .254, d(K ) = .252. The unvisited vertex with minimum degree is Ch. The 
path is



Page 9 of 10Nagoor Gani and Latha  SpringerPlus  (2016) 5:1854 

T − K − B−M − Ch.

Iteration 4: The adjacent vertices of Ch are d(D) = .63, d(B) = .254, d(C) = .173,

d(M) = .297, d(T ) = .094 and the path is T −K − B−M − Ch− C .

Iteration 5: The adjacent vertices of C are d(D) = .63, d(Ch) = .3 and the path is
T − K − B−M − Ch− C − D.

Iteration 6: The vertices D and T are not connected ⇒ fuzzy Hamiltonian cycle does 
not exist in the path T − K − B−M − Ch− C − D. Therefore, start with the other 
minimum vertex degree C and repeat Step 4 and Step 5, the fuzzy Hamiltonian cycle 
is C − Ch− T − K − B−M − D − C

(

total length = 0.385
)

.

Remark 2 The other possible fuzzy Hamiltonian cycles starting with the next higher 
minimum degrees are K − T − B−M − Ch− C − D − K

(

total length = .509
)

Conclusion
In this context, we consider the adjacency matrix of fuzzy graph to find fuzzy Ham-
iltonian cycle. When the number of vertices and edges grow higher, it becomes diffi-
cult to find fuzzy Hamiltonian cycle and this is made simple using adjacency matrix. 
The algorithm first finds a fuzzy Hamiltonian path of the fuzzy graph. Once the fuzzy 
Hamiltonian path is found, then it is easy to complete the algorithm i.e. finding a fuzzy 
Hamiltonian cycle. Also, a new algorithm is developed by iterating with the minimum 
vertex degree of a given fuzzy graph to find fuzzy Hamiltonian cycle. From the algo-
rithm, the (approximate) air distance is evaluated from the total length covered by each 
fuzzy Hamiltonian cycle. A fuzzy graph structure is modeled to illustrate the proposed 
algorithms with the selected air network of Indigo airlines.
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