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Background
The Lomax (1954), or Pareto II, distribution introduced originally for modeling busi-
ness failure data, moreover it has been widely applied in a variety of contexts. Hassan 
and Al-Ghamdi (2009) mentioned that it used for reliability modelling and life testing. 
The distribution has been used for modeling different data which studied by so many 
authors, Harris (1968) used Lomax distribution for income and wealth data, Atkinson 
and Harrison (1978) used it for modelling business failure data, while Corbelini et  al. 
(2007) used it to model firm size and queuing problems. It has also found application in 
the biological sciences and even for modelling the distribution of the sizes of computer 
files on servers, Holland et  al. (2006). Some authors, such as Bryson (1974), has sug-
gested the use of this distribution as an alternative to the exponential distribution when 
the data are heavy-tailed.

A random variable X has the Lomax distribution with two parameters α and λ if it has 
cumulative distribution function (CDF) (for x > 0) given by

(1)F(x) = 1−
(

1+ x

�

)−α
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where, α > 0 and λ > 0 are the shape and scale parameters respectively. The probability 
density function (PDF) corresponding to (1) reduces to

Lomax distribution can be motivated in a number of ways, e.g. Balkema and Haan 
(1974) showed that, it arises as the limit distribution of residual lifetime at old age, 
Dubey (1970) presented that it can be derived as a special case of a particular compound 
gamma distribution; and Tadikamalla (1980) relates Lomax distribution to Burr family. 
On the other hand, Lomax distribution is used as the basis for several generalizations. 
For example, Al-Awadhi and Ghitany (2001) use Lomax distribution as a mixing distri-
bution for the Poisson parameter and derive a discrete Poisson-Lomax distribution; and 
Punathumparambath (2011) introduced the double-Lomax distribution and applied it to 
the IQ data. The record statistics of Lomax distribution has been studied by both Ahsan-
ullah (1991) and Balakrishnan and Ahsanullah (1994). The implications of various forms 
of right-truncation and right-censoring are discussed by Myhre and Saunders (1982), 
Childs et al. (2001), Cramer and Schmiedt (2011) and others.

In the literature, some extensions of the Lomax distribution are available such as the 
Marshall–Olkin extended-Lomax (MOEL) by Ghitany et  al. (2007) and Gupta et  al. 
(2010), Beta–Lomax (BL), Kumaraswamy Lomax (KwL), McDonald-Lomax (McL) by 
Lemonte and Cordeiro (2013), Gamma-Lomax (GL) by Cordeiro et al. (2013) and Expo-
nentiated Lomax (EL) by Abdul-Moniem (2012).

The McLomax density function (Lemonte and Cordeiro 2013) with five parameters 
α,β , a, η and c, denoted by McLomax (α,β , a, η, c), is expressed as

The CDF corresponding to Eq. (3) is given by

where, Iy(a, b) is the incomplete Beta function.
Evidently, the density function (3) generalized several distributions as special sub-

models not previously considered in the literature. In fact, Lomax distribution (with 
parameters α and β) is clearly a basic example for a = c = 1 and η = 0. BLomax and 
KwLomax distributions are new models which arise for c = 1 and a = c, respectively. 
For η = 0 and c = 1, it leads to a new distribution referred to as the ELomax distribution 
that extends the exponentiated standard Lomax (ESLomax) distribution for β = 1 Gupta 
et al. (1998).

The McLomax distribution can also be applied in engineering as the Lomax distribu-
tion. Arnold (1983) used this distribution to model reliability and survival problems. The 
McLomax distribution allows for greater flexibility of its tails and can be widely applied 
in many areas.

(2)f (x) = α

�

(

1+ x

�

)−(α+1)
, x > 0,α, � > 0

(3)

f (x) = cαβα(β + x)−(α+1)

B
(

ac−1, η + 1
)

(

1−
(

β

β + x

)α)a−1(

1−
(

1−
(

β

β + x

)α)c)η

x > 0

(4)F(x) = I{1−βα(β+x)−α}c
(

ac−1, η + 1
)

x > 0
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El-Bassiouny et  al. (2015) introduced Exponential Lomax (Exp.Lomax) distribution 
with (CDF)

Cordeiro et  al. (2013) presented a three-parameters Gamma–Lomax (GL) distribu-
tion based on a versatile and flexible gamma generator proposed by Zografos and Bal-
akrishnan (2009) using Stacy’s generalized gamma distribution and record value theory. 
The GL CDF is given by

where, α and a are shape parameters and β is a scale parameter.
Tahir et al. (2015) introduced the four parameters Weibull Lomax (WLomax) distribu-

tion with (CDF)

Al-Zahrania and Sagorb (2014) introduced Poisson-Lomax distribution (PLD) with 
CDF

This distribution is a compound distribution of the zero truncated Poisson and Lomax 
distributions. The Extended Poisson-Lomax distribution (Ext.PLD) is introduced by Al-
Zahrani (2015) with (CDF)

Ashour and Eltehiwy (2013) proposed the transmuted exponentiated Lomax (TE-
Lomax) distribution with (CDF)

where, x > 0; �, γ , θ ,α > 0.

Using power transformation of a random variable may offer a more flexible distribu-
tion model by adding a new parameter. Ghitany et al. (2013) introduced two parameters 
distribution called power Lindley distribution and this model provides more flexibility 
than Lindley distribution.

The PDF of power Lindley distribution is given by

This paper is organized as follows; section “Model formulation” introduces the power Lomax 
(POLO) model formulation. The structural characteristics of POLO distribution including 
the behavior of the probability density function, the hazard rate function, the reversed hazard 

(5)F(x) = 1− e
−�×

(

β
x+β

)−α

, x ≥ −β ,α,β , � > 0

(6)F(x) =
Γ

[

a,αLog
[

1+ x
β

]]

Γ [a]
, x > 0,α, a,β > 0

(7)F(x) = 1− e

(

−a
((

1+
(

x
β

))α
−1

)b
)

x > 0, a, b,α,β > 0

(8)F(x) = 1− 1− e−�(1+βx)−α

1− e−�
, x > 0;α,β , � > 0

(9)F(x) = 1− (1+ βx)−αe−�(1−(1+βx)−α), x > 0; � ≥ 0,α,β > 0

(10)F(x) =
(

1− (1+ γ x)−θ
)α
(

(1+ �)− �
(

1− (1+ γ x)−θ
)α
)

f (x) = αβ2

β + 1

(

1+ xα
)

xα−1e−βxα , x > 0,α,β > 0.
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rate function, the (reversed) residual life, the entropy measures, the stress strength param-
eter, the moments and the associated moments, the order statistics and extreme values and 
finally the mean deviation and quantile function are studied in section “Structural character-
istics”. Section “Methods of estimation” concerns with the point and interval estimations of 
POLO distribution. Simulation schemes are obtained in section “Simulation studies”. Finally, 
a real data life application of bladder cancer data are illustrated the potential of POLO distri-
bution compared with other distributions in section “Application”.

Model formulation
A new extension of the Lomax distribution is proposed by considering the power trans-
formation X = T

1
β, where the random variable T follows Lomax distribution with 

parameters α, λ. The distribution of X is referred to as Power Lomax distribution. Sym-
bolically, it is abbreviated by X ∼ POLO(α,β , �) to indicate that the random variable X 
has the power Lomax distribution with parameters α, β and λ.

The PDF of the Power Lomax distribution (POLO) is defined by

The corresponding cumulative distribution function (CDF) of POLO distribution is 
given by

The reliability (survival) function of POLO distribution is given by,

Structural characteristics
In this section, we study the structural characteristics for POLO distribution. In particu-
lar, if X ∼ POLO(α,β , �) then the functional behavior of the density function and of the 
hazard function, reversed hazard function, mean residual life function and others are 
derived and studied in detail.

Behavior of the probability density function of Power Lomax distribution

Theorem 1 The PDF of Power Lomax distribution f(x) defined by Eq. (11) is

a. Unimodal if α > 0,β > 1, � > 0.

b. Decreasing if α > 0, 0 < β ≤ 1, � > 0.

Proof Since, ln f (x) = Ln[α]+ Ln[β]+ αLn[�]+ (β − 1)Ln[x]− (α + 1)Ln
[

�+ xβ
]

.

It follows that,

(11)f (x) = αβ�αxβ−1
(

�+ xβ
)−α−1

, x > 0,α,β , � > 0.

(12)F(x) = 1− �
α
(

xβ + �
)−α

, x > 0,α,β , � > 0.

(13)S(x) = 1− F(x) = �
α
(

xβ + �
)−α

, x > 0,α,β , � > 0.

d ln f (x)

dx
= −1+ β

x
− x−1+β(1+ α)β

xβ + �
.
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For 0 < β ≤ 1, d ln f (x)
dx

< 0, then f (x) is decreasing. For β > 1, d ln f (x)
dx

= 0 implies that 
f(x) has a mode at x0, where

Since, at α > 0, β > 1, λ > 0

Then d
2 ln f(x0)
dx2

= − (β−1)(1+αβ)
1+α

(

(β−1)�
1+αβ

)−2/β
< 0.

 Figure 1 is the plots of the POLO density function for different values of α, β and λ.

Hazard rate function

The survival function examines the chance of breakdowns of organisms or technical 
units etc. occur beyond a given point in time. To monitor the lifetime of a unit across 
the support of its lifetime distribution, the hazard rate is used. The hazard rate (HRF) 
measures the tendency to fail or to die depending on the age reached and it thus plays 
a key role in classifying lifetime distributions. Generally, hazard rates are monotonic 
(increasing or decreasing) or non-monotonic (bathtub or inverted bathtub) functions, 
Rinne (2014).

x0 =
(

(−1+ β)�

1+ αβ

)
1
β

.

d2 ln f(x)

dx2
= x2β(1+ αβ)− xβ(−1+ β)(2+ β + αβ)�− (−1+ β)�2

x2
(

xβ + �
)2

.
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Fig. 1 PDF of the POLO distribution
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From Eqs. (11), (13), the hazard rate function (HRF) of the power Lomax is defined by

The following theorem gives conditions under which the HRF, given by (14), is a 
decreasing hazard rate (DHR) and upside down bathtub (inverted bathtub IBT) also 
named by (IDHR Increasing–Decreasing Hazard Rate).

Theorem 2 The hazard rate function of power Lomax distribution (α,β , �) defined by 
Eq. (14) is

a. IBT if α > 0,β > 1, � > 0

b. DHR if α > 0, 0 < β ≤ 1, � > 0

Proof Since,

For 0 < β ≤ 1, h′(x) < 0, then h(x) is decreasing.
For α > 0,β > 1, � > 0, h′(x) = 0 implies that h(x) has a global maximum at

Therefore, h(x) is inverted bathtub shaped (IBT)
where, h′′(x) < 0atx1,α > 0,β > 1, � > 0

HRF of the POLO distribution are displayed in Fig. 2 for different values of α, β and λ 
(Fig. 3).  

(14)h(x) = xβ−1αβ

xβ + �
, x > 0,α,β , � > 0.

h′(x) = −
x−2+βαβ

(

xβ + �− β�
)

(

xβ + �
)2

.

x1 = (�β − �)
1
β

h′′(x1) =
αβ(β − 1)

2β−3
β

(

8− 6β − β2
)

(�)−3/β

(β − 2)3
< 0.
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Fig. 2 HRF of the POLO distribution
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Reversed hazard rate

The reversed hazard rate can be defined as the conditional random variable [t − X/X ≤ t] 
which denotes the time elapsed from the failure of a component given that its life is less 
than or equal to t. This random variable is called also the inactivity time or time since 
failure.

Using Eqs.  (11), (12), the reversed hazard function of the POLO distribution can be 
given by

Thus r(x) =
(

αβ�αxβ−1
(

�+xβ
)−α−1

)

1−�α(xβ+�)
−α , x > 0,α,β , � > 0.

(Reversed) Residual life functions

Residual life and reversed residual life random variables are used extensively in risk 
analysis. Accordingly, we investigate some related statistical functions, such as survival 
function, mean and variance in connection with POLO distribution. The residual life is 
described by the conditional random variable R(t) = X − t|X > t, t ≥ 0, and defined 
as the period from time t until the time of failure. Analogously, the reversed residual life 
can be defined as R̄(t) = t − X |X ≤ t which denotes the time elapsed from the failure of 
a component given that its life ≤ t.

i. Residual lifetime function

The survival function of the residual lifetime S(t), t ≥ 0, for POLO distribution is given 
by

and its PDF is

r(x) = f (x)

F(x)
.

SR(t) (x) =
S(x + t)

S(t)
=

(

tβ + �
)α(

(t + x)β + �
)−α

, x > 0.

fR(t) (x) = (t + x)−1+βαβ
(

tβ + �
)α(

(t + x)β + �
)−1−α
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Fig. 3 Reversed hazard function of the POLO distribution
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Consequently, the hazard rate function of R(t) has the following form

ii. Mean residual life function

The mean residual life (MRL) function MRL = E(X − x|X > x ) of power Lomax dis-
tribution is given by

Thus MRL =
(−�)

−α+ 1
β
(

xβ+�
)α

Beta
[

−x−β
�,α− 1

β
,1−α

]

β
, x > 0,α,β , � > 0.

Theorem 3 The behavior of the MRL for POLO distribution is

1. MRL is increasing for α > 0, 0 < β ≤ 1, � > 0.

2. MRL is bathtub (BT) for α > 0,β > 1, � > 0.

Proof Finkelstein (2002) proved that when the hazard rate function is monotonically 
increasing (decreasing), then the corresponding MRL function will be monotonically 
decreasing (increasing). The sufficient conditions for MRL to be IBT (BT) is that haz-
ard rate function has BT (IBT) shapes and f (0)µ1(0) > 1(≤ 1); where μ1(0) is MRL 
at x = 0 Gupta et al. (1999). Hence, f (0)µ1(0) < 1 and the HRF is IBT, then the MRL 
is BT at α > 0,β > 1, � > 0. Moreover, MRL is increasing since HRT is decreasing at 
α > 0, 0 < β ≤ 1, � > 0.

Figure 4 displays the behavior of MRL of POLO distribution at different values of the 
parameters

iii. Reversed residual life function

The survival function of the reversed residual lifetime R̄(t) for POLO distribution is given 
by

hR(t) (x) =
(t + x)−1+βαβ

(t + x)β + �
.

MRL = 1

S(x)

∫ ∞

x
S(t)dt.
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Fig. 4 MRL for POLO distribution
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hence the probability density function of R̄(t) takes the following form

Consequently the hazard rate function of the reversed residual lifetime R̄(t) has the fol-
lowing form

Moments and associated measures

The rth raw moments (about the origin) of power Lomax distribution is given by

The first four moments about the origin of the power Lomax distribution have been 
obtained as follows

Therefore, the mean and variance of power Lomax distribution respectively, are as 
follows

The first four central moments about the mean are then given as follows

SR̄(t)(x) =
F(t − x)

F(t)
=

1− �
α
(

(t − x)β + �
)−α

1− �α
(

tβ + �
)−α , 0 ≤ x < t.

f
R̄(t)

(x) = − (t − x)−1+βαβ�α
(

(t − x)β + �
)−1−α

1− �α
(

tβ + �
)−α .

h
R̄(t)

(x) = (t − x)−1+βαβ�α

(

(t − x)β + �
)

(

�α −
(

(t − x)β + �
)α
) .

µ′
r =

∫ ∞

0
xrαβ�αxβ−1

(

�+ xβ
)−α−1

dx.

µ′
r =

α�r/βΓ

[

α − r
β

]

Γ

[

r+β
β

]

Γ [1+ α]
.

µ′
1 =

α�
1
β Γ

[

α − 1
β

]

Γ

[

1
β

]

βΓ [1+ α]
µ′
2 =

α�2/βΓ

[

α − 2
β

]

Γ

[

2+β
β

]

Γ [1+ α]
.

µ′
3 =

α�3/βΓ

[

α − 3
β

]

Γ

[

3+β
β

]

Γ [1+ α]
µ′
4 =

α�4/βΓ

[

α − 4
β

]

Γ

[

4+β
β

]

Γ [1+ α]
.

µ =
α�

1
β Γ

[

α − 1
β

]

Γ

[

1
β

]

βΓ [1+ α]
, σ 2 =

�
2
β

(

−Γ

[

α − 1
β

]2

Γ

[

1+ 1
β

]2

+ Γ [α]Γ

[

α − 2
β

]

Γ

[

2+β
β

]

)

Γ [α]2
.

µk = E
[

(x − µ)k
]

. µ2 =
α�

2
β

(

−Γ

[

α − 1
β

]2
Γ

[

1
β

]2
+ 2βΓ [α]Γ

[

α − 2
β

]

Γ

[

2
β

]

)

β2Γ [α]Γ [1+ α]
.
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The skewness and kurtosis measures can be obtained from the expressions respectively

Order statistics and extreme values

The distribution of extreme values plays an important role in statistical applications. In 
this section the probability and cumulative function of order statistics are introduced 
and the limiting distribution of minimum and the maximum arising from the power 
Lomax distribution can then be derived.

Probability and cumulative function of order statistics

Suppose X1,X2, . . . . . . .,Xn is a random sample from power Lomax distribution. Let 
X1:n < X2:n < · · · < Xn:n denote the corresponding order statistics. The probability den-
sity function and the cumulative distribution function of the kth order statistic of POLO 
distribution, say Y = Xj:n are given by

µ3 =
1

β3Γ [α]3
�

3
β

(

2Γ

[

α − 1

β

]3

Γ

[

1

β

]3

− 6βΓ [α]Γ

[

α − 2

β

]

Γ

[

α − 1

β

]

Γ

[

1

β

]

Γ

[

2

β

]

+ 3β2Γ [α]2Γ

[

α − 3

β

]

Γ

[

3

β

])

.

µ4 = 1

β4Γ [α]4
�

4
β

(

−3Γ

[

α − 1

β

]

Γ

[

1

β

]

(

Γ

[

α − 1

β

]3

Γ

[

1

β

]3

− 4βΓ [α]Γ

[

α − 2

β

]

Γ

[

α − 1

β

]

Γ

[

1

β

]

Γ

[

2

β

]

+ 4β2Γ [α]
2Γ

[

α − 3

β

]

Γ

[

3

β

]

)

+ β4Γ [α]
3Γ

[

α − 4

β

]

Γ

[

4 + β

β

]

)

.

β1 = −











�

2Γ

�

α − 1
β

�3

Γ

�

1
β

�3

− 6βΓ [α]Γ

�

α − 2
β

�

Γ

�

α − 1
β

�

Γ

�

1
β

�

Γ

�

2
β

�

+ 3β2Γ [α]2Γ

�

α − 3
β

�

Γ

�

3
β

�

�2

�

Γ

�

α − 1
β

�2

Γ

�

1
β

�2

− 2βΓ [α]Γ

�

α − 2
β

�

Γ

�

2
β

�

�3











.

β2 =
(

−3Γ

[

α − 1

β

]

Γ

[

1

β

]

(

Γ

[

α − 1

β

]3

Γ

[

1

β

]3

− 4βΓ [α]Γ

[

α − 2

β

]

Γ

[

α − 1

β

]

Γ

[

1

β

]

Γ

[

2

β

]

+ 4β2Γ [α]
2Γ

[

α − 3

β

]

Γ

[

3

β

]

)

+ β4Γ [α]
3Γ

[

α − 4

β

]

Γ

[

4 + β

β

]

)

/

β4

(

Γ

[

α − 1

β

]2

Γ

[

1+ 1

β

]2

− Γ [α]Γ

[

α − 2

β

]

Γ

[

2+ β

β

]

)2

.

fY
(

y
)

= n!
(k − 1)!(n− k)!F

k−1
(

y
){

1− F
(

y
)}n−k

f
(

y
)

.

= n!
Γ [k]Γ [1− k + n]

·
[

αβ�αyβ−1
(

�+ yβ
)−α−1

]

·
[

1− �
α
(

yβ + �
)−α

]k−1

·
[

�
α
(

yβ + �
)−α

]n−k
.



Page 11 of 22Rady et al. SpringerPlus  (2016) 5:1838 

Moreover,

Limiting distributions of extreme values

Let mn = X1:n = min[X1, X2, ..., Xn] and Mn = Xn:n = max[X1, X2, ..., Xn] arising from 
Power Lomax distribution. The limiting distributions of X1:n and Xn:n can be obtained by 
the following theorem.

Theorem 4 Let mn and Mn be the minimum and the maximum of a random sample 
from the Power Lomax distribution, respectively. Then

1. limn→∞ p
(

mn−an
bn

≤ x
)

= 1− exp
(

−xβ
)

; x > 0.

2. limn→∞ p
(

Mn−cn
dn

≤ x
)

= exp
(

−x−αβ
)

; x > 0.

where; an = 0, bn = 1

F−1
(

1
n

) , cn = 0 and dn = 1

F−1
(

1− 1
n

).

Proof 1. Using L’Hospital rule, we have
 

Therefore by Theorem (8.3.6) of Arnold et al. (1992), the minimal domain of attraction 
of the Power Lomax distribution is the Weibull distribution, and thus (i) is proved.

2. Using L’Hospital rule, we have

Therefore, by Theorem (1.6.2) and Corollary (1.6.3) in Leadbetter et  al. (1987), the 
maximal domain of attraction of the Power Lomax distribution is Fréchet distribution, 
and thus (ii) is proved.

Quantiles and mean deviation

Quantiles are useful measures because they are less susceptible to long-tailed distribu-
tions. Also, quantiles may be more useful descriptive statistics than means and other 
moment-related statistics.

Let X denotes a random variable with the POLO probability density function, the 
quantile function, Q(p) is given by

FY
(

y
)

=
n

∑

m=k

(

n
m

)

Fm
(

y
)

×
[

1− F
(

y
)]n−m

.

FY
(

y
)

=
n

∑

m=k

(

n
m

)

(

1− �
α
(

yβ + �
)−α

)m
×

[

�
α
(

yβ + �
)−α

]n−m
.

lim
ε→0+

F
(

F−1(0)+ εx
)

F
(

F−1(0)+ ε
) = lim

ε→0+

F(εx)

F(ε)
= lim

ε→0+

xf (εx)

f (ε)
= xβ .

lim
t→∞

1− F(tx)

1− F(t)
= lim

t→∞
xf (tx)

f (t)
= x−αβ .

Q(p) = inf {xεR : F(x) ≥ p}, where 0 < p < 1.



Page 12 of 22Rady et al. SpringerPlus  (2016) 5:1838 

By inverting the cumulative distribution function, the quantile function for POLO dis-
tribution has the following form

Consequently, the first, median and the third quartiles of the power Lomax distribu-
tion are respectively given by

In statistics, the mean deviation about the mean and mean deviation about the median 
measure the amount of scatter in a population. For a random variable X with PDF, f (x), 
distribution function F(x), mean μ = E(X) and M = Median(X), mean deviation about the 
mean and mean deviation about the median are defined by η1(x) =

∫∞
0 |x − µ|f (x)dx 

and η2(x) =
∫∞
0 |x −M|f (x)dx respectively.

The next theorem gives such mean deviation for POLO random variable.

Theorem 5 If X is POLO random variable, then

and

where F(.) is the CDF of POLO distribution, given by Eq.  (12) and μ,  M are the mean 

and median of this distribution, respectively, given by µ =
α�

1
β Γ

[

α− 1
β

]

Γ

[

1
β

]

βΓ [1+α]
 and 

M = �
1
β

(

(

1
2

)− 1
α − 1

)

1
β

.

Proof From the definitions of η1(x) and η2(x), we can show that

and

which complete the proof.

Q(p) = �
1
β

(

(1− p)−
1
α − 1

)
1
β
.

Q1 = F−1

(

1

4

)

= �
1
β

(

(

3

4

)− 1
α

− 1

)

1
β

, Q2 = F−1

(

1

2

)

= �
1
β

(

(

1

2

)− 1
α

− 1

)

1
β

η1(x) = 2µF(µ)− 2µ+ 2α(−�)
−α+ 1

β �
αBeta

[

−�µ−β ,α − 1

β
,−α

]

.

η2(x) = 2MF(M)−M + 2α(−�)
−α+ 1

β �
αBeta

[

−M−β
�,α − 1

β
,−α

]

.

η1(x) = 2µF(µ)− 2µ+ 2

∫ ∞

µ

xf (x).

η2(x) = 2MF(M)−M + 2

∫ ∞

M
xf (x).
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Shannon’s & Rényi and Song’s entropy measures

Entropy is a measure of randomness, disorder, chaos or loss of information of systems. It 
can be used in many essential fields such as chemistry, physics and biology as a driving 
force for protein unfolding or catalysis of enzymes.

(i) For a continuous random variable X with density function f(x), Shannon’s entropy is 
defined by

Shannon’s entropy for POLO distribution is defined by

Some numerical values for Shannon’s entropy are given in Table 1. It’s seems that the 
entropy decreases with increasing α,β, while decreases with increasing λ.

(ii) Rényi entropy
Rényi entropy and Song’s measure are used to measure the intrinsic shape of the 

distribution.
Rényi entropy is defined by

SH = −
∫ ∞

0
f (x)logf (x)dx.

SH = −
∫ ∞

0
f (x)logf (x)dx.

SH = −αβ�α
∫ ∞

0
xβ−1

(

�+ xβ
)−α−1

Log
[

αβ�αxβ−1
(

�+ xβ
)−α−1

]

dx.

SH = −αβ�α

(

(−1+ β)�−α
(

−HarmonicNumber[−1+ α]+ Log[�]
)

αβ2

− (1+ α)�−α
(

1+ αLog[�]
)

α2β
+ �

−αLog[αβ�]

β

)

.

SH = 1+ 1

α
+αLog[�]−αLog[αβ�]+

Log[�]+ (β − 1)
(

EulerGamma+ PolyGamma[0,α]
)

β
.

IR(γ ) = (1− γ )−1 log

(∫

R
f γ (x)dx), γ > 0, γ �= 1

)

.

Table 1 Entropy for several arbitrary parameter values

Parameters λ = 2, β = 0.2 α = 0.3, β = 0.5 α = 1.5, λ = 3

α↓ Entropy λ↑ Entropy β↓ Entropy

0.1 54.2431 0.2 4.6089 0.1 9.97512

0.5 13.1622 0.5 6.44148 0.4 4.25888

1 7.07517 1 7.82778 0.8 2.61302

1.5 4.48354 1.5 8.63871 1 2.15708

3 0.331546 3 10.025 1.3 1.65163

3.5 −1.12738 5.8 11.3435 2 0.87491

5 −3.6676 7 11.7196 3.5 −0.06843
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For POLO distribution, Rényi entropy is given by

(iii) Song’s measure of a distribution is defined by

 Hence, for POLO distribution:

By L’Hôpital’s rule, Song’s measure for POLO distribution is obtained as

Stress strength parameter

In lifetime models, the stress strength parameter, R = P(X < Y ), describes the lifetime 
component which has a random stress X that is subjected to a random strength Y. It 
plays a vital role in reliability. The component fails at the moment that the stress applied 
to it exceeds the strength, and the component will function satisfactorily whenever 
X < Y. The next theorem gives the stress-strength parameter for POLO distribution.

Theorem 6 Let X and Y be two independent random variables distributed as POLO 
(α1, β1, λ1) and POLO (α2, β2, λ2) respectively, Then the stress strength parameter R is given 
as follows

Proof R = P(X < Y ) = α1β1�
α1
1 α2β2�

α2
2

∫∞
0

∫ y
0 xβ1−1

(

�1 + xβ1
)−α1−1

yβ2−1
(

�2 + yβ2
)−α2−1

dxdy .

 After some calculations 

IR(γ ) = (1− γ )−1 log

�� ∞

0

�

αβ�αxβ−1
�

�+ xβ
�−α−1

�γ
�

dx, γ > 0, γ �= 1

= (1− γ )−1Log







�

αβ�α
�γ

�
−−1+γ+αβγ

β Γ

�

1+(−1+β)γ
β ]Γ [

−1+γ+αβγ
β

�

βΓ [γ + αγ ]






.

Sf = lim
γ→1

−2
dIR(γ )

dγ

dIR(γ )

dγ
= 1

β(γ − 1)2

�

(γ − 1)
�

−βLog[αβ�α ]+ Log[�]+ αβLog[�]
�

+ βLog







(αβ�α)γ �
− γ−1+αβγ

β Γ

�

1+(−1+β)γ
β

�

Γ

�

γ−1+αβγ
β

�

βGamma[γ + αγ ]






+ (1+ α)β(γ − 1)PolyGamma[0, γ + αγ ]

+(−1+ β + γ − βγ )PolyGamma

�

0,
1+ (−1+ β)γ

β

�

−(1+ αβ)(−1+ γ )PolyGamma

�

0,
γ − 1+ αβγ

β

��

.

Sf =
1

3
π2(−1+ β)2−(1+ αβ)2PolyGamma[1,α]−2(1+ α)2β2PolyGamma[1, 1+ α]).

R = α1β1�
α1
1

�

1− �
−β2(α2+1)
2 �

α1β1
1

�









∞
�

j=0





−(α2 + 1)

j



�
−β2 j
2

Hypergeometric2F1

�

α1,
(1+j)β2

β1
, 1+ (1+j)β2

β1
,−

�

1
�1

�β1
�

�

1+ j
�

β2









+





−(α2 + 1)

j



�
β2
2

Hypergeometric2F1

�

α1,
−1+α1β1+(j+α2)β2

β1
,
−1+(1+α1)β1+(j+α2)β2

β1
,−

�

1
�1

�−β1
��

�

1
�1

�−β1
�

−1+α1β1+(j+α2)β2
β1

�

�

1
�1

�β1
�

−1+(j+α2)β2
β1

−1+ α1β1 +
�

j + α2
�

β2
.

R = α1β1�
α1
1

[

1− �
α1
1

∫ ∞

0
yβ2−1

(

�2 + yβ2
)−α2−1(

�1 + yβ1
)−α1

dy

]

.
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Using the expansion 
�

1+ xb
�−a =















�∞
j=0

�

−a
j

�

x−b(j+a);
�

�xb
�

� > 1

�∞
j=0

�

−a
j

�

xbj;
�

�xb
�

� < 1

, 
(

−a

j

)

=

(−1)j
(

a+ j − 1

j

)

.

 The following result has obtained

The integrals are then easy to determine and the proof is completed.

Methods of estimation
In this section, we consider maximum likelihood estimation (MLE) to estimate the 
involved parameters and the method of moment estimates (MME). Moreover, the 
asymptotic distribution of �̂ =

(

α̂, β̂ , �̂
)

 are obtained using the elements of the inverse 
Fisher information matrix.

Maximum likelihood estimation

Let x1, x2, …, xn be a random sample of size n from the POLO distribution with PDF 
given by Eq. (11)

The log-likelihood function (L(α,β , �)) of POLO distribution is given by

It follows that the maximum likelihood estimators (MLEs), say α̂, β̂ and �̂, are the 
simultaneous solutions of the equations

R = α1β1�
α1
1

[

1− �
−β2(α2+1)
2

]

�
α1β1
1

∞
∑

j=0

(

−(α2 + 1)

j

)

�
−β2j
2

∫ 1

0

yβ2(j+1)−1

(

(

1+ y

�1

)β1
)−α1

+
(

−(α2 + 1)

j

)

�
β2
2

∫ ∞

1

y−β2(j+α2)−1

(

(

1+ y

�1

)β1
−α1

)

dy

(15)L(α,β , �) = n(ln α + ln β + ln �)+ (β − 1)

n
∑

i=1

ln xi − (α + 1)

n
∑

i=1

ln
(

�+ x
β
i

)

(16)
∂

∂α
L(α,β , �) = n

α
+ n ln �−

n
∑

i=1

ln
(

�+ x
β
i

)

(17)
∂

∂β
L(α,β , �) = n

β
+

n
∑

i=1

ln xi − (α + 1)

n
∑

i=1

x
β
i ln xi

(

�+ x
β
i

)

(18)
∂

∂�
L(α,β , �) = nα

�
− (α + 1)

n
∑

i=1

1
(

�+ x
β
i

)
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Method of moments

Let x1, x2, …, xn be a random sample of size n from the POLO distribution with PDF 
given by Eq. (11), by equating the raw moments of POLO distribution with the sample 
moments, the MME equations are 

The method of moments estimators are the simultaneous solutions of these three 
equations.

Fisher information matrix

For interval estimation of the parameter vector Θ = (α, �,β)T for POLO distribution; 
we can derive the expected Fisher information matrix I =

[

Iij
]

, i, j = 1, 2, 3 as follows:

µ′
1 =

α�
1
β Γ

[

α − 1
β

]

Γ

[

1
β

]

βΓ [1+ α]
., µ′

2 =
α�2/βΓ

[

α − 2
β

]

Γ

[

2+β
β

]

Γ [1+ α]
., µ′

3 =
α�3/βΓ

[

α − 3
β

]

Γ

[

3+β
β

]

Γ [1+ α]
.

I11 = E

[−∂2lnf(x)

∂α2

]

= 1

α2
.

I22 = E

[−∂2lnf(x)

∂�2

]

= αβ

(2β + αβ)�2
.

I33 = E

[−∂2lnf(x)

∂β2

]

= 1

β2
+

�
− 2

β

(

�
1
β Γ

[

2− 1
β

]

Γ

[

α + 1
β

]

+
α(−1+β)βΓ

[

2− 2
β

]

Γ

[

α+ 2
β

]

2+α

)

Γ [α]
.

I12 = E

[−∂2lnf(x)

∂α∂�

]

= − αβ
(

αβ + α2β
)

�
.

I23 = E

[−∂2lnf(x)

∂�∂β

]

= −
α(1+ α)β�

α− 1+β+αβ
β Γ

[

2− 1
β

]

Γ

[

1+ α + 1
β

]

Γ [3+ α]
.

I13 = E

[−∂2lnf(x)

∂α∂β

]

=
αβ�

α− 1+αβ
β Γ

[

2− 1
β

]

Γ

[

α + 1
β

]

Γ [2+ α]
.

Table 2 Bias and MSE for the POLO parameters

α β λ n Bias (α) MSE (α) Bias (β) MSE (β) Bias (λ) MSE (λ)

0.5 10 0.5 30 0.1508 0.03394 2.7765 19.9278 0.7227 11.9722

50 0.1394 0.0265 2.4762 12.6226 0.1764 4.6215

70 0.1337 0.0228 2.3086 10.4639 0.0368 1.9079

90 0.1319 0.0209 2.0271 7.2067 0.0872 1.4503

0.5 5 1 30 0.1358 0.0205 1.1525 2.1615 0.2566 0.8045

50 0.1279 0.0175 1.0211 1.4909 0.2959 0.3731

70 0.1247 0.0163 0.9626 1.2279 0.3059 0.1603

90 0.1246 0.0162 0.8856 1.0043 0.3333 0.1527



Page 17 of 22Rady et al. SpringerPlus  (2016) 5:1838 

Under regularity conditions, Bahadur (1964), showed that as n → ∞,
√
n
(

Θ̂ −Θ

)

 
is asymptotically normal 3-variate with (vector) mean zero and covariance matrix I−1. 
Asymptotic variances and covariance of the elements of Θ̂ are obtained by:

where � = det(I). The corresponding asymptotic 100(1− α)% confidence intervals are 
�̂± cI−1/2; where c is the appropriate z critical value.

Simulation studies
The Equation F(x)− u = 0, where u is an observation from the uniform distribution 
on (0,1) and F(x) is cumulative distribution function of distribution is used to carry out 
the simulation study to generate data from distribution. The simulation experiment was 
repeated N = 1000 times each with sample sizes; n = 30, 50, 70, 90 and (α, β, λ) = (0.5, 
10, 0.5), (0.5,5,1). The following measures are computed.

Average bias and the mean square error (MSE) of γ̂ of the parameter α, β, λ

Table 2 presents the average bias and the MSE of the estimates. The values of the bias 
and the MSEs decreases while the sample size increases.

Application
Consider a dataset corresponding to remission times (in months) of a random sample of 
128 bladder cancer patients given in Lee and Wang (2003). The data are given as follows: 
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 
2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 
2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 
2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 
1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 
1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 
3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 
6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 
2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

We have fitted the Power Lomax distribution to the dataset using MLE, and compared 
the proposed Power Lomax distribution with Lomax, MCLomax, BLomax, KW Lomax, 
exponential Lomax, G-lomax, transmuted exponentiated Lomax, WLomax, extended 
Poisson Lomax and ELomax. The model selection is carried out using the AIC (Akaike 
information criterion), the BIC (Bayesian information criterion), the CAIC (consistent 
Akaike information criteria) and the HQIC (Hannan Quinn information criterion). 

var
(

α̂
)

= I22I33 − I223
n�

, var
(

�̂

)

= I11I33 − I213
n�

, var
(

β̂

)

= I11I22 − I212
n�

cov
(

α̂, �̂
)

= I13I23 − I12I33

n�
, cov

(

α̂, β̂
)

= I12I23 − I13I22

n�
, cov

(

�̂, β̂
)

= I13I12 − I11I23

n�

1

N

N
∑

i=1

(γ̂ − γ )
1

N

N
∑

i=1

(

γ̂ − γ
)2
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where L
(

θ̂

)

 denotes the log-likelihood function evaluated at the maximum likelihood 
estimates, q is the number of parameters, and n is the sample size. Here we let θ denotes 
the parameters, i.e., θ = (α,β , �). An iterative procedure is applied to solve Eqs.  (16), 
(17) and (18) and consequently obtain θ̂ =

(

α̂ = 2.07012, β̂ = 1.4276, �̂ = 34.8626
)

. 

At these values we calculate the log-likelihood function given by (15) and apply rela-
tion (19). The model with minimum AIC (or BIC, CAIC and HQIC) value is chosen as 

(19)

AIC = −2L
(

θ̂

)

+ 2q,

BIC = −2L
(

θ̂

)

+ q log (n),

HQIC = −2L
(

θ̂

)

+ 2q log(log (n)),

CAIC = −2L
(

θ̂

)

+ 2qn

(n− q − 1)

Table 3 MLEs and the measures AIC, BIC, HQIC and CAIC

Distribution Estimates −Log L AIC BIC HQIC CAIC

Lomax α̂ = 13.9384

�̂ = 121.023

−413.835 831.67 837.37 833.98 831.80

MCLomax α̂ = 0.8085

β̂ = 11.2929

â = 1.5060

η̂ = 4.1886

ĉ = 2.1046

−409.91 829.82 844.09 835.62 830.14

BLomax α̂ = 3.9191

β̂ = 23.9281

â = 1.5853

η̂ = 0.1572

−411.743 831.486 842.89 836.12 831.74

KW Lomax α̂ = 0.3911

β̂ = 12.2973

â = 1.5162

η̂ = 11.0323

−409.94 827.88 839.29 832.52 828.14

Exp Lomax α̂ = 1.0644

β̂ = 0.08

�̂ = 0.006

−414.978 835.956 844.512 839.432 836.15

G‑lomax α̂ = 4.754

β̂ = 20.581

â = 1.5858

−410.081 826.162 834.718 829.638 826.36

TE‑Lomax α̂ = 1.71418

γ̂ = 0.05456

�̂ = 0.24401

θ̂ = 3.33911

−410.434 828.868 840.276 833.505 829.13

WLomax α̂ = 0.25661

β̂ = 1.57945

â = 2.42151

b̂ = 1.86389

−410.811 829.622 841.03 834.257 829.88

Ext.PLD α̂ = 0.2387

β̂ = 8.04× 10
−3

�̂ = 59.8378

−413.835 833.67 842.22 837.14 833.86

ELomax α̂ = 4.5857

β̂ = 24.7414

â = 1.5862

−410.07 826.14 834.70 829.62 826.33

Power Lomax α̂ = 2.07012

β̂ = 1.4276

�̂ = 34.8626

−409.74 825.48 834.036 828.956 825.67
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the best model to fit the data. From Table 3, we conclude that the Power Lomax distri-
bution is best comparable to the Lomax, MCLomax, BLomax, KW Lomax, exponential 
Lomax (Exp.Lomax), G-lomax, transmuted exponentiated Lomax (TE-Lomax), WLo-
max, extended Poisson Lomax (Ext.PLD) and ELomax distributions.

For an ordered random sample, X1, X2, …, Xn,  from Power Lomax distribution (α, β, λ), 
where the parameters α, β and λ are unknown, the Kolmogorov–Smirnov Dn, Cramér-
von Mises Wn

2, Anderson and Darling An
2, Watson Un

2 and Liao-Shimokawa Ln
2 tests statis-

tics are given as follows (For details see e.g. Al-Zahrani 2012)

Table 4 indicates that the test statistics Dn, W 2
n , A2

n, U2
n and Ln have the smallest values 

for the data set under Power Lomax distribution model with regard to the other mod-
els. The proposed model offers a smart alternative to the above distributions. The Power 
Lomax distribution approximately provides an adequate fit for the data.

Dn = max
i

(

i

n
− F

(

xi, α̂, β̂ , �̂
)

, F
(

xi, α̂, β̂ , �̂
)

− i − 1

n

)

W 2
n = 1

12n
+

n
∑

i=1

(

F
(

xi, α̂, β̂ , �̂
)

− 2i − 1

n

)2

A2
n = −n−

n
∑

i=1

2i − 1

n

[

ln
(

F
(

xi, α̂, β̂ , �̂
))

+ ln
(

1− F
(

xi, α̂, β̂ , �̂
))]

U2
n = W 2

n +
n

�

i=1





F
�

xi, α̂, β̂ , �̂
�

n
− 1

2





2

Ln = 1√
n

n
∑

i=1

max
i

[

i
n − F

(

xi, α̂, β̂ , �̂
)

, F
(

xi, α̂, β̂ , �̂
)

− i−1
n

]

√

F
(

xi, α̂, β̂ , �̂
)[

1− F
(

xi, α̂, β̂ , �̂
)]

Table 4 Goodness-of-fit tests

Distribution Dn W
2
n A

2
n U

2
n

Ln

Lomax 0.096669 0.2125894 1.374568 31.70173 1.059358

MCLomax 0.039118 0.0226833 0.157007 31.52438 0.447921

BLomax 0.040501 0.0258228 0.178724 31.52722 0.475089

KW Lomax 0.038908 0.0229529 0.159531 31.52472 0.451879

Exp.Lomax 0.076702 0.1796769 1.0908 31.69346 1.084015

G‑lomax 0.040639 0.0261905 0.18089 31.52988 0.477688

TE‑Lomax 0.03991 0.0314384 0.227535 31.53149 0.534136

WLomax 0.041403 0.0382951 0.262735 31.54341 0.577467

Ext.PLD 0.098877 0.2267612 1.451105 31.7139 1.073414

ELomax 0.039863 0.02682087 0.18341 31.52886 0.483202

Power Lomax 0.035055 0.01754725 0.120466 31.51976 0.404336
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Fig. 5 The Q–Q plot for bladder cancer data
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The quantile–quantile or Q–Q plot is used to check the validity of the distributional 
assumption for the data. Figure 5 shows that the data seems to follow a Power Lomax 
distribution reasonably well, except some points on extreme.

Conclusion
In this paper we introduced a three parameters power Lomax Distribution (POLO). The 
new distribution can exhibit a much more flexible model for life time data especially 
bladder cancer data than its predecessor Lomax distributions, presenting decreasing, 
inverted bath tub hazard rate function. Most statistical and reliability properties are 
derived and studied. Simulation schemes are formulated and provides less bias and mean 
square error as sample size increases for MLEs of POLO parameters. Point Estimation 
via MME and MLE methods are done moreover, the Fisher information matrix for inter-
val estimation is studied for POLO. A real data on bladder cancer is used to illustrate and 
compare the potential of POLO distribution with other competing distributions showed 
that it could offer a better fit than a set of extensions of Lomax distribution.
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