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Background
The present paper is devoted to the notion of infinite order decomposition (IOD) of a 
C*-algebra with respect to an infinite orthogonal family of projections. Let A be a unital 
C*-algebra, p be a projection in A, i.e. p2 = p, p∗ = p. Then 1− p is also a projection 
and the subsets pA = {pa : a ∈ A}, Ap = {ap : a ∈ A}, (1− p)A = {(1− p)a : a ∈ A} , 
A(1− p) = {a(1− p) : a ∈ A} are vector subspaces of A. A coincides with its Peirce 
decomposition on p, i.e.

These subspaces satisfy the following properties

In the present paper an infinite analog of this decomposition, namely, IOD is investi-
gated. In Arzikulov (2008) the notion of IOD is defined as follows: let A be a C*-algebra 
on an infinite dimensional Hilbert space H, {pξ } be an infinite orthogonal family of pro-
jections in A with the least upper bound (LUB) 1, calculated in B(H). Let

A = pA⊕ Ap⊕ (1− p)A⊕ A(1− p).

pA · pA ⊆ pA, pA · Ap ⊆ pAp,

Ap · Ap ⊆ Ap, pA · (1− p)A ⊆ pA,

(1− p)A · (1− p)A ⊆ (1− p)A, (1− p)A · pA ⊆ (1− p)A,

pA · A(1− p) ⊆ pA(1− p),A(1− p) · pA = {0}.

Abstract 

The present paper is devoted to infinite order decompositions of C*-algebras. It is 
proved that an infinite order decomposition (IOD) of a C*-algebra forms the com-
plexification of an order unit space, and, if the C*-algebra is monotone complete (not 
necessarily weakly closed) then its IOD is also monotone complete ordered vector 
space. Also it is established that an IOD of a C*-algebra is a C*-algebra if and only if this 
C*-algebra is a von Neumann algebra. As a summary we obtain that the norm of an 
infinite dimensional matrix is equal to the supremum of norms of all finite dimensional 
main diagonal submatrices of this matrix and an infinite dimensional matrix is positive 
if and only if all finite dimensional main diagonal submatrices of this matrix are positive.
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and 
∑⊕

ξ ,η pξApη is said to be  an IOD of A.
Under this definition the following theorem is valid.

Theorem (Arzikulov 2008) Let A be a C*-algebra on a Hilbert space H, {pξ } be an infi-
nite orthogonal family of projections in A with the least upper bound 1 in B(H). Then

(1) if the order unit space 
∑⊕

ξ ,η pξApη is monotone complete in B(H) (i.e. ultraweakly 
closed), then 

∑⊕
ξ ,η pξApη is a C*-algebra,

(2) if A is monotone complete in B(H) (i.e. a von Neumann algebra), then 
A =

∑⊕
ξ ,η pξApη,

(3) if  
∑⊕

ξ ,η pξApη is a C*-algebra then this algebra is a von Neumann algebra.

In the present paper we give a complete proof of this theorem (see, respectively, item 2 
of Theorem 3, Proposition 4, item 2 of Corollary 1).

Also it is proved that an infinite order decomposition (IOD) of a C*-algebra forms the 
complexification of an order unit space, and, if the C*-algebra is monotone complete (not 
necessarily weakly closed) then its IOD is also monotone complete ordered vector space. 
Also it is established that an IOD of a C*-algebra is a C*-algebra if and only if this C*-algebra 
is a von Neumann algebra. For this propose operations of multiplication and an involution in 
an IOD are introduced. It turns out, the order and the norm defined in an IOD of a C*-alge-
bra on a Hilbert space H coincide with the usual order and norm in B(H). Also, it is proved 
that, if a C*-algebra A with an infinite orthogonal family {pξ } of projections in A such that 
supξ pξ = 1 is not a von Nemann algebra and projections in the set {pξ } are pairwise equiva-
lent then A �=

∑⊕
ξ ,η pξApη. Moreover if the Banach space 

∑⊕
ξ ,η pξApη is not weakly closed 

then 
∑⊕

ξ ,η pξApη is not a C*-algebra. As a result it is proved that an IOD of a C*-algebra 
forms the complexification of an order unit space. In this sense, if a C*-algebra is monotone 
complete (and not necessarily weakly closed) then its IOD is monotone complete and an 
IOD of a C*-algebra is a C*-algebra if and only if this C*-algebra is a von Neumann algebra.

Infinite order decompositions
A relation of order ≤ in the vector space 

∑⊕
ξ ,η pξApη we define as follows: for elements {aξη}, 

{bξη} ∈
∑⊕

ξ ,η pξApη, if for all n ∈ N , {pk}nk=1 ⊂ {pξ } the inequality 
∑n

k ,l=1 akl ≤
∑n

k ,l=1 bkl 
is valid, then it will be written {aξη} ≤ {bξη}. Also, the map {aξ ,η} → �{aξ ,η}�, 
{aξ ,η} ∈

∑⊕
ξ ,η pξApη, where �{aξ ,η}� = sup{�

∑n
kl=1 akl� : n ∈ N , {akl}

n
kl=1 ⊆ {aξ ,η}}, is a 

norm on the vector space 
∑⊕

ξ ,η pξApη.

Example Throughout the paper let n be an arbitrary infinite cardinal number, � be a 
set of indices of the cardinality n. Let {eij} be the family of matrix units such that eij is a 
n× n-dimensional matrix, i.e. eij = (aαβ)αβ∈�, the (i, j)-th component of which is 1, i.e. 
aij = 1, and the rest components are zeros. Throughout the paper let

⊕
∑

ξ ,η

pξApη = {{aξ ,η} : aξ ,η ∈ pξApη for all ξ , η, and there exists such number

K ∈ R that

∥

∥

∥

∥

∥

∥

n
∑

k ,l=1

akl

∥

∥

∥

∥

∥

∥

≤ K for all n ∈ N and {akl}
n
kl=1 ⊆ {aξ ,η}},
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where ‖ ‖ is the norm of a matrix. It is easy to see that Mn(C) is a vector space. The set 
Mn(C), defined above, coincides with the set

where l2(�) is the Hilbert space on C with elements {xi}i∈�, where xi ∈ C for all i ∈ �.
In the vector space

of all n× n-dimensional matrices (indexed sets) over C we can introduce an associative 
multiplication as follows:

where x = {�ijeij}, y = {µijeij} are elements of Mn(C). Then Mn(C) becomes an asso-
ciative algebra with respect to this operation and Mn(C) ∼= B(l2(�)), where l2(�) is a 
Hilbert space over C with elements {xi}i∈�, xi ∈ C for all i ∈ �, B(l2(�)) is the associative 
algebra of all bounded linear operators on l2(�). Hence Mn(C) is a von Neumann alge-
bra of infinite n× n-dimensional matrices over C.

Similarly, if B(H) is the algebra of all bounded linear operators on a Hilbert space 
H and {qi} is a maximal orthogonal family of minimal projections in B(H), then 
B(H) =

∑⊕
ij qiB(H)qj (Arzikulov 2008).

Let A be a C*-algebra on a Hilbert space H, {pi} be an infinite orthogonal family of 
projections with the LUB 1 in B(H) and A = {{piapj} : a ∈ A}. Then A ≡ A (Arzikulov 
2012).

Lemma 1 Let A be a C*-algebra on a Hilbert space H, {pξ } be an infinite orthogonal 
family of projections in A with the LUB 1 in B(H). Then 

∑⊕
ξ ,η pξApη is a vector space with 

the following componentwise algebraic operations

Mn(C) =

{

{�ijeij} : for all indices i, j �ij ∈ C,

and there exists such number K ∈ R, that for all n ∈ N

and {ekl}
n
kl=1

⊆ {eij}

∥

∥

∥

∥

∥

n
∑

kl=1

�
klekl

∥

∥

∥

∥

∥

≤ K

}

,

Mn(C) =
�

{�ijeij} : for all indexes ij �ij ∈ C,

and there exists such number K ∈ R that for all

{xi} ∈ l2(�) the next inequality is valid
�

j∈�

�

�

�

�

�

�

i∈�

�ijxi

�

�

�

�

�

2

≤ K 2
�

i∈�

|xi|
2







,

Mn(C) = {{�ijeij} : for all indices i, j �ij ∈ C}

xy =







�

ξ∈�

�
iξµξ jeij







,

� · {aξη} = {�aξη}, � ∈ C

{aξη} + {bξη} = {aξη + bξη}, aξη, bξη ∈

⊕
∑

ξ ,η

pξApη
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and A is a vector subspace of  ∑⊕
ξ ,η pξApη.

Lemma 2 Let A be a C*-algebra on a Hilbert space H, {pξ } be an infinite orthogo-
nal family of projections in A with the LUB 1 in B(H). Then the map {aξ ,η} → �{aξ ,η}�,  
{aξ ,η} ∈

∑⊕
ξ ,η pξApη, where �{aξ ,η}� = sup{�

∑n
kl=1 akl� : n ∈ N , {akl}

n
kl=1 ⊆ {aξ ,η}}, is a 

norm and 
∑⊕

ξ ,η pξApη is a Banach space with this norm.

Proof It is clear, that for every element {aξ ,η} ∈
∑⊕

ξ ,η pξApη, if �{aξ ,η}� = 0, then 
aξ ,η = 0 for all ξ, η, i.e. {aξ ,η} is the zero element. The other conditions in the definition of 
the norm can be also easily checked.

Let (an) be a Cauchy sequence in 
∑⊕

ξ ,η pξApη, i.e. for each positive number ε > 0 there 
exists n ∈ N such, that �an1 − an2� < ε for all n1 ≥ n, n2 ≥ n. Then the set {�an�} is 
bounded by some number K ∈ R+ and for every finite set {pk}nk=1 ⊂ {pi} the sequence 
(panp) is a Cauchy sequence, where p =

∑n
k=1 pk. Then, limn→∞ panp ∈ A since A is a 

Banach space.
Let aξ ,η = limn→∞ pξanpη for all ξ and η. Then �

∑n
kl=1 akl� ≤ K  for all n ∈ N and 

{akl}
n
kl=1 ⊆ {aξ ,η}. Hence {aξ ,η} ∈

∑⊕
ξ ,η pξApη.  �

The definition of the order in 
∑⊕

ξ ,η pξApη is equivalent to the following condition: 
for the elements {aξη}, {bξη} ∈

∑⊕
ξ ,η pξApη, if {akl}nk ,l=1 ≤ {bkl}

n
k ,l=1 for all n ∈ N  and 

{pk}
n
k=1 ⊆ {pi} in A, then {aξη} ≤ {bξη}. Let {aξη}∗ = {a∗ηξ } for every {aξη} ∈

∑⊕
ξη pξApη 

and (
∑⊕

ξη pξApη)sa = {{aξη} : {aξη} ∈
∑⊕

ξη pξApη, {aξη}
∗ = {aξη}}.

Proposition 1 Let A be a C*-algebra on a Hilbert space H, {pξ } be an infinite orthogonal 
family of projections in A with the LUB 1 inB(H). Then the relation≤, introduced above, 
is arelation of partial order, and (

∑⊕
ξ ,η pξApη)sa is an order unit space with this order. In 

this case Asa = {{pξapη} : a ∈ Asa} is an order unit subspace of (
∑⊕

ξ ,η pξApη)sa.

Proof Let M = (
∑⊕

ξ ,η pξApη)sa. M is a partially ordered vector space, i.e. M+ ∩M− = {0} ,  
where M+ = {{aξη} ∈ M : {aξη} ≥ 0}, M− = {{aξη} ∈ M : {aξη} ≤ 0}.

By the definition of the order M is Archimedean. Let {aξη} ∈ M. Since 
−�{aξ ,η}�p ≤ p{aξ ,η}p ≤ �{aξ ,η}�p for every finite set {pk}

n
k=1 ⊂ {pξ }, where 

p =
∑n

k=1 pk, we have −�{aξ ,η}�1 ≤ {aξ ,η} ≤ �{aξ ,η}�1 by the definition of the order, 
and the unit of A is an order unit of the partially ordered vector space M. Thus M is an 
order unit space.

By Lemma 1 A is an order unit subspace of the order unit space M.  �

Proposition 2 Let A be a C*-algebra on a Hilbert space H,{pi}be an infinite orthogonal 
family of projections in A with the LUB 1 in B(H). ThenA = {{pξapη} : a ∈ A}is a C*-alge-
bra, where the operation of multiplication ofAis defined as follows

Proof By Lemma 4 in Arzikulov (2012) the map

· : �{pξapη}, {pξbpη}� → {pξabpη}, {pξapη}, {pξbpη} ∈ A.

I : a ∈ A → {pξapη} ∈ A
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is a one-to-one map. In this case

by the definition of the operation of multiplication in Proposition 2, and I(a) = {pξapη} , 
I(b) = {pξbpη}, I(ab) = {pξabpη}. Hence, the operation, introduced in Proposition 2 is 
associative multiplication and the map I  is an isomorphism of the algebras A and A.

By Proposition 1 the isomorphism I  is isometrical. Therefore A is a C*-algebra with 
this operation.  �

Example 1 Let H be a Hilbert space, {qi} be a maximal orthogonal family of minimal 
projections in B(H). Then supi qi = 1 and by Lemma 4 in Arzikulov (2012) and Proposi-
tion 2 the algebra B(H) = {{qiaqj} : a ∈ B(H)} can be identified with B(H) as a C*-alge-
bra in the sense of the map

In this case associative multiplication in B(H) is defined as follows

Let a, b ∈ B(H), qiaqj = �ijqij, qibqj = µijqij, where �ij, µij ∈ C, qi = qijq
∗
ij, qj = q∗ijqij, 

for all indices i and j. Then this operation of multiplication coincides with the following 
bilinear operation

Remark 1 Let A be a C*-algebra on a Hilbert space H, {pi} be an infinite orthog-
onal family of projections in A with the LUB 1 in B(H). Then by Proposition 2 
A = {{pξapη} : a ∈ A} is a C*-algebra. In this case the operation of involution on the 
algebra A coincides with the map

Indeed, the identification A ≡ A gives a = {pξapη} and a∗ = {pξa
∗pη} for all a ∈ A . 

Then {pξapη}∗ = a∗ = {pξa
∗pη} for each a ∈ A. Let Asa = {{pξapη} : a ∈ Asa}. Then 

A = Asa + iAsa. Indeed, {pξapη}∗ = a∗ = a = {pξapη} for each a ∈ Asa.
Let N = {{pξapη} : a ∈ B(H)}. By Lemma 4 in Arzikulov (2012) and by 

Proposition 2 N ≡ B(H). Therefore it will be assumed that N = B(H). Let 
Nsa = {{pξapη} : a ∈ B(H), {pξapη}

∗ = {pξapη}}. Then N = Nsa + iNsa. Note that 
{pξapη}

∗ = {pξapη} if and only if (pξapη)∗ = pηapξ for all ξ, η.

Lemma 3 Let H be a Hilbert space, {pξ } be an infinite orthogonal family of projections 
in B(H) with the LUB 1. Then associative multiplication of the algebra N  (hence of the 
algebra B(H)) coincides with the operation

I(a)I(b) = I(ab)

I : a ∈ B(H) → {qiaqj} ∈ B(H).

· : �{qiaqj}, {qibqj}� → {qiabqj}, {qiaqj}, {qibqj} ∈ B(H).

· : �{qiaqj}, {qibqj}� →







�

ξ

�iξµξ jqij







, {qiaqj}, {qibqj} ∈ B(H).

{pξapη}
∗ = {pξa

∗pη}, a ∈ A.

{pξapη} ⋆ {pξbpη} =

{

∑

i

pξapipibpη

}

, {pξapη}, {pξbpη} ∈ N
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where the sum 
∑

 in the right part of the equality is an ultraweak limit of the net of finite 
sums of elements in the set {pξapipibpη}ξη.

Proof Let {pk}nk=1 be a finite subset of the set {pξ }. Note that supi pi = 1, i.e. the net 
of all finite sums 

∑n
k=1 pk of orthogonal projections in {pξ } ultraweakly converges to 

the identity operator in B(H). By the ultraweakly continuity of the operator of mul-
tiplication T (b) = ab, b ∈ B(H), where a ∈ B(H), the net of finite sums of elements in 
{pξapipibpη}ξη ultraweakly converges and 

∑

i pξapipibpη = pξabpη for all ξ, η. Hence the 
operation of multiplication ⋆ of the algebra N  coincides with the operation, introduced 
in Proposition 2. And the operation of associative multiplication, introduced in Proposi-
tion 2 coincides with multiplication in B(H) in the sense N ≡ B(H).  �

Proposition 3 Let A be a C*-algebra on a Hilbert space H, {pξ } be an infinite orthogo-
nal family of projections in A with the LUB 1 in B(H). Then the operation of associative 
multiplication of A coincides with the operation of associative multiplication of N on A, 
defined in Lemma 3.

Proof Let {pξapη}, {pξbpη} be elements of Asa and {pk}nk=1 be a finite subset of the set 
{pξ } and p =

∑n
k=1 pk. The net of all finite sums 

∑n
k=1 pk of orthogonal projections in 

{pξ } ultraweakly converges to the identity operator in B(H). Therefore for all ξ, η the 
element {pξabpη} is an ultraweak limit in B(H) of the net {

∑

i pξapipibpη} of all finite 
sums {

∑n
k=1 pξapkpkbpη} for all finite subsets {pk}nk=1 ⊂ {pξ }, and the element {pξabpη} 

belongs to A. Hence the assertion of Proposition 3 is valid.  �

Remark 2 Let A be a C*-algebra on a Hilbert space H, {pi} be an infinite orthogonal 
family of projections in A with the LUB 1 in B(H). Then by Lemmata 3, 4 in Arzikulov 
(2012) the order and the norm in the vector space 

∑⊕
i,j piApj can be introduced as fol-

lows: {aij} ≥ 0 denotes that this element is zero or positive element in B(H) in the sense 
B(H) =

∑⊕
ξ ,η qξB(H)qη, where {qξ } is an arbitrary maximal orthogonal family of mini-

mal projections in B(H); �{aij}� is equal to the norm in B(H) of this element in the sense 
of the equality B(H) =

∑⊕
ξ ,η qξB(H)qη (Example 1). By Lemmata 3 and 4 in Arzikulov 

(2012) they coincide with the order and the norm defined in Lemma 2 and Proposition 
1, respectively. If a is a bounded linear operator on H then

where 
∑⊕

ξ ,η qξaqη is the ultraweak limit of the net of finite sums. By Lemma 2, if 
A = B(H), then

If H = l2(�), where l2(�) is the Hilbert space on C with elements {xi}i∈�, xi ∈ C for all 
i ∈ �, then B(H) = B(l2(�)), where B(l2(�)) is the associative algebra of all bounded 
linear operators on the Hilbert space l2(�), which is an associative algebra of infinite 

a =

⊕
∑

ξ ,η

qξaqη,

�a� = sup

{∥

∥

∥

∥

∥

n
∑

kl=1

qkaql

∥

∥

∥

∥

∥

: n ∈ N , {qkaql

}n

kl=1

⊆ {qξaqη}}.
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dimensional matrices. In this case ‖a‖ is a supremum of norms of all finite-dimensional 
main diagonal submatrices of a. Hence the following theorem is valid.

Theorem 1 The norm of an infinite dimensional matrix is equal to the supremum of 
norms of all finite dimensional main diagonal submatrices of this matrix.

By Lemma 3 in Arzikulov (2012) the following theorem is also valid.

Theorem  2 An infinite dimensional matrix is positive if and only if all finite dimen-
sional main diagonal submatrices of this matrix are positive.

It should be noted that Theorem 1 of § 50 in Berberian (1972) follows from Theorem 2.

Remark 3 Suppose that all conditions of Remark 3 are valid. Let B(H) =
∑⊕

ξ ,η qξB(H)qη . 
Then B(H) ≡ B(H), where B(H) = {{qξaqη} : a ∈ B(H)}. Also, 

∑⊕
ij piApj is a Banach 

space and an order unit space (Lemma 2, Proposition 1). Suppose that {qξ } is a maximal 
orthogonal family of minimal projections in B(H) such that pi = supη qη for some subset 
{qη} ⊂ {qξ } for all i. Note that B(H) ≡ {{piapj} : a ∈ B(H)} =

∑⊕
ij piB(H)pj. By Propo-

sitions 2 and 3 the order unit space A = {{piapj} : a ∈ A} is closed with respect to the 
associative multiplication of 

∑⊕
ij piB(H)pj (i.e. N = {{piapj} : a ∈ B(H)}).

At the same time, the order unit space 
∑⊕

ij piApj is the order unit subspace of 
∑⊕

ij piB(H)pj.
Since B(H) ≡

∑⊕
ij piB(H)pj we have 

∑⊕
ij piB(H)pj is a von Neumann algebra, and, 

without loss of generality, this algebra can be considered as B(H).
Note that if 

∑⊕
ij piApj is closed with respect to the associative multiplication of 

∑⊕
ij piB(H)pj, then 

∑⊕
ij piApj is a C*-algebra. Also, if A is the C*-algebra with the condi-

tions, which are listed above, then the vector space 
∑⊕

ij piApj is an order unit subspace 
of 

∑⊕
ij piB(H)pj. Then

Thus, further the statement that 
∑⊕

ij piApj is a C*-algebra denotes 
∑⊕

ij piApj is closed 
with respect to the associative multiplication of 

∑⊕
ij piB(H)pj.

The involution in 
∑⊕

ij piB(H)pj in the sense of the identification 
∑⊕

ij piB(H)pj ≡ B(H) 
coincides with the map

Indeed, there exists an element a ∈ B(H) such that a = {aij} = {piapj}. Then a∗ = {pia
∗pj}  

in the sense of B(H) ≡ N  and aij = piapj, a∗ij = pja
∗pi for all i, j. Therefore {pia∗pj} = {a∗ji} . 

Hence a∗ = {a∗ji}. Let (
∑⊕

ij piB(H)pj)sa = {{aij} : {aij} ∈
∑⊕

ij piB(H)pj , {aij}
∗ = {aij}}. 

Then

A ⊆

⊕
∑

ij

piApj ⊆

⊕
∑

ij

piB(H)pj .

{aij}
∗ = {a∗ji}, {aij} ∈

⊕
∑

ij

piB(H)pj .
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Lemma 4 Let A be a C*-algebra on a Hilbert space H, {pi} be an infinite orthog-
onal family of projections in A with LUB 1 in B(H) and (

∑⊕
ij piApj)sa = {{aij} : 

{aij} ∈
∑⊕

ij piApj , {aij}
∗ = {aij}}. Then

In this case {aij}∗ = {aij} if and only if a∗ij = aji for all i, j.

Proof Let {aij} ∈
∑⊕

ij piApj. Since aij + aji ∈ A, we have aij + aji = a1 + ia2, where a1 , 
a2 ∈ (

∑⊕
ij piApj)sa, for all i and j. Then aij + aji = pia1pj + pja1pi + i(pia2pj + pja2pi) , 

a1 = pia1pj + pja1pi, a2 = pia2pj + pja2pi for all i and j. Let a1ij = pia1pj + pja1pi , 
a2ij = pia2pj + pja2pi for all i and j. Then {a1ij}, {a

2
ij} ∈

∑⊕
ij piApj by the definition of 

∑⊕
ij piApj. In this case {akij}

∗ = {akij}, k = 1, 2. Since {aij} ∈
∑⊕

ij piApj was chosen arbi-
trarily, we have the equality (1).

The rest part of Lemma 4 is valid by the definition of the self-adjoint elements {akij}, 
k = 1, 2.  �

Lemma 5 Let H be a Hilbert space, {pξ } be an infinite orthogonal family of projections 
in B(H) with the LUB 1. Then the operation of associative multiplication of the algebra 
∑⊕

ξ ,η pξB(H)pη (i.e. of the algebra B(H)) coincides with the binary operation

Proof Let {aξη}, {bξη} ∈ (
∑⊕

ξ ,η pξB(H)pη). By

it can be admitted that B(H) = N =
∑⊕

ξ ,η pξB(H)pη. There exists elements a, b 
in B(H) such that pξapη = aξη, pξbpη = bξη for all ξ, η. Therefore {aξη} = {pξapη}, 
{bξη} = {pξbpη}. Then by Lemma 3 the associative multiplication of 

∑⊕
ξ ,η pξB(H)pη (i.e. 

of B(H)) coincides with binary operation (2).  �

Proposition 4 (Arzikulov 2008) Let A be a von Neumann algebra on a Hilbert space H, 
{pi} be an infinite orthogonal family of projections in A with LUB 1. Then A =

∑⊕
ξ ,η pξApη.

Proof Let a be an element of 
∑⊕

ξ ,η pξApη and a = {aξη}, where aξξ = pξapξ, 
aξη = pξapη for all ξ, η. Then a ∈ B(H) =

∑⊕
ξ ,η pξB(H)pη and (

∑n
k=1 pk)a(

∑n
k=1 pk) ∈ A 

for every {pk}nk=1 ⊂ {pξ }. Let

⊕
�

ij

piB(H)pj =





⊕
�

ij

piB(H)pj





sa

+ i





⊕
�

ij

piB(H)pj





sa

.

(1)

⊕
�

ij

piApj =





⊕
�

ij

piApj





sa

+ i





⊕
�

ij

piApj





sa

.

(2)· : �{aξ ,η}, {bξ ,η}� →

�

�

i

aξ ibiη}, {aξη

�

, {bξη} ∈





⊕
�

ξ ,η

pξB(H)pη



.

B(H) ≡ N ≡

⊕
∑

ξ ,η

pξB(H)pη.
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for all natural numbers n and finite subsets {pαk }
n
k=1 ⊂ {pi}. Then by the proof of Lemma 

3 in Arzikulov (2012) the net (bαn) ultraweakly converges to a in B(H). At the same time A 
is ultraweakly closed in B(H). Therefore a ∈ A and 

∑⊕
ξ ,η pξApη ⊆ A.  �

Lemma 6 Let A be a C*-algebra on a Hilbert space H, {pξ } be an infinite orthogonal  
family of projections in A with the LUB 1 in B(H). Then, if projections in {pξ } are pairwise 
equivalent and pξApξ is a von Neumann algebra for every index ξ, then 

∑⊕
ξ ,η pξApη is 

closed with respect to the multiplication of the algebra 
∑⊕

ξ ,η pξB(H)pη and 
∑⊕

ξ ,η pξApη is 
a C*-algebra.

Proof First, note that (pξ + pη)A(pξ + pη) is a von Neumann algebra. Indeed, for each 
net (aα) in pξApη, weakly converging in B(H) the net (aαx∗ξη) belongs to pξApξ, where 
xξη is an isometry in A such that xξηx∗ξη = pξ, x∗ξηxξη = pη. Then, since the net (aαx∗ξη) 
weakly converges in B(H), we have the weak limit b in B(H) of the net (aαx∗ξη) belongs to 
pξApξ. Hence bxξη ∈ pξApη. It is easy to see that bxξη is a weak limit in B(H) of the net 
(aα). Hence pξApη is weakly closed in B(H).

Let {aξη}, {bξη} ∈ (
∑⊕

ξη pξApη). By

there exist elements a, b in 
∑⊕

ξη pξB(H)pη (i.e. in B(H)) such that pξapη = aξη, 
pξbpη = bξη for all ξ, η. Therefore {aξη} = {pξapη}, {bξη} = {pξbpη}. Hence

calculated in 
∑⊕

ξη pξB(H)pη, belongs to pξApη. Since the indices ξ, η were chosen arbi-
trarily and the product {pξapη}{pξbpη} = ab belongs to 

∑⊕
ξη pξB(H)pη, we have the prod-

uct of the elements a and b belongs to 
∑⊕

ξ ,η pξApη. Therefore 
∑⊕

ξη pξApη is closed with 
respect to the associative multiplication of 

∑⊕
ξη pξB(H)pη. At the same time, 

∑⊕
ξη pξApη is 

a norm closed subspace of 
∑⊕

ξη pξB(H)pη = B(H). Hence 
∑⊕

ξη pξApη is a C*-algebra and 
the operation of multiplication in 

∑⊕
ξη pξApη can be defined as in Lemma 5.  �

Theorem  3 Let A be a C*-algebra on a Hilbert spaceH, {pξ }be an infinite orthogo-
nal family of projections in A with the LUB 1 inB(H). Then the following statements are  
valid:

(1) Suppose that projections in{pξ }are pairwise equivalent and for eachξpξApξis a von 
Nemann algebra. Then

∑⊕
ξ ,η pξApηis a von Neumann algebra,

(2) if
∑⊕

ξ ,η pξApηis monotone complete in B(H) then
∑⊕

ξ ,η pξApηis a C*-algebra.

bαn =

n
∑

kl=1

pαk ap
α
l =

(

n
∑

kl=1

pαk

)

a

(

n
∑

kl=1

pαk

)

⊕
∑

ξη

pξApη ⊆

⊕
∑

ξη

pξB(H)pη = B(H)

∑

i

aξ ibiη = pξabpη,
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Proof (1) Let {xξη} be a set of isometries in A such that pξ = xξηx
∗
ξη, pη = x∗ξηxξη for all 

ξ, η. Let ξ, η be arbitrary indices. We prove that pξApη is weakly closed. Let (aα) be a net in 
pξApη, weakly converging to an element a in B(H). Then the exists a net (bα) in pξApη such 
that aα = xξηbαxξη for all α. By separately weakly continuity of the multiplication the net 
(aαx

∗
ξη) weakly converges to axξη in B(H). Since (aαxξη∗) ⊂ pξApξ and pξApξ is weakly 

closed in B(H) we have ax∗ξη ∈ pξApξ. Hence there exists an element b ∈ A such that 
ax∗ξη = xξηbxξηx

∗
ξη. Then ax∗ξηxξη = xξηbxξηx

∗
ξηxξη = xξηbxξηpη = xξηbxξη ∈ pξApη. At 

the same time aαpη = aα for all α. Hence, apη = a. Since a = ax∗ξηxξη = xξηbxξη ∈ pξApη 
we have a ∈ pξApη. Also, since the net (aα) is chosen arbitrarily we obtain the compo-
nent pξApη is weakly closed in B(H). Let (aα) be a net in 

∑⊕
ξ ,η pξApη, weakly converging 

to an element a in B(H). Then for all ξ and η the net (pξaαpη) weakly converges to pξapη 
in B(H). In this case, by the previous part of the proof pξapη ∈ pξApη for all ξ, η. Note 
that a ∈

∑⊕
ξ ,η pξB(H)pη. Hence a ∈

∑⊕
ξ ,η pξApη. Since the net (aα) is chosen arbitrarily 

we have 
∑⊕

ξ ,η pξApη is weakly closed in 
∑⊕

ξ ,η pξB(H)pη ≡ B(H). Therefore by Lemma 6 
∑⊕

ξ ,η pξApη is a von Neumann algebra.
Item (2) follows from (1).  �

Proposition 5 Let A be a monotone complete C*-algebra on a Hilbert space H,{pξ }be an 
infinite orthogonal family of projections in A with the LUB 1 in B(H). Then the order unit 
space

∑⊕
ξ ,η pξApηis monotone complete.

Proof It is clear that the C*-subalgebra pξApξ is also monotone complete for each ξ. Let 
{pk}

n
k=1 be a finite subset of {pξ } and p =

∑n
k=1 pk. Then the C*-subalgebra pAp is also 

monotone complete.
Let (aα) be a bounded monotone increasing net in 

∑⊕
ξ ,η pξApη. Since for every 

{pk}
n
k=1 ⊆ {pξ } the subalgebra (

∑n
k=1 pk)A(

∑n
k=1 pk) is monotone complete we have

Hence, {aξη} = {supα pξaαpξ } ∪ {pξ (supα(pξ + pη)aα(pξ + pη))pη}ξ �=η is an element of 
the order unit space 

∑⊕
ξ ,η pξApη. It can be checked straightforwardly using the definition 

of the order in 
∑⊕

ξ ,η pξApη that the element {aξη} is the LUB of the net (aα). Since the net 
(aα) was chosen arbitrarily we obtain the order unit space 

∑⊕
ξ ,η pξApη is monotone com-

pete.  �

Theorem  4 Let A be a monotone complete C*-algebra on a Hilbert space H,{pξ }
be an infinite orthogonal family of projections in A with the LUB 1 in B(H). Suppose 
that projections in{pξ }are pairwise equivalent and A is not a von Neumann algebra. 
ThenA �=

∑⊕
ξ ,η pξApη (i.e.A := {{pξapη} : a ∈ A} �=

∑⊕
ξ ,η pξApη).

Proof By the condition there exists a bounded monotone increasing net (aα) of ele-
ments in A, the LUB supA aα in A and the LUB sup∑⊕

ξη pξB(H)pη
aα in 

∑⊕
ξη pξB(H)pη of 

which are distinct. Otherwise A is a von Neumann algebra.

sup
α

(

n
∑

k=1

pk

)

aα

(

n
∑

k=1

pk

)

∈

(

n
∑

k=1

pk

)

A

(

n
∑

k=1

pk

)

.
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By the definition of the order in 
∑⊕

ξη pξB(H)pη there exists a projection p ∈ {pξ } such 
that the LUB suppAp paαp in pAp and the LUB suppB(H)p paαp in pB(H)p of the bounded 
monotone increasing net (paαp) of elements in pAp are different. Indeed, let a = supA aα , 
b = sup∑⊕

ξη pξB(H)pη
aα. Since A ⊆

∑⊕
ξη pξB(H)pη, we have b ≤ a and 0 ≤ a− b. Hence, 

if pξ (a− b)pξ = 0 for all ξ, then pξ (a− b) = (a− b)pξ = 0. Therefore by Lemma 2 in 
Arzikulov (2012) a− b = 0, i.e. a = b. Hence pAp is not a von Neumann algebra.

There exists an infinite orthogonal family {ei} of projections in pAp, the LUB suppAp ei 
in pAp and the LUB suppB(H)p ei in pB(H)p of which are different. Otherwise pAp is a von 
Neumann algebra.

Indeed, every maximal commutative subalgebra Ao of pAp is monotone complete. For 
each normal positive linear functional ρ ∈ B(H) and for each infinite orthogonal fam-
ily {qi} of projections in Aoρ(supi qi) =

∑

i ρ(qi), where supi qi is the LUB of the set {qi} 
in Ao. Hence by the theorem on extension of a σ-additive measure to a normal linear 
functional ρ|Ao is a normal functional on Ao. Hence Ao is a commutative von Neumann 
algebra. At the same time the maximal commutative subalgebra Ao of the algebra pAp is 
chosen arbitrarily. Therefore by Pedersen (1968) pAp is a von Neumann algebra. What is 
impossible.

Let {xξη} be a set of isometries in A such that pξ = xξηx
∗
ξη, pη = x∗ξηxξη for all ξ, η and 

p1 = p. Let {x1ξ } be the subset of the set {xξη} such that p1 = x1ξx
∗
1ξ, pξ = x∗1ξx1ξ for all 

ξ. Without loss of generality we assume the set of indices i for {ei} is a subset of the set 
of indices ξ for {pξ }. Let {eix1i} be the infinite dimensional matrix such that the compo-
nents, which are not presented, are zeros and {x∗1ie

∗
i } be a similar matrix. Then {x∗1ie

∗
i } is 

the conjugation of {x∗1ie
∗
i } and 

∑

i eix1ix
∗
1ie

∗
i =

∑

i eip1e
∗
i =

∑

i eie
∗
i =

∑

i ei ≤ suppAp ei . 
Therefore {aξη} ∈

∑⊕
ξ ,η pξApη. Then {a∗ξη} ∈

∑⊕
ξ ,η pξApη. Therefore, if {aξη} ∈ A (i.e. 

in A := {{pξapη} : a ∈ A}), then the product {aξη} · {a∗ξη} in 
∑⊕

ij piB(H)pj belongs 
to 

∑⊕
ξ ,η pξApη. In this case the infinite dimensional matrix {aξη} · {a∗ξη} contains the 

component 
∑

i eix1i · x
∗
1ie

∗
i  such that 

∑

i eix1i · x
∗
1ie

∗
i = p1(

∑

i eix1i · x
∗
1ie

∗
i )p1. Hence 

p1({aξη} · {a
∗
ξη})p1 =

∑

i eix1i · x
∗
1ie

∗
i  and 

∑

i eix1i · x
∗
1ie

∗
i ∈ p1(

∑⊕
ξ ,η pξApη)p1 = p1Ap1 . 

Since 
∑

i eix1i · x
∗
1ie

∗
i =

∑

i eip1e
∗
i =

∑

i eie
∗
i =

∑

i ei we obtain 
∑

i ei ∈ p1Ap1, i.e. 
suppB(H)p ei ∈ p1Ap1. The last statement is a contradiction. Therefore {aξη} /∈ A. Hence 
A �=

∑⊕
ξ ,η pξApη, i.e. A := {{pξapη} : a ∈ A} �=

∑⊕
ξ ,η pξApη.  �

The following corollary follows from Theorem 4 and it’s proof.

Corollary 1 Let A be a C*-algebra on a Hilbert space H,{pξ }be an infinite orthogonal 
family of projections in A with the LUB 1 in B(H). Then the following statements are valid:

(1) suppose that the order unit space
∑⊕

ξ ,η pξApηis monotone complete and there 
exists a bounded monotone increasing net(aα)of elements in

∑⊕
ξ ,η pξApη, the 

LUBsup∑⊕
ξ ,η pξApη

aαin
∑⊕

ξ ,η pξApηand the LUBsup∑⊕
ξη pξB(H)pη

aαin
∑⊕

ξη pξB(H)pηof 
which are distinct. Then the vector space

∑⊕
ξ ,η pξApηis not closed with respect to the 

multiplication of
∑⊕

ξ ,η pξB(H)pη,
(2) if

∑⊕
ξ ,η pξApηis a C*-algebra then this algebra is a von Neumann algebra.
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Application
Let n be an infinite cardinal number, � be a set of indices of cardinality n. Let {eij} be the 
set of matrix units such that eij is a n× n-dimensional matrix, i.e. eij = (aαβ)αβı�, (i, j)-
th component of which is 1, i.e. aij = 1, and the other components are zeros. Let X be a 
hyperstonean compact, C(X) be the commutative algebra of all complex-valued continu-
ous functions on the compact X and

where �
∑

kl=1...m �
kl(x)ekl� ≤ K  means (∀xo ∈ X)�

∑

kl=1...m �
kl(xo)ekl� ≤ K . The set M 

is a vector space with point-wise algebraic operations. The map � � : M → R+ defined 
as

is a norm on the vector space M, where a ∈ M and a = {�ij(x)eij}.
In M we introduce an associative multiplication as follows: if x = {�ij(x)eij} , 

y = {µij(x)eij} are elements of V then xy = {
∑

ξ �
iξ (x)µξ j(x)eij}. With respect to this 

multiplication M becomes an associative algebra.

Theorem 5 M is a von Neumann algebra of type InandM = C(X)⊗Mn(C).
Proof It is known that the vector space C(X ,Mn(C)) of continuous matrix-valued maps 
on the compact X is a C*-algebra. Let A = C(X ,Mn(C)) and ei be a eii-valued constant 
map on X, i.e. ei is a projection in A. A C*-algebra A is embedded in B(H) for some Hil-
bert space H such that {ei} is an orthogonal family of projections with supi ei = 1 in B(H). 
Then 

∑⊕
ij eiAej = M and 

∑⊕
ij eiAej is embedded in B(H). We have eiAei = C(X)ei for 

each i, i.e. eiAei is weakly closed in B(H) for each i. Hence by Theorem 3 the image of M 
in B(H) is a von Neumann algebra. Hence M is a von Neumann algebra. Note that {ei} is 
a maximal orthogonal family of abelian projections with the central support 1. Hence M 
is a von Neumann algebra of type In. Moreover the center Z(M) of M is isomorphic to 
C(X) and M = C(X)⊗Mn(C). The proof is complete.  �

Conclusions
We conclude that a C*-algebra coincides with its IOD if and only if this C*-algebra is 
weakly closed. If an IOD of a C*-algebra is weakly closed, then this IOD is a von Neu-
mann algebra. The construction of IOD is useful in investigating of operators and C*-
algebras. The norm of an infinite dimensional matrix is equal to the supremum of norms 
of all finite dimensional main diagonal submatrices of this matrix and an infinite dimen-
sional matrix is positive if and only if all finite dimensional main diagonal submatrices of 
this matrix are positive. Also we conclude that our ideas explained in the present paper 

M =

{

{�ij(x)eij}ij∈� : (∀ij �
ij(x) ∈ C(X))

(∃K ∈ R)(∀m ∈ N )(∀{ekl}
m
kl=1

⊆ {eij})

∥

∥

∥

∥

∥

∑

kl=1...m

�
kl(x)ekl

∥

∥

∥

∥

∥

≤ K

}

,

�a� = sup
{ekl}

n
kl=1⊆{eij}

∥

∥

∥

∥

∥

n
∑

kl=1

�
kl(x)ekl

∥

∥

∥

∥

∥

,
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may be applied to linear operators, matrices and algebraic structures as Jordan algebras 
and Lie algebras.

Abbreviations
LUB: least upper bound; IOD: infinite order decomposition.
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